Lecture 6
To figure out how to describe and compute the properties of Rydberg molecule, we need to figure out how to solve nonseperakle quantum mechanical systems.

One of the most efficient and conceptually useful ways to break apart and solve a complicated multi-dimensional problem is to use basis expansions to convent the problem to the solution of many coupled is Schrödinger equation.

The general process is as follows:

1) Iderify a fragmentation coordinate "r"
\rightarrow This is ideal for collisions, but also a good way to thimble about bound state calculations \rightarrow even it it is overkill sometimes.
2) Solve the Schrio eq for all other coordinates " W " to obtain ce complete + orthonormal basis for those "internal" coordinates.

$$
H_{\omega} \phi_{1}(\omega)=\varepsilon_{i} \phi_{i}(\omega)
$$

3) Expand the total wavefunction into this basis:

$$
\psi_{\beta}(r, \omega)=\frac{1}{r} \sum_{i} \psi_{i}(\omega) f_{\varepsilon r}(r)
$$

4) Act on this of with the Homiltanion H, then project onto $\angle \phi_{j} \mid$ to obtain a set of coupled equations:

$$
\begin{aligned}
0= & \left\langle\left\langle\phi_{j}\right| H \mid \psi_{\beta}(r, w)\right\rangle \\
= & -\frac{1}{2 m} f_{i i}^{\prime \prime}(r) \delta_{i j}+\left\lvert\, \frac{l_{i}\left(l_{i+1}\right)}{2 a r^{2}}+V(r)+\varepsilon\right. \\
& +\underbrace{}_{i j} f_{E_{j}} \\
W_{i j} & \left.\left.=\left\langle\left\langle\phi_{i}(\omega)\right| V(r, \omega)\right| \phi_{i}(\omega)\right)\right) .
\end{aligned}
$$

$$
=-\frac{1}{2 m} f_{i i}^{\prime \prime}(r) \delta_{i j}+\left(\frac{l_{i}\left(U_{i+1}\right)}{2 a r^{2}}+V(r)+\varepsilon_{i}-E\right) f_{E i(r)} \delta_{i j}
$$

$$
\uparrow
$$

note: the eigenvalues of the w-eval equation determine the threshold. energies!

If we define: $\quad \vec{f}=\left(f_{0}(r), f_{1}(r), \ldots, f_{\text {max }}(r)\right)^{+}$

$$
\underline{l}^{2}=l_{i}\left(l_{i}+c\right) b_{i i}
$$

$$
\underline{I}=\delta_{i i}^{\prime \prime}
$$

Then we have a very compact equation,

This is all just "math trickles" unless we choose the right basis. some examples wight help:

1) e^{-}- H scattering. Hare we work in the rest frame of an 'infinitely' heavy proton orbited by two electrons:

determined by the Hamiltcerian

$$
H=-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{1}{r_{1}}-\frac{1}{r_{2}}+\frac{1}{\left|r_{1}-r_{2}\right|}
$$

We pick r_{2} to be the fragmentation coordinate That means that $H_{\omega}=-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{r_{1}}+\frac{l_{2 i}\left(l_{2 i}+1\right)}{2 r_{2}^{2}}$

$$
\begin{aligned}
& W=1 / r_{1}-r_{2} \mid \\
& V=-1 / r_{2}
\end{aligned}
$$

(note: here we're ignoring spin ad antisyoumetrizatial)

Thus, it's clear that

$$
\left.\begin{array}{rl}
i & =\left\{\ell_{1 i}, l_{2 i}, n_{1 i}, L_{i}, M_{i}\right\}, \\
\rightarrow\left|\Phi_{i}\right\rangle & =\frac{u_{n_{1 i}}\left(r_{1}\right)}{r_{i}}, \underbrace{}_{\substack{\text { hydrogen } \\
w t s}} \mid\left(l_{1 i} l_{2 i}\right) L_{i} M_{i}) \\
\text { ang-mol summed }
\end{array}\right)
$$

And so eq. 1 becomes...

$$
\begin{aligned}
0= & -\frac{1}{2} \vec{f}^{\prime \prime}\left(r_{2}\right)+\left(\frac{\vec{l}_{2}^{2}}{2 r_{2}^{2}}-\frac{1}{r_{2}}-\frac{1}{2 \underline{n}^{2}}-E\right) \vec{f}\left(r_{2}\right)+\underline{W}\left(r_{1}, r_{2}\right) \vec{f}\left(r_{2}\right) \\
& \left(e g_{2}\right)
\end{aligned}
$$

where $\left.\left.\quad W\left(r_{1}, r_{2}\right)=\left\langle n_{1 i} l_{1 i} l_{2 i} L_{i} M_{1}\right| \frac{1}{\left\lvert\, \frac{\vec{r}_{1}-\vec{r}_{2}}{}\right.} \right\rvert\, n_{1 j} l_{1} ; l_{2} ; L ; M_{j}\right)$

Well come buck to this when we disccess the dispersial polarization interaction between an dectron and an atom. But for now, just notle what we've done: replaced a complicated $G D$ problem where we hare no insight into the structce of the component particles into un (infinite) set of coupled (Dequations with lots of useful structure!

What es. $2^{\text {"Cooks" like is: }}$

(thresholds of the Hatcon)
\rightarrow EACH eq. looks robe an electron coning in in ore channel, with its own threshold and potent al, the couplingto and scotieirnsinto other channels.
\rightarrow This describes indastu processes!
2) Hin a magnetic field:

$$
H=-\frac{1}{2} D^{2}-\frac{1}{r}+\frac{B^{2} r^{2} \sin ^{2} \theta}{8}+B C_{z}^{2}
$$

\rightarrow This is a 2 D problem in (r, θ) that was studied extensively in the 80 s-90, and was instrumental inopening up the field of QUANTMM $\angle H A O S$.
3) e^{-}scattering off of a polar molecule

$$
\begin{aligned}
& \varnothing \theta \underline{\theta} \cdots \cdots e^{-} \\
& \quad V(r, \theta)=\sum_{c=0}^{\infty} V_{L}(R) P_{L}(\cos \theta)
\end{aligned}
$$

4) Rydberg molecules. Here we have
 a Rydberg atom A interacting with a distant grouditate atom B. The full wavefinetion depends on the $e^{-}-A^{+}$relative coordinate \vec{r} and the $A-B$ relative coordinate \vec{R}.
Throwing away mast-polaritation terms as usual, we one left with

$$
H=-\frac{1}{2 \mu} \nabla_{R}^{2}-\frac{1}{2 m} \nabla_{r}^{2}+V_{r}(n)+V_{R}(R)+U(r, R)
$$

U: Kinetic energy + nuclear interception (weak!)
V: kinetic energy + atom interaction (coulomb)
2: ei-groundstate ataminterantrch,
ie. the Fermi Pseudopotentiol!

Here we might have some options for our fragmentation coordinate, depending on the type of process we wont to steady. We coceld pick r, and then we describe Rydberg states of the AB molecule photoichization.

But now we went the Rydberg electron to stay attached to A^{+}, and describe molecular formation - is motion bounded as $R \rightarrow \infty$? Therefor we pilch R as the fray-coord.

$$
\begin{aligned}
\rightarrow H_{\omega} & =L+\frac{l l l+1}{2 r^{2}} \\
W & =\omega \\
V & =V_{R}(R)
\end{aligned}
$$

And, $i=\{\underbrace{n, l, m}_{\text {Rydbergatem }}, L, M\}$
D. F

$$
\rightarrow \Phi_{i}(\omega)=(n \operatorname{lm})(L M)
$$

So, eg. 1 is: ecg. $V_{R}(R)$

$$
\begin{aligned}
& 0=-\frac{1}{2 \mu} \vec{f}^{\prime \prime}(R)+\left(\frac{\vec{L}^{2}}{2 \mu R^{2}}-\frac{\alpha}{2 R^{4}}-\frac{1}{2\left(n-m_{l}\right)^{2}}-E\right) \vec{f}(R) \\
& +\frac{\left\langlen l m \left(2 \pi a_{s} \delta^{3}(\vec{r}-\vec{R})\left(n^{\prime} l^{\prime} m^{\prime}\right)\right.\right.}{w} \vec{f}(R)
\end{aligned}
$$

To simplify the following, let's take $L=M=O$ l note that \hat{R} separates), assine $\alpha / 2 R^{4}$ is negligible, ignore q-detectr, and measure E velatme to $-\frac{1}{2 n^{2}}$. Then aq. 3 becomes:

$$
0=-\frac{1}{2 \mu} \vec{f}^{\prime \prime}(\mathbb{R})+(\underline{W}-E \underline{1}) \vec{f}(\mathbb{R}) .
$$

This is usually not the eq. we wat to work wt here -especially for Rydberg molecules where the dimension grows withe n!

So let's prepare an adiabatic approximation to there close-coupiry / coupled-chennel equations.
For such R value, we con diagonal $2 z$ W:
$W=S \underline{S} S^{-1}$, where $\underline{V} \equiv \underline{N}(R)$, etc.
Inserting this and several $I=S S^{-1}$, we get

$$
\begin{aligned}
& O=-\frac{1}{2 m} \frac{d^{2}}{a n^{2}}\left(S S^{-1} \mid \vec{f}(R)+\left(S U S^{-1}-E S S^{-1}\right) \vec{f}(R)\right. \\
&=-\frac{1}{2 m} \frac{d^{2}}{d n^{2}}(S \tilde{f}(n))+S(U-E) \tilde{f}^{2}(R), \\
& \tilde{f}=S^{-1} f . \\
& \rightarrow O=S^{-1} O=-\frac{1}{2 m} S^{-1} \underbrace{\frac{d^{2}}{d n^{2}}(S \tilde{f}(R))}+(U(R)-E) \tilde{f}^{\prime}(R] \\
&=\left(S^{\prime} \tilde{f}+f^{\prime} S^{\prime}\right)^{\prime}=S^{\prime \prime} \tilde{f}+2 S^{\prime} \tilde{f}^{\prime}+S \tilde{f}^{\prime \prime}
\end{aligned}
$$

So finally, after this change of basis at every R value, we have a new set of coupled equs:

$$
0=-\frac{1}{2 \mu} \tilde{f}^{\prime \prime}(R)+\underbrace{(U(R)-E)}_{\text {dlagond! }} \tilde{f}(R)-\frac{1}{2 \mu} \underbrace{\left(2 \underline{Q} \frac{1}{\pi}+Q\right)}_{\text {derivative coupling ! }} \tilde{f}(R)
$$

Let's switch to a slightly more funilian notation now, where $\phi_{\mu}(\Omega)$ is the eigenvection (of channel fureticns) corresponding to the potenticel curve $U_{\mu}(R)$. Then we have:

$$
\begin{aligned}
& O=\sum_{v}\left(-\frac{1}{2 \mu} \frac{d^{2}}{2 n^{2}} \delta_{\mu v}+U_{v v}(n)-E \delta_{\mu v}\right) F_{v}(R) \\
&\left.\left.+\sum_{v}\left(2 P_{\mu v} \frac{d}{d R}+Q_{\mu v}\right) f(R) \quad P_{\mu v}=\left\langle\phi_{\mu}\right| d_{n} \right\rvert\, \phi_{v}\right) \\
&\left.<Q_{\mu v}=\left\langle\phi_{m}\right| d_{n}^{2} \mid \phi_{v}\right)
\end{aligned}
$$

The top row describes uncoupled vibrations motion on individual potential cures if we drop the bottom row ext i rely, this is nothing more shan the Born-Oppenheiner approximation!

$$
v(n) q
$$

$$
\begin{gathered}
U_{3}(R) \\
V_{2}(R) \\
U_{1}(R)
\end{gathered}
$$

How good of an approximation is it to totally drop the second row?
\rightarrow often VERT good!

To understand why, let's derive 2 identities:
1)

$$
\begin{aligned}
\frac{d P}{d R} & =\frac{d}{d R}\left\langle\phi_{m}\left(d_{R} \phi_{v}\right)\right. \\
& =\underbrace{\left\langle d_{\mu}\left(d_{R} \phi_{v}\right)\right.}_{R}+\underbrace{\left.\left\langle\phi_{\mu}\right| d_{k}^{2} \phi_{v}\right)^{2}}_{Q_{\mu \nu}}
\end{aligned}
$$

This first term is:

$$
\begin{aligned}
& \left.=\sum_{q \text { identity }}<d_{R} \phi_{\mu}\left|\phi_{q} \times \phi_{q}\right| d_{R} \phi_{v}\right) \\
& =P_{\mu q} P_{q v}=P^{2}
\end{aligned}
$$

So: $\quad d P / d R=P^{2}+Q$.
2) Since $H_{\omega} \phi_{\nu}(R)=U_{\nu}(R) \phi_{\nu}(R)$

$$
\rightarrow \nabla(H \phi)=(d H / d R) \phi_{r}+H \phi^{\prime}=\nu_{r}^{\prime} \phi_{v}+\nu_{r} \phi_{r}^{\prime}
$$

Next we project onto $<\phi_{\mu} 1$:

$$
\begin{aligned}
& 2 \psi_{\mu} \mid H^{\prime}\left(\phi_{v}\right)=-L_{\mu} P_{\mu v}+v_{\nu}^{\prime} \delta_{\mu v}^{\prime}+V_{v} P_{\mu \nu v} \\
& \rightarrow \quad P_{\mu v}=\frac{\left\langle_ { \mu } \left(H^{\prime}\left(\phi_{v}\right)\right.\right.}{\nu_{v}(R)-\nu_{\mu}(R)}
\end{aligned}
$$

These two results tellus : the strength hot Q depends on the strength of $P \rightarrow$ and also on how quickly it varies w/ R.

Furthermore, te strength ot P depends on now quickly the Hamiltanion changes with R and, most crucially, on the separation between adiabatic potential curves.
$u(n)$ out here, P is small and motion is uncoupled!
in here, $U_{v} \cdot V_{m}$ is small and coupling
$\rightarrow R$ -necroses!

So: back so $\operatorname{Ry} k$-Mol gl
This is basically the scencurlo of the Fermi pseudopotential derivation- just with fewer atoms involved and, crucially, ultrucold temperatures. Why? Weill see soon.

- From Fermi PP deriwaien: whatever the "real" electron-atom potential is, we can replace it with the Fermi PP (t nigher L pres):

$$
U(\vec{r} ; \vec{R})=2 \pi a_{s} \delta^{3}(\vec{r}-\vec{R})+6 \pi a_{p}^{3} \dot{\nabla} \delta^{3}(\vec{r}-\vec{R}) \vec{V}+\ldots
$$

Nest, remember ow coupled channel formalism. We know the states of the Rydleery aten, so they make an obvious choice for the channels.

$$
\psi(\vec{r}, \vec{R})=\sum_{i} \frac{f_{i}(R)}{R}\left(n l m, N M_{N}\right)
$$

Fromown derivation in Lee. 9.... this leads to the coupled ecus...

$$
\theta=-\frac{1}{2 \mu} f_{i}^{\prime \prime}(R)+\left[\frac{N^{2}}{2 \mu R^{2}}-\frac{2}{2 R^{4}}-\left(E+\frac{1}{2\left(n-\mu_{i}\right)^{2}}\right)\right] f_{i}(R)
$$

Pictorially,

Without the election-atom interaction, motion occurs along uncoupled potentials w/ only very short-vange potentials.

Let's checle out the electranec-state dependant potential matrix.

$$
\underline{V}=-\frac{1}{2\left(n-\mu_{l}\right)^{2}}+2 \pi a_{s} \psi_{n l m}^{\alpha}(R) \psi_{n k^{\prime} m^{\prime}}(R)+6 \pi a_{p} \psi_{n l_{n}}^{\prime}(R) \psi_{n l^{\prime} n}^{\prime}(k)
$$

when $\mu_{l} \neq 0$: we have good reason to consider there low-l states end'widually.

$$
\rightarrow V_{l \leq 2}=-\frac{1}{2\left(n-m_{l}\right)^{2}}+2 \pi a_{s}|\psi|^{2}+6 \pi a p\left|\psi^{\prime}\right|^{2}+\ldots
$$

$U(\Omega) \sim$ this just mirrors the
Rydberg wave unction (s-wave limit)
\rightarrow Note that this is a s(rglotly different perspective then usual Burn-Oppeaheimev. in's actually a licepatic colvulation!

Sine $1=\int \psi^{2} d v \approx \psi^{2} \cdot \frac{4}{3} \pi\left(2 n^{2}\right)^{3}$,

$$
\psi^{2} \sim n^{-6}
$$

\rightarrow The se potentials are weald!

Fur high l, we con no longer argue that thees couplings ane negligible as there are no energy separations to helpout any more...
\rightarrow we have a coupling matrly

$$
\left.V_{l l^{\prime}}=\operatorname{lnlm}\left|2 \pi e_{s} \delta^{3}+G \pi a_{p}{ }^{3} \nabla \delta^{3} \nabla\right| n l^{\prime} m\right\rangle
$$

to treat.
It now makes sense to move to a representation where this in diagonal. \rightarrow BO approx!

Wecur actually use SUSY to direrganalizethis (well, lust of). Note the following:

$$
U_{l l^{\prime}}=\underbrace{2 \pi u_{s}}_{v} \underbrace{\phi_{n l}^{\infty}(R)}_{v} \underbrace{\phi_{n l}(R)}_{n l}+\underbrace{G \pi a_{g}^{\prime} \phi_{n l}^{(q)}(R)}_{\sigma} \psi_{n l^{\prime}}^{\prime}(R)+\ldots
$$

Let: $\quad A_{e \theta}=\sqrt{2 \pi a_{s}} \phi_{n e}^{\infty} \rightarrow A_{o e^{\prime}}^{+}=\sqrt{2 \pi a s} \phi_{n e^{\prime}}(R)$

$$
A_{l l}=\sqrt{6 \pi a p} \alpha_{n l}^{\prime \alpha} \rightarrow A_{1 l^{\prime}}^{+}=\sqrt{6 \pi a p} \alpha_{n l^{\prime}}^{\prime}(k)
$$

$S_{0}: V_{l l^{\prime}}=\sum_{L=0}^{1} A_{l L} A_{L e^{\prime}}^{+}$!

That should vinery some bells. Remember that we showed that

$$
H^{\prime}=A A^{+} \text {and } H^{2}=A^{-1} A
$$

hare degenerate spectra!
So: we con just diagonalize $H^{(2)}=A^{+} A$ to get the (non-zero) eigenvalues!!!

What abodes higher L?
In a ana shell: sine

$$
\delta L \sim k^{2}
$$

we know how all of there will behare!

