Lecture 7
July 8, '24
Today, we want to go over non-adiabalic physics in some more Retail, focussing on the non-adichatil coupling matrices, their properties, and dynamics in this coupled system.

Recall: we have established the coupledcharnel formalism

$$
\sum_{\nu}\left(-\frac{1}{2} \frac{\alpha^{2}}{d R^{2}}-E\right) \delta_{\mu \nu} F_{\nu}(R)+\sum_{\nu} V_{\mu v} F_{\nu}(n)=0
$$

where

$$
\psi(\Omega, \Omega)=\sum_{\mu} \Phi_{\mu}(\Omega) F_{\mu}(R) .
$$

Recall: this was the outcome of turning an ND schrö̈Q into one ($N-1$ ID Schrö̈-EQ (the ore $H_{c}(\Omega) \Phi_{\mu}(\Omega)=E_{\mu} \Phi_{\mu}(\Omega)$) and infinitely many coupled $1 D$ Schrö-EQs. (And typically the $(N-1) D$ schro EQ is already solver, or is separable, or both-thinh about SphHarmonics etc...1

It does remain an important question how to determine the best \& ${ }_{\mu}$ for our problem!
\rightarrow Example from Ryd-Mols. We could choose (for the simplest spin-indep. model)

$$
\Phi_{\mu}(r)=\frac{u_{n l}(r)}{r} Y_{l m}(\hat{r})
$$

such that our coupled channd equations become, in the perturbative limit that n is fixed,

$$
\begin{array}{r}
\sum_{l}\left(-\frac{1}{2} \frac{d^{2}}{d R^{2}}-\frac{1}{2(n-\mu)^{2}}-E\right) \delta_{l^{\prime} l} F_{l}(R)+\sum_{l} 2 \pi a_{5} \Phi_{n l^{\prime}}^{*}(R) \Phi_{n l}(R) \\
\cdot F_{l}(R)=0 .
\end{array}
$$

This is easy to write down, but very hard to solve - especially for $l \gg 1$ where the states are Uighly degenerate!
\rightarrow The off-diagond couplings $V_{l l}$ ' become as large as $V_{l d}$ and don't decrease with (l-l'l!

That motivated the introduction of a new representation - the adiabatic representation - where Vel' is diagonal!

$$
V_{l l^{\prime}} \psi_{l}^{\prime}(r ; R)=V_{l}(R) \psi_{l}(r ; R)
$$

This gins the coupled adiabatic channel equs

$$
\begin{aligned}
& \sum_{v}\left[\begin{array}{r}
{\left[-\frac{1}{2 m} \frac{d^{2}}{d R^{2}}+U(R)-U_{v}(R)-E\right] \delta_{\mu \nu} F_{v}(R)} \\
+1
\end{array}\right. \\
& \begin{array}{r}
\left.+\frac{1}{2 m}\left[2 P_{\mu v} \frac{d}{d n}+Q_{\mu v}\right] F_{v}(R)\right]=0 \\
N \text { NA coupling matrices! }
\end{array}
\end{aligned}
$$

botum live $=0$ in BO approx!

Properties of P ad \underline{Q} :

1) $P_{\mu v}=L \phi_{\mu}\left(d / d R\left(\phi_{v}\right)\right.$ is anti-symmetric!

$$
\begin{aligned}
\text { Proof: } 0=\frac{d}{d R}\left\langle\phi_{\mu}\left(\phi_{v}\right)\right. & \left.=\left\langle\phi_{\mu} \mid \phi_{v}^{\prime}\right\rangle+\left\langle\phi_{m}^{\prime}\right| \phi_{v}\right) \\
& \rightarrow P_{\mu v}=-P_{v \mu}
\end{aligned}
$$

2)

$$
\begin{aligned}
\frac{d P_{\mu v}}{d R}= & \left\langle\phi_{\mu}^{\prime} \mid \phi_{v}^{\prime}\right\rangle+\left\langle\phi_{\mu}\left(\phi_{v}^{\prime \prime}\right)\right. \\
& =Q \text { matrix! } \\
& =Q
\end{aligned}
$$

$$
=\sum_{1} \underbrace{2 \phi_{M}^{\prime} \mid \phi_{q}}_{\left(p^{+}\right)_{\mu q}} \times \underbrace{\phi_{1}\left|\phi_{v}^{\prime}\right\rangle}_{P_{1 v}}=p^{2}
$$

$$
\rightarrow Q=\frac{d P_{\mu}}{d R}-P^{2}
$$

That's a useful identity to avoid $2^{\text {nd }}$ derivatins!
3) Feynman - Hellman The:

$$
P_{\mu \nu}=\frac{\left\langle\psi_{\mu}\right| \frac{d H}{d n}\left|\phi_{\nu}\right\rangle}{U_{v}-U_{\mu}}
$$

Pf:

$$
\begin{aligned}
& H\left(\phi_{v}\right\rangle=U_{v}\left|\phi_{v}\right\rangle \\
& \rightarrow \frac{d H}{d R}\left(\phi_{v}\right\rangle+H\left|\phi_{v}^{\prime}\right\rangle= U_{v}^{\prime}\left|\phi_{v}\right\rangle \\
&+U_{v}\left|\phi_{v}^{\prime}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =U_{\mu}\left\langle\phi_{\mu}\left(\phi_{v}\right\rangle\right. \\
& =U_{\mu} P_{\mu \nu} \\
& \left.\rightarrow<\phi_{n}\left|\frac{\alpha H}{d R}\right| \phi_{v}\right)+2 \phi_{n} \mid H\left(\phi_{v}\right)= \\
& =L_{v}^{l} \underbrace{\left\langle\phi_{\mu}\left(\phi_{v}\right)\right.}_{=0}+\omega_{v}^{U_{v}} \underbrace{2 \phi_{\mu}\left|\phi_{v}\right\rangle}_{=P_{\mu v}} \\
& \text { So: } \angle \phi_{m}\left(\frac{d H}{R R}\left(\phi_{v}\right)=\left[U_{v}-U_{M}\right] P_{\mu v}\right. \\
& \text { AnAQED: } P_{\mu \nu}=\frac{\left\langle\phi_{\mu}\right| \frac{d H}{a r}\left|\phi_{v}\right\rangle}{U_{v}-\nu_{\mu}}
\end{aligned}
$$

And this is super useful as it gives very accurate values fur the P-matrix without any numerical differentiation!

In the lecture, we discussed tribbite and butterfly molecules here. I will try to write this all up as a separate example later. We used supersymmetry to compute PEC , show that there we avoided crossings, and then this motivated...
the LANDAU- ZENER formula!!

What is the probability for the partide to hop fromone potential to the other?

Landau Zerner:

Let's consider first the approach of Clark. Westant with a liabatic Hamiltonian:

$$
H\binom{\phi_{1}}{d_{2}}=\left(\begin{array}{ll}
\varepsilon_{1} & \varepsilon_{12} \\
\varepsilon_{12} & \varepsilon_{2}
\end{array}\right)\binom{\phi_{1}}{\phi_{2}}
$$

where ε_{12} is constant and

Landace-Zener formula vesults in

$$
P_{n k}=e^{-2 \pi \gamma}, \gamma=\varepsilon_{12}^{2} / \alpha .
$$

Can we sketch out this derivation?

Let's go for it, semiclassically. That means we replace the dependence on R with just a parametric dependence on t : $R-R_{0}=v t$. We use this to write our time-dep. Schrö eq:

$$
\text { it } \frac{d}{d t}\binom{\psi_{1}(t)}{\psi_{2}(t)}=\underbrace{\begin{array}{c}
\text { Trope define } \\
\text { slighteydet. } \\
\beta
\end{array}}_{a+t^{\prime \prime}}
$$

Step 1: go to ddiahatic rep:

$$
\begin{aligned}
& X^{+} H_{d} X=H_{a d} \\
& \rightarrow\left(\begin{array}{cc}
\alpha_{1} t & B \\
\beta & -\alpha t
\end{array}\right) X=X\left(\begin{array}{cc}
\alpha_{+T}(t) & 0 \\
0 & V_{-}(t)
\end{array}\right) \\
& V_{ \pm}(t)=\frac{1}{2}\left[\left(\alpha_{1}+\alpha_{2}\right) t+\sqrt{\left(\alpha_{1}-\alpha_{2}\right)^{2} t^{2}}\right. \\
& +4 \beta^{2}
\end{aligned}
$$

When we transform the S.E. we get:

$$
\begin{aligned}
& X^{t}>i \hbar \frac{d}{d t} \underbrace{\varphi_{2}}_{\varphi_{1}} X^{+}\binom{\psi_{1}}{\psi_{2}}_{\lambda}^{+})=\left(\begin{array}{cc}
\alpha-1 & \beta \\
\beta & -\alpha t
\end{array}\right) X X^{+}\binom{\psi_{1}}{\psi_{2}}, ~\binom{\varphi_{1}}{\varphi_{2}} \\
& \rightarrow \text { in }\left(X^{+} \frac{l}{a+} X\right)\binom{u_{1}}{u_{2}}+i t\binom{u_{1}^{\prime}}{\varphi_{2}^{\prime}}=\left(\begin{array}{ll}
v_{+} & 0 \\
0 & v_{-}
\end{array}\right)\binom{\varphi_{1}}{\varphi_{2}} \\
& \text { or: } \quad \text { it } \frac{\partial \vec{\varphi}}{\partial t}=\left(\begin{array}{cc}
U_{+} & 0 \\
0 & V_{-}
\end{array}\right) \vec{\varphi}-i t \underline{P}(t) \text {, } \\
& P=X^{-1} \frac{d}{d t} x
\end{aligned}
$$

In the adiabatic approx,

$$
\varphi_{\lambda}(t)=\varphi_{A}\left(t_{0}\right) e^{-i / \hbar} \int_{t_{0}}^{6} V_{\lambda}\left(t^{\prime}\right) d t^{\prime}
$$

Landau realized: V_{+}, V_{-}are two branches of an anally tic function in the complex t 'plane. So if we follow the right path through complex t^{\prime} '-spore, we con neglect p ! (why? Maybe b/c we can do it arbitrarily slowly!)
\rightarrow If we want to go from - to t, we reed to follow the curve:
$-\infty<t<0$: Real negative t values. $0 \leq \operatorname{Im} t^{\prime} \leq i B / \alpha$: to connect to the upper (and then back) surface
$0<t^{\prime} \rightarrow \infty \quad$ Real positive t again!

So: $\varphi(t \rightarrow \infty)=\varphi\left(t_{0}\right) e^{-i} \int_{c} v\left(t^{\prime}\right) d t^{\prime}$

$$
\begin{aligned}
\int_{c} V\left(t^{\prime}\right) d t^{\prime}= & \int_{t_{0}}^{\int_{0}^{0}} V_{-}\left(t^{\prime}\right) d t^{\prime} \\
& \left.+\int_{0}^{i \beta / \alpha} V_{-}\left(t^{\prime}\right) d t^{\prime}\right] \\
& +V_{i \beta / \alpha}^{\int_{i}^{0} V_{+}\left(t^{\prime}\right) d t^{\prime}}+\int_{d}^{t} V_{t}\left(t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

These are both
real integrals, and give only a phase.

$$
\begin{aligned}
& \pm \int_{0}^{i \beta / \alpha} \sqrt{\alpha^{2} t^{2}+\beta^{2}} d t= \pm \int_{0}^{\beta / \alpha} i \sqrt{-\alpha^{2} t^{2}+\beta^{2}} d t \\
&= \pm \beta^{2} \pi / 4 \alpha \\
& \rightarrow U+-L=-\beta^{2} \pi / 2 \alpha
\end{aligned}
$$

So: the amplitude changes by

$$
e^{-\beta^{2} \pi / 2 \alpha}
$$

and thus too the probabulits:

$$
\begin{aligned}
P=e^{-\beta^{2} \pi / \alpha} & =e^{-\frac{2 \pi V_{12}^{2}}{\frac{\alpha}{\alpha+}\left(v_{11}-V_{22}\right)}} \\
& =e^{-\frac{2 \pi V_{12}^{2}}{\frac{\alpha}{\alpha R}\left(v_{11}-v_{2} 2\right)} \cdot \frac{d R}{d_{V}}}
\end{aligned}
$$

Now that we hare PLy, let's return to Clank's paper. He also digegoncelizes H:

$$
\begin{aligned}
& H d_{ \pm}(t)=\varepsilon_{ \pm} \varphi_{ \pm}(t) \\
& \varepsilon_{t}=\frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{2}\right) \pm \sqrt{\frac{1}{4}\left(\varepsilon_{1}-\varepsilon_{2}\right)^{2}+\varepsilon_{12}^{2}} \\
& \binom{\varphi_{t}}{\varphi_{-}}=\underbrace{\left(\begin{array}{cc}
\cos \epsilon & \sin \epsilon \\
-\sin \epsilon & \cos \epsilon
\end{array}\right)}_{\theta \text { is some comp lek }}\binom{\varphi_{1}}{\varphi_{2}}
\end{aligned}
$$

θ is some complex t-dep
Now we reel the P-matrix: fur!

$$
\begin{aligned}
& \left\langle\phi_{-} \left\lvert\, \frac{d}{d t} \phi_{t}\right.\right\rangle=\frac{\left\langle\phi _ { - } \left(\frac{d t}{d t}\left|\phi_{t}\right\rangle\right.\right.}{\varepsilon_{+}-\varepsilon_{-}}
\end{aligned}
$$

\rightarrow Switching to Glasbrennert Schleich Typical LZ setup:

To solve: let

$$
\tilde{a}(t)=e^{i \alpha t^{2} / 2} a(t), \tilde{b}(t)=e^{-i \alpha t^{2} / 2} b(t)
$$

Then: $\left.\dot{\tilde{a}}=e^{i \alpha t^{2} / 2} \dot{a}(t)+i \alpha t e^{i \alpha t^{2} / 2} a(-)\right)$

$$
\begin{aligned}
& \dot{\vec{b}}=e^{-i \alpha t^{2} / 2} \dot{b}(t)-i \alpha+e^{-i \alpha t^{\frac{1}{2} / 2}} b(t) \\
& \rightarrow i\left(\begin{array}{cc}
e^{i \cdots} & 0 \\
0 & e^{-i}
\end{array}\right)\binom{\dot{a}}{\dot{p}}+\left(\begin{array}{cc}
-\alpha t & 0 \\
0 & \alpha t
\end{array}\right)\binom{a^{2}}{\tilde{1}}=\left(\begin{array}{cc}
-\alpha t & \beta
\end{array}\right)\left(\begin{array}{l}
n \\
\beta
\end{array} \alpha t\right)(\hat{b}) \\
& \rightarrow \quad \dot{a}=-i \beta e^{-i \alpha t^{2}} \quad b(t) \\
& \bar{b}=-i \beta e^{i \alpha t^{2}} a\left(t_{0}\right)
\end{aligned}
$$

Now solve for $b(t)$:

$$
b=\int_{-\infty}^{t}\left(-i \beta e^{i \alpha t^{\prime 2}} a\left(t^{\prime}\right)\right) d t^{\prime}
$$

$$
\rightarrow a(t)=-\beta^{2} e^{-i \alpha t^{2}} \int_{-\infty}^{t} e^{i \alpha t^{i}} a\left(t^{\prime}\right) d t^{\prime}
$$

Markhor approx: $a(t)$ does not depend on initial condretians or its history!

$$
\begin{aligned}
& \rightarrow \dot{\alpha}(t)=-\beta^{2} e^{-i \alpha t^{2}} a(t) \int_{-\infty}^{t} e^{2 \alpha t^{2}} d t^{\prime} \\
& \text { So: } a(t)=e^{-p^{2} \int_{-\infty}^{b} e^{-i \alpha p^{2}}} \int_{-\infty}^{p} e^{i \alpha 1^{2}} d q
\end{aligned}
$$

To get $a(\infty)$ then requires evaluating

$$
\begin{aligned}
& I=\int_{-\infty}^{\infty} e^{-i \alpha \beta^{2}} \int_{-\infty}^{p} e^{i \alpha q^{2}} d q \\
& =\int_{-\infty}^{\infty} e^{-i \alpha p^{2}} \int_{-\infty}^{\infty} e^{i \alpha q^{2} d q} \\
& -\int_{-\infty}^{\infty} e^{-i \alpha p^{2}} \int_{\text {save }}^{\infty} e^{i \alpha q^{2} d q} \\
& =\int_{-\infty}^{\infty} e^{-\varepsilon \alpha \rho^{2}} \int_{-\infty}^{\infty} e^{i \alpha q^{2} d \underline{p^{\prime}} \rightarrow p}>\sqrt{\sqrt[-\pi^{\prime}]{\alpha}} \rightarrow d q^{\prime}=\cdot \cdot d q^{\prime} \\
& +-\int_{-\infty}^{\infty} e^{-i \alpha \rho^{2}} \int_{-\infty}^{+p^{\prime}} e^{i \alpha 1^{\prime 2}} d q^{\prime} d p^{\prime} \quad p \rightarrow-p
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} e^{-i \alpha p^{2}} \int_{-\phi}^{\infty} e^{i \delta q^{2}} \mu q \operatorname{lp} \\
& \quad+I \rightarrow 2 I=\int_{-\infty}^{\infty} e^{-i \alpha p^{2}} \int_{-\infty}^{\infty} e^{-\alpha q}+
\end{aligned}
$$

This is a product of 2 typical Gaussian integrals.

$$
\rightarrow I=\frac{1}{2} \sqrt{\cdot \pi / \alpha} \sqrt{-i \pi / \alpha}=\pi / 2 \alpha
$$

And so: $a(\infty)=e^{-\beta^{2} \pi / 2 \alpha}$

$$
\rightarrow P=e^{-p^{2 \pi / 2}}
$$

(scratch wort for clark's

$$
\begin{aligned}
& =\binom{\cos \varphi_{1}}{\sin t \varphi_{2}}^{t} \cdot\binom{-\alpha \sin t \varphi_{1}}{\alpha \cos \theta \varphi_{2}} \\
& \frac{d t}{d t}=\left(\begin{array}{lc}
\alpha & 0 \\
0 & -\alpha
\end{array}\right) \\
& \rightarrow p=\left(-\sin \theta \phi_{1}+\cos \theta \phi_{2}\right]\binom{\alpha}{0-\alpha}\left(\cos \theta \phi_{1}+\sin \theta \alpha_{2}\right) \\
& P=\left(-\sin \theta\binom{\phi}{0} \varphi_{1}+\cos \theta\binom{0}{1} \varphi_{2}\right)\left(\begin{array}{cc}
\alpha & 0 \\
0 & -\alpha
\end{array}\right) \\
& \left(\cos \theta\binom{1}{0}+\sin \theta f_{1}\right) \\
& =1-\sin \theta \\
& =x(\cos \theta \sin \theta- \\
& =-2 \alpha \cos \theta \sin \theta=-2 \alpha \cos ^{2} \theta \tan \theta \\
& =-2 \alpha \tan \theta / 1+\tan ^{2} \theta \\
& 1+\tan ^{2} \theta=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta}
\end{aligned}
$$

So: $P_{L z}=\frac{-2 \alpha \tan \theta / 1+\tan ^{2} \theta}{2 \sqrt{\frac{1}{4}\left(\varepsilon_{1}-\varepsilon_{2}\right)^{2}+\varepsilon_{12}{ }^{2}}}$

$$
=\frac{-2 \alpha \tan \theta / 1+\tan ^{2} \theta}{\frac{\sqrt{(\alpha+)^{2}+\Delta^{2}}}{x}} \quad \Delta=2 \varepsilon_{12}
$$

MMA: evecis:

$$
-\frac{-\alpha t+\sqrt{4 \varepsilon_{12}^{2}+(\alpha+)^{2}}}{2 \varepsilon_{12}}
$$

$$
\begin{aligned}
\rightarrow \tan \theta & =\frac{\Delta}{\alpha++\sqrt{\Delta^{2}+(x t)^{2}}} \\
& =\frac{\Delta}{\alpha t+\Delta \sqrt{1+(\alpha / \Delta)^{2} t^{2}}} \\
& =\frac{1}{y+\underbrace{\sqrt{1+y^{2}}}} \quad y=\alpha t / \Delta \\
\rightarrow P_{L z} & =\frac{\left.-2 \alpha \Delta \Delta \cdot\left(\frac{1}{y+x}\right) /\left(1+c^{\prime} / y-1 x\right)^{2}\right)}{x} \\
& =-\frac{1}{y+x} \\
& =\frac{1}{x} \cdot \frac{(y+x)^{2}}{1+(y+x)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{-2 \alpha / \Delta}{x} \cdot \frac{y+x}{1+y+x} \\
& \tan \sigma=-\frac{\Delta}{\alpha t-\sqrt{\Delta^{2}+(\alpha t)^{2}}}=-\frac{1}{\alpha+/ \Delta-\sqrt{1+(\alpha t} / \Delta)^{2}} \\
&=-\frac{1}{y-\sqrt{1+y^{2}}}, \quad y=\alpha-1 / \Delta \\
& \rightarrow 1+\tan ^{2}=y^{2}-2 y \sqrt{1+y^{2}}+1+y^{2}-1
\end{aligned}
$$

