

Leetve-1: Weally Interating Box Gas
Gron-Pitaievshii Farmuism
Q1) Consider a many-body syyten of nen-interating porticles at tenpertur T. In the clessial' negine of the may-bdy stotistics, the systen/porticles are ditribted cnoy the pooible stutes by respeeting Botzmen distribation $\alpha e^{-\frac{E}{k_{0} T} T}$.

When do the quentum nature of the porticles start to reveel theralus and how is the clesicel distribation is modifted? How dees the perstive being Boon an Fermen change the distribtion? How dees the corept of 'chomed postantidel' rise in this context?

1) As ue derve the poctition function for a syoten of N indistngushable porticles $Z=\frac{Z_{1}^{N}}{N!}$, we implicitly awime thet the portides racely fend to ocaupy the sone eigesstate of the single poticle Howiltarion. The system is suppsed to be in the 'classical stotsitrad regine' in which the tenperstre is solfururtly high such that the avurlbble thend energy earily raises the perticles to the excited leurls.
As ue buer the tempecture, this picture needs do be revised:
(No interations)

d>> $\alpha_{\Delta B}$
Clasicul stat.mech.

de Braghe umulyth on the sare order of mgnitude with the inter perticle distane

$$
\begin{aligned}
& \lambda_{d B}=\frac{h}{P}, \quad K E=\frac{P^{2}}{2 n}=\frac{3 k_{D} T}{2} \\
& \Rightarrow\left(\frac{h}{\partial_{d \Omega}}\right)^{2} \cdot \frac{1}{2 m} \simeq \frac{\partial h_{B} \top}{2} \\
& \left.\Rightarrow \sqrt{\frac{h^{2}}{J T_{B} \tau_{m}}} \sim \partial_{d B} \quad \text { Low mass } T\right\} \hat{\partial}_{d \beta} T
\end{aligned}
$$

When the system become 'degrent' in the sense that the perticles start to occupy the sone eignotete, the pericles being Boon or Fermion revise the statistics drenatically:

* Borers cen ocerpy the sere eigestte, wheres Forms corot.

This feet is also clear from their distribution functions:

$$
\bar{n}_{B E}(\varepsilon)=\frac{1}{e^{(\varepsilon-t) / h T}-1}, \bar{n}_{F D}(\varepsilon)=\frac{1}{e^{(\varepsilon-t) / h T}+1}
$$

Whire ε is the cregy of the stote and y is the chemel pstatirl of the syoten:

$$
d E=T d S-P d V+f d N \Rightarrow+=\left(\frac{\partial \sigma}{\partial N}\right)_{S, V}
$$

For a degenerte ges, $f \simeq E(N+2)-E(N)$ as the addition of a single pertile leads negigible change in both entropys and volune V. Therepe the chemal potaticl cen be regroded as the energy needed to a.dd a single peotile to the syoten:

$$
\bar{n}_{R \theta}^{(s)}=\frac{1}{e^{(\varepsilon-t) / k_{B} \tau}-1}
$$

As $\varepsilon \rightarrow \pm, \quad \bar{n}_{p t}$ dinezal.
As $T \rightarrow O$, the occupation increases its density near \mathcal{E}.

$\bar{n}_{\text {DE }}(\varepsilon)$

$$
T=0:
$$

All particles in the sone gand state. with every ε_{0}.

As $p \rightarrow \varepsilon_{0}$, the \nexists of patides in the grand state, N_{0}, diverges while the thermal cloud:

$$
N_{T}=\sum_{\nu \neq 0} \frac{1}{e^{\left(\varepsilon_{\nu}-\varepsilon_{0}^{\prime} / / h_{T}-1\right.}} \text { is still finis, }
$$

where the total \# of pertides $N=N_{0}+N_{T}$.

So if $X=N_{T}+N_{0}>N_{T}\left(p=\varepsilon_{0}, T\right)$, the ordenstive starts 1

The cordenction criteria:

$$
N_{T}\left(T_{c, f}=\varepsilon_{0}\right)=N
$$

Below T_{C}, the chemical potaticl is the grand ste conergy since the added particle dreotly occupies the ground state.

2) Gonsider an ided BEC inside a harmonic socillator. Find the critual tappesture T_{c} and the ondessce fraction N_{0} / N for $T \leq T_{C}$.
2) Isotropic hemoic potentiul:

$$
V_{\text {lat }}(\vec{r})=\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}+z^{2}\right)
$$

The single perticle tariltorics:

$$
\hat{H}_{1}=-\frac{\hbar^{2}}{2 n^{2}} \nabla^{2}+V_{\text {(xt }}(\vec{r})
$$

The eignenezies cre:

$$
\sum_{n_{x}, n_{y}, n_{z}}=\left(n_{x}+n_{y}+n_{z}+\frac{3}{2}\right) \hbar \omega
$$

where $n_{x, y, z}=0,1,2,$.

The grand state wave function

$$
\psi_{0}(\hat{r})=\left(\frac{m \omega}{\hbar \pi}\right)^{9 / 4} e^{-\frac{m w}{2 \hbar} r^{2}}, r^{2} \equiv x^{2}+y^{2}+z^{2}
$$

Sine the particles inside the ordanate occupy the sere cijestick at $T=0$, it is meeningll b introduce the crept of maeroople wanfuretio:

$$
\underline{\Psi}_{0}(\hat{r})=\sqrt{N} \psi_{0}(\hat{r})
$$

Where X is the $\#$ of pericles. This new nompunction normalise the state upto the integer $\int\left(\left.\mathbb{F}_{0}\right|^{2} d^{2} r=N\right.$ instead $\int\left|\psi_{0}\right|^{2} d_{r}^{2}=2$.

$$
\int n(\hat{r}) d^{2}=N \Rightarrow n(\hat{r})=\left|\Psi_{0}(\hat{r})\right|^{2}
$$

is the condensate density.

The conderatation will ocar if $N \geqslant N_{c}=N_{T}\left(T_{c},+=\varepsilon_{2}\right)$ Wher $\varepsilon_{0}=\frac{3}{2} k \omega$.

$$
\begin{aligned}
N_{T} & =\sum_{n_{x} n_{T} n_{z}} \frac{1}{\exp \left[R\left(n_{x}+n_{1}+n_{2}+\frac{3}{2}-\frac{2}{2}\right) \hbar_{\omega} \omega\right]-1} \\
& \simeq \int d d_{x} d n_{y} d n_{2} \cdot \frac{1}{e^{\beta\left(n_{x}+n_{T}+n_{z}\right) \hbar \omega}-1}
\end{aligned}
$$

Define $\quad \tilde{n}_{i} E \lambda \hbar \omega n_{i}, \quad d \tilde{n}_{i}=\beta \hbar \omega d n_{i}$

$$
\begin{aligned}
& \Rightarrow N_{T}=\frac{1}{(\eta \hbar \omega)^{1}} \int d \tilde{n}_{x} d \tilde{n}_{y} d \tilde{n}_{t} \frac{1}{\left(\tilde{n}_{x}+\tilde{n}_{t}+\tilde{n}_{2}\right)}
\end{aligned} \Rightarrow
$$

$$
\begin{aligned}
& N_{\tau}=\frac{1}{(p \hbar \omega)^{3}} \int_{0}^{\infty} d \dot{x} \frac{1}{\sqrt{3}} \cdot \frac{\bar{x}^{2} \sqrt{3} / 2}{e^{\bar{x}^{x}-1}} \\
&=\frac{1}{(p k \omega)^{0}} \frac{1}{2} \int_{\underbrace{0}}^{\infty} d \bar{x} \frac{\vec{x}^{2}}{e^{\bar{x}}-1}=\frac{\zeta(3)}{(0 \hbar \omega)^{2}} \\
& \underbrace{\zeta(3) \cdot \underbrace{\Gamma(3)}}
\end{aligned}
$$

Zetu-unetion Gamma punction

$$
\begin{aligned}
& N_{\tau}=\frac{\eta(\jmath)}{\left(k_{\omega}\right)^{2}}\left(k_{B} \tau\right)^{3} \Rightarrow \quad N_{l}=N=\frac{\varphi(\jmath)}{\left(k_{\omega}\right)^{2}} \cdot\left(k_{0} \cdot \tau_{c}\right)^{3} \\
& \Rightarrow h_{0} \tau \cong 0.94 \hbar \omega N^{1 / 2} \quad \text { Critical tengerature }
\end{aligned}
$$

Fraction of the condesed perticks for $T<T_{c}$:

$$
\frac{N_{0}}{x_{v}}=1-\frac{N_{T}}{w}=1-\frac{\varphi(J)\left(h_{0} T\right)^{2}}{\left(\hbar_{\omega}\right)^{0}} \cdot \frac{\left(k_{\omega}\right)^{3}}{\varphi(J)\left(k_{0} \tau_{c}\right)^{3}} \Rightarrow
$$

$$
\frac{N_{0}}{N}=1-\left(\frac{T}{T_{c}}\right)^{3}
$$

3) Until now, me only considered the ver-interating pericles. How can use study the interacting Bose gas? Can ur derive on equation of the macosopic warfuretors of the Be cridescte?
3)

If $d \gg a_{s}$, the system can be regarded as weakly interacting: $n \leq \frac{1}{d^{3}} \Rightarrow \frac{a_{s}}{d} \ll 1$

$$
a_{s} n^{1 / s} \ll 1
$$

$\Rightarrow n a_{j}^{2} \ll L$ Condition fer the weakly interacting regime

For a vadlly intracting syotem, are cer model the intaction betmen two pertichs as contuat potentid' or 'Femi proud-pptentical':

$$
V_{\text {int }}\left(\vec{r}_{2}, \vec{r}_{2}\right)=g_{\Omega} \delta\left(\vec{r}_{2}-\vec{r}_{2}\right)
$$

capling onstat

$$
g=\frac{4 \pi a_{j} \hbar^{2}}{m} \text { (First order } \text { Bon appoximation) }
$$

The Haniltarion of the meally interating Box gas with N portides under an extenel potentid $V_{\text {ext }}(\vec{r})$

$$
\begin{aligned}
\hat{H}= & \text { Kinetir }+ \text { Eatend potatirl }+ \text { Zntercetin prtentid } \\
= & \sum_{i=1}^{N} \frac{\hat{p}_{i}^{2}}{2 m}+\sum_{i=1}^{N} V_{\text {ext }}\left(\vec{r}_{i}\right) \\
& +\sum_{i=1}^{N} \sum_{j \neq i} V_{i n t}\left(\vec{r}_{i}, \vec{r}_{j}\right)
\end{aligned}
$$

\Rightarrow The intovation Hamibarics cen be written fo the ortuet potertid as:

$$
\begin{aligned}
\hat{V}_{i n t} & =\sum_{i=2}^{N} \sum_{j>i} V_{\text {int }}\left(\vec{r}_{i}, \vec{r}_{j}\right) \\
& =g \sum_{i=1}^{N} \sum_{j j i} \delta\left(\vec{r}_{i}-\hat{r}_{j}\right) \\
\Rightarrow \hat{H} & =\sum_{i=1}^{N} \frac{\hat{P}_{i}^{2}}{2 m}+\hat{V}_{\text {ext }}\left(\overrightarrow{r_{i}}\right)+g \sum_{i=1}^{N} \sum_{j \Delta i} \hat{\delta}\left(\vec{r}_{i}-\vec{r}_{j}\right)
\end{aligned}
$$

Gros-Pitraski: approwh: Pradat-stok coratz
Asame all the pertorles ocuipy the scme guatuon state

$$
\Psi\left(\vec{r}_{2}, \vec{r}_{2}, \ldots \bar{r}_{N}\right)=\prod_{i=1}^{N} \phi\left(\vec{r}_{i}\right)
$$

$\phi(\vec{r})$ is not neeeswrily the eignstse of the aa-n-trativy
single particle Hanibbnion:

$$
\hat{h}_{i}=\frac{p_{i}^{n}}{2 m}+V_{\text {ext }}\left(\hat{r}_{i}\right)
$$

since the syoten is now chased by the twapaticle interatooi So one of the limits to chad to see if the product state cnectiz yields a maeroopic wanefunction correctly: $g \rightarrow 0$. The solution in this limit should onvere to the solution of the Schrodinger en. with the Hoviltonien \hat{h}_{i}. In order to fund the ste $\Psi(\bar{r})$ using the variational approach, we follow the steps:
(2) Find $\left\langle\mathcal{I}\left(\bar{r}_{1} \ldots \hat{r}_{N}\right)\right| \hat{H}\left|\Psi\left(\hat{r}_{1, \ldots}-\hat{r}_{N}\right)\right\rangle=E$
(2) Minimize the every E with the oostrint that the fold $\#$ of porticks N is conserved:

Consider the function $E[4]-f N[4]$ and

$$
\delta[E[\psi]-f N[\psi]]=0 \Rightarrow
$$

$\frac{\delta[E-f N]}{\delta \psi^{*}}=0 \quad$ (Funetional variation w.r.t. ψ^{*})

$$
\text { (L) }\left\langle\Psi \mathbb{\Psi}\left(\hat{r}_{1}, \cdots \bar{r}_{N}\right)\right| \hat{H}\left(\mathbb{\Psi}\left(\bar{r}_{1}, \cdots \bar{r}_{N}\right)\right\rangle=?
$$

where $\mathscr{F}\left(\hat{r}_{1}, \bar{v}_{N}\right)=\prod_{i} \phi\left(\vec{r}_{i}\right)$ and

$$
\begin{aligned}
& \hat{H}=\sum_{i=1}^{N} \frac{\hat{P}_{i}^{2}}{2 n}+\hat{V}_{\text {ext }}\left(\hat{r}_{i}\right)+g \sum_{i=1}^{N} \sum_{j \neq i} \hat{f}\left(\hat{r}_{i}-\hat{r}_{j}\right) \\
& \text { * Extond pstatid }\langle\Psi| V_{\text {ert }}|\Psi\rangle \\
& =\int d d^{3} d^{2} r_{2} \ldots d^{2} \hat{r}_{i} \cdot\left(\prod_{i=1}^{N} \phi \vec{r}_{i}^{*}\right) \sum_{i=1}^{N} V_{\theta \phi t}\left(\vec{r}_{i}\right)\left(\prod_{i=1}^{N} \phi\left(r_{i}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =N \cdot \int d \vec{r}^{r} \cdot \phi^{*}(r) V_{\text {ext }}(r) \phi(r) \\
& =\int d \hat{r} \psi^{\hat{r}}(\vec{r}) V_{e, t}(\hat{r}) \psi(\hat{r}) \text {, wher } \psi(\vec{r})=\sqrt{N} \phi(\vec{r})
\end{aligned}
$$

* Kinctic evergy $\langle\bar{\Psi}| \sum_{i=1}^{N} \frac{P_{i}^{2}}{2 m}|\Psi\rangle:$

$$
=\int d^{3} \vec{r}_{1} \ldots d^{\overrightarrow{r_{p}}} \cdot\left(\prod_{i=1}^{N} \phi^{*}\left(\vec{r}_{1}\right)\right)\left(\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m}\right)\left(\prod_{i=1}^{N} \phi\left(\vec{r}_{i}\right)\right)
$$

wher $\quad \hat{p}_{i}=i \hbar \nabla_{i} \quad \hat{p}_{i}^{+}=-i \hbar \nabla_{i}$

$$
\begin{aligned}
& \left.=\int d^{p} r_{1} \cdot \phi \hat{r_{1}}\right) \cdot\left(+i \hbar \hat{\sigma}_{1}^{\kappa}\right) \frac{\left(-i \hbar \tilde{\sigma}_{1}\right)}{2 m} \phi\left(\hat{r}_{1}\right) \underbrace{\int d^{2} r_{2} \ldots d r_{\mu} \cdot \prod_{i=2}^{N} \phi^{*}\left(\tilde{r}_{i}\right) \prod_{i=2}^{\mu} \phi\left(h_{n}\right)}_{=1}
\end{aligned}
$$

$$
\begin{aligned}
& =N \int d^{2} r \varnothing^{8}(r)(i i \hbar \hbar)(-i \hbar \vec{V}) \phi(r)
\end{aligned}
$$

* Intention energy $\left.\langle\Psi|\left|V_{\text {int }}\right| \Psi\right\rangle$:

$$
\begin{aligned}
& =\int d \hat{r}_{1} d^{2} \vec{r}_{2} \cdot \phi^{*}\left(\vec{r}_{1}\right) \phi^{*}\left(\vec{r}_{2}\right) \cdot g \cdot \delta\left(\overrightarrow{r_{1}}-\vec{r}_{2}\right) \phi\left(\vec{r}_{1}\right) \phi\left(\vec{r}_{2}\right) \\
& \left.r \iint_{-} d \bar{r}_{j} \ldots d^{2} \bar{r}_{N} \prod_{i=3}^{N} \phi^{*}\left(r_{i}\right) \prod_{i=0}^{N} \phi\left(\vec{r}_{i}\right)\right\rangle=1 \\
& +(1,3)+(1,4) \ldots+(2,3)+(2,4) \ldots+\cdots+(N-1, N) \\
& =\int \alpha \vec{r}_{1} \cdot \phi^{*}\left(\overrightarrow{r_{1}}\right) \phi\left(\overrightarrow{r_{1}}\right) g \phi\left(\overrightarrow{r_{1}}\right) \phi\left(\hat{r_{1}}\right)+(1,3)+(1241 \ldots+\cdots \\
& =g \int d^{2} r_{1}|\phi(\bar{r})|^{2} \cdot|\phi(\bar{r})|^{2}+(L, 0)+(1, b)+\ldots+(2, j)+\ldots \\
& =g \int_{d} d^{2} r_{1}|\phi(r)|^{4}+\ldots \\
& \text { How many texas? } \quad(N-1)+(N-2) \tau+\alpha=\frac{N(N-1)}{2} \\
& \cong \frac{N^{2}}{2} \text { if } N \gg 1 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \langle\Psi| V_{\text {int }}|\underline{\Psi}\rangle \simeq \frac{g N^{2}}{2} \int d^{2} r_{\cdot}|\phi(\bar{r})|^{4} \\
& \simeq \frac{g}{2} \int d^{p} r_{r}|\psi(\bar{r})|^{4}=\frac{g}{2} \cdot \int d^{p} r_{\cdot}|n(\vec{r})|^{2}
\end{aligned}
$$

Therpre, the totd everyy fuctiod beeams:

$$
E=\int d^{p} \bar{r}\left\{\frac{\hbar^{2}}{2 m}|\nabla \psi(r)|^{2}+V_{\text {ex }}(r) \cdot|\psi(r)|^{2}+\frac{g}{2}|\psi(r)|^{4}\right\}
$$

wher $\left.N=\int d \vec{r} \cdot|\psi| \bar{r}\right)\left.\right|^{2}$. and $\psi(\vec{r})=\sqrt{N} \phi(\vec{r})$

$$
\begin{aligned}
\Rightarrow E-+N=\int d^{2} r & \left\{\frac{\hbar^{2}}{2 n}|V \psi(\vec{r})|^{2}+V_{e f}(\vec{r})|\psi(\bar{r})|^{2}\right. \\
& \left.+\frac{g}{2}|\psi(\vec{r})|^{4}-+|\psi(\bar{r})|^{2}\right\}
\end{aligned}
$$

Rementer that $|\psi(\bar{r})|^{2}=\psi^{*} \psi \quad|T \psi|^{2}=\left(\nabla \psi^{*}\right)(\sigma \psi)$ $|\psi(\bar{r})|^{h}=\psi^{*} \psi^{*} \psi \psi$
(2) Finctiond variationd $\frac{\delta[E-N N]}{\delta y^{*}}=0$:

$$
\frac{\delta}{\delta \psi^{2}} \int d^{2} \bar{r} \cdot\left[\frac{\hbar^{2}}{2 m}|\forall \psi|^{2}+V_{\text {ex }}|\psi|^{2}+\frac{g}{2}|\psi|^{4}-\mu|\psi|^{2}\right]=0
$$

Covider $\frac{\delta}{\delta \psi^{2}}\left[\int d^{2} r_{1}\left(V_{\text {ert }}(\vec{r})-\phi\right)|\psi|^{2}\right]$

$$
\begin{aligned}
& =\int d^{2} r_{1} \cdot\left(V_{\text {ext }}-\psi\right) \cdot \frac{\delta|\psi|^{2}}{\delta y^{2}} \\
& \frac{\delta|\psi|^{2}}{\delta \psi^{k}}=\frac{\delta\left(\psi^{*} \psi\right)}{\delta \psi^{x}}=\psi \\
& \text { Similaly, } \begin{aligned}
\frac{\delta|\psi|^{b}}{\delta \psi^{*}}=\frac{\delta\left[\psi^{2} \psi^{* 2}\right]}{\delta \psi^{*}} & =2 \cdot \psi^{2} \psi^{*} \\
& =2|\psi|^{2} \psi
\end{aligned} \\
& \begin{aligned}
\frac{\delta}{\delta \psi^{*}}|\nabla \psi|^{2}=\frac{\delta}{\delta \psi^{*}}\left(\nabla \psi^{*}\right)(\nabla \psi) & =-\frac{\delta}{\delta \psi^{*}}\left(\psi^{*} \nabla \nabla \psi\right) \\
\text { interctien } & =-\nabla^{2} \psi
\end{aligned}
\end{aligned}
$$

Therpere,

$$
\begin{array}{r}
\int d^{2} \hat{r}_{\cdot}\left[\left.-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(\hat{r})+V_{\text {et }}(\bar{r}) \psi(\vec{r})+g \right\rvert\, \psi\left(\left.(\bar{r})\right|^{2} \psi(\vec{r})\right.\right. \\
-p \psi(\bar{r})]=0
\end{array}
$$

\Rightarrow The Gros-Piturshi eqpotion (timeindeperant fim):

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(\bar{r})+V_{\text {ext }}(\vec{r}) \psi(\bar{r})+g\left(\left.\psi(\bar{r})\right|^{2} \psi(\bar{r})=+\psi(\vec{r})\right.
$$

Schrodingr eqn: (time-independet form)

$$
\frac{-\hbar^{2}}{2 m} \nabla^{2} \psi(\bar{r})+V(\bar{r}(\psi(\bar{r})=E \psi(\bar{r})
$$

(2) $\quad g \rightarrow 0$ and $x \rightarrow G$.

The chearel ptatiol f is the eigantse energs E of the stok $\psi(\vec{r})$ when gro, expeetctly!
(2) The equoter is pellineer deb the $|\Psi|^{2} y$ tom!
(3) $p=g(4)^{2}$ for a homguas ondensat withat extened potutich
$\underline{p=g n_{0}}:$ The chergy needed to add on extra pertizle: $\quad f=E(N+1)-E(N) \simeq g n$.
(4) Time-depunat form can be obtained by minimizing
the action $\left.S=\int \operatorname{dr} \int d t \cdot \operatorname{Pr}\left(i \psi^{*} \partial_{t} \psi\right)-\varepsilon\left(\psi, \psi^{*}\right)+p|\psi|^{2}\right]$ instend of E-小N:

$$
i \hbar \frac{\partial \Psi(F)}{\partial t}=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{(x t}(\hat{r})+g|\Psi(\vec{\Psi})|^{2}-\psi\right] \tilde{\Psi}(\hat{r})
$$

instad of fre energy $F=E-f N$
(5)

$$
i \hbar \frac{\partial \Psi((\overline{)})}{\partial t}=\underbrace{[\underbrace{-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{(x+}(\hat{r})}_{\text {Tinteratior }}}_{\begin{array}{c}
\text { Single peotile } \\
\text { Horibtoricn }
\end{array}}+\underbrace{g|\Psi(\bar{r})|^{2}}_{\text {ony the perticles }}]
$$

The cordenses prtides feel the intenter as if it is inose a mean-field of $g|\Psi(r)|^{2}$ ।

* It is a self-constent meentreld theoy in the sense that the solstion $\mathscr{\Psi}(r)$ depands on the meen-iield interation creetud by $|\Psi(\vec{r})|^{2}$,
* Single putide operaber energy αN
* Tus-bady intenction energy αN^{2}

4) What are the leyth/enery scales of the GP equation What is the Thames- Fermi limit? What is the healing leith of the ondesute?
5) $-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V_{\text {ct }}(\hat{r}) \psi+g|\psi|^{2} \psi=+\psi$

Consider the uniform conderante : V east $\mid \vec{r})=0$

$$
\Rightarrow \quad \psi=g|\psi|^{2}=g n \quad \begin{aligned}
& T \psi=0 \\
& \overbrace{}^{n(\vec{r})}
\end{aligned}
$$

Now loo for solutions that inculde a perturbation/hick in the condensate:

healing
leith \mathcal{E} : The leyth of the courante to 'heal' itself into the unis condusate density in the absence of extend potential.

$$
\frac{\hbar^{2}}{2 m} \nabla^{2} \psi \simeq g|\psi|^{2} \Rightarrow \frac{\hbar^{2}}{2 m \xi^{2}} \simeq g n
$$

3) Healing leyth: $z^{2} \simeq \frac{\hbar^{2}}{2 \text { ann }}$

$$
z^{-1}=\sqrt{\frac{2 m g n_{0}}{\hbar^{2}}}=\sqrt{\frac{2 \pi \frac{4 \pi a_{0} \hbar^{2}}{\hbar} n_{0}}{\hbar^{2}}} \Rightarrow
$$

* Hecling leyth most exceed interpertide spacing in GP frumion.

Now arome thet the condenate nuwfunetion is sffireitly snoth scch that the linatic energyterm is neftyible with respect to the externel potantial ad interation enegies:

$$
\begin{aligned}
&-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V_{\text {xxt }}(r) \psi+g\left(\left.\psi\right|^{2} \psi=+\psi\right. \\
& V_{\text {axt }}(\hat{r}) \psi(\bar{r})+|\psi(\bar{r})|^{2} \psi(\bar{r})=f \psi(\vec{r}) \\
& \Rightarrow \quad V_{(x f}(\hat{r})+|\psi(\vec{r})|^{2}=+
\end{aligned}
$$

This is the TF limit. This limit con geverlly be realized fe sufficratly high $\#$ of particles N, Sinee $\quad E_{\text {int }} \alpha N^{2}$

$$
E_{\operatorname{lin}} \propto N
$$

In the TF limit,

$$
V_{\operatorname{ext}}(\hat{r})+g n(\bar{r})=\psi \Rightarrow n(\bar{r})=\frac{p-V_{\operatorname{ext}}(\bar{r})}{g}
$$

The chenred potatod + can be colculated by the corstruint $\int_{n}(\bar{r}) d^{P} r=N$

$$
\int \frac{p-V_{l x t}(\bar{r})}{g} d^{3} \tilde{r}=N
$$

Anther impatant leyth sack is the hemaniz ocilleter Leyth scale:

$$
\frac{\hbar^{2}}{2 m a_{h o}^{2}}=\frac{1}{2} m \omega^{2} a_{b}^{2} \Rightarrow
$$

\square

5) FFid the Thomes-Fermi solstor of the Boxe odesute in an istrupic Boxe condersate.
5)

$$
n(\hat{r})=\frac{p-V_{\text {cot }}(\hat{r})}{g}=|\psi(\hat{r})|^{2}
$$

$$
V_{\text {ext }}(r)=\frac{1}{2} n \omega^{2} r^{2} \Rightarrow n(r)=\frac{p-\frac{1}{2} m \omega^{2} r^{2}}{g}
$$

$$
\begin{aligned}
& \frac{1}{2} m \omega^{2} R_{I F}^{2}=t \\
& R_{I F}=\sqrt{\frac{2 t}{m \omega^{2}}}
\end{aligned}
$$

In the TF limit, there exist a finiter rodis at and abar which $n(\bar{T})=01$

$$
\begin{aligned}
& \int n(r) d \vec{r} z N=\int\left(\frac{\psi-\frac{1}{2} m \omega^{2} r^{2}}{g}\right) d{ }^{3} \vec{r} \\
& 4 \pi \cdot \int_{0}^{R \pi} d r \cdot r^{2}\left[\frac{t}{g}-\frac{m \omega^{2}}{2 g} r^{2}\right] \\
& =4 \pi \cdot\left[\frac{4}{g} \cdot \frac{R_{F}^{2}}{J}-\frac{m \omega^{2}}{2 y} \cdot \frac{R_{F P}^{5}}{5}\right]=N \\
& \frac{4 \pi x}{g}\left[\frac{n_{i p}^{3}}{0}-\frac{m \omega^{2}}{2 \theta} \cdot \frac{n_{\pi i}^{5}}{5}\right]=N \\
& \text { where } R_{T F}=\sqrt{\frac{2 p}{m \omega^{2}}}, \frac{\left(R_{\pi F}\right)^{2}}{2 f / m \omega^{2}}=1 \\
& \frac{2 R_{\tau F}^{a}}{15} \cdot \frac{4 \pi t}{g}=N \Rightarrow \frac{2}{15} \cdot \frac{2 R}{\left(m \omega^{2}\right)^{3 / 2}} \cdot \frac{4 \pi t^{5 / 2}}{g}=N \\
& \Rightarrow t^{5 / 2}=\frac{15 g N \cdot m^{3 / 2} \omega^{3}}{16 \pi \sqrt{2}} \Rightarrow p=\left(\frac{15 g N m^{0 / 2} \omega^{3}}{16 a \sqrt{2}}\right)^{2 / 5}
\end{aligned}
$$

$$
f \propto(g N)^{2 / 5} \quad n(r)=\frac{y-1 / 2 m \omega^{2} r^{2}}{g}
$$

6) How to solve the GP equation numerally?

Enginary time ecultion to solve the grond state of the intereting Box ondenate.

Consider a geverl forn of a time-dardprent equition:

$$
i \hbar \frac{\partial \psi}{\partial t}=\hat{H} \psi
$$

The cim is to find the goond state wanpuction ψ_{65}.
Any wampuation 4 cen be ceppaced in term of the ejenstits inelsding: $\quad \psi=\sum_{n} C_{n} \cdot \psi_{n}, \quad n \equiv G S, 1,2, \ldots$

$$
\psi(t)=C_{0}^{(t)} \psi_{G J}+c_{1}(t) \psi_{1}+a_{2}(t) \psi_{2}+\cdots
$$

$$
\begin{aligned}
& i \hbar \frac{\partial}{\partial t}[\psi]=\hat{t} \psi \\
& \text { it } \frac{\partial}{\partial t}\left[c_{S}(t) \psi_{G J}+C_{1}(t) \psi_{1}+\cdots\right]=\hat{H}\left[c_{c}(t) \psi_{G J}+c_{1}(t) \psi_{1}+\cdots\right. \\
& i \hbar\left\{\psi_{c j} c_{0}^{\prime}+\psi_{1} c_{1}^{\prime}+.\right\}=C_{0} \cdot E_{c_{3}} \psi_{c_{0}}+c_{1} \cdot E_{1} \psi_{2}+\cdots \\
& \int d^{2} r \cdot \psi_{i}^{*}\{\ldots\} \Rightarrow i \hbar c_{i}^{\prime}=c_{i} E_{i} \\
& \Rightarrow G_{i}=e^{-E_{i} t / \hbar} \\
& \Rightarrow \psi(t)=\sum_{i=\sigma s}^{i} e^{i E_{i} t t_{s}} \psi_{i}
\end{aligned}
$$

Now onsider the following hypthatical eublution:

$$
i \hbar \frac{\partial \psi}{\partial t}=\hat{H} \psi \xrightarrow{t \rightarrow z=i t}-\hbar \frac{\partial \psi}{\partial z}=\hat{H} \psi \Rightarrow
$$

$$
\begin{aligned}
& -\hbar \frac{\partial \psi}{\partial r}=\hat{E} \psi \Rightarrow \psi(\tau)=\sum_{i=\sigma S} e^{-E_{i} \tau / \hbar} \psi_{i} \\
& \psi(z)=e^{-E_{G S} 2 / \hbar} \psi_{G J}+e^{-E_{1} \tau / \hbar} \psi_{i}+\cdots
\end{aligned}
$$

Fre a sulliremty ley evolition in imginey time, the only tem thet survives is the greand stat: $\psi_{G S}$, since $E_{G J}<E_{i>1}$

$$
\psi(z-\infty) \propto \psi_{G S}
$$

Trginey time algoithm:
(1) Assign an initial warelection $\psi_{\text {init }}$
(2) $\psi_{i}=\psi_{\text {init }}-\frac{\hat{H} \psi_{\text {init }}}{\hbar} \cdot \Delta z$, wher $H[(\psi]$
(3) Reromalize $\int\left|\psi_{i}\right|^{2} d_{r}^{p}=N_{\text {. }}$.
(4) Calclate $t: \hat{H} \psi=+\psi$
(5) Chack $\hat{H} 4-p^{2}$ to onvere.
(6) Repeat (2-6).
7) Compere the solutions of the res-intercting limit of GP equation (Schriding cq.), caralytoul sistion of TF limit and the numeral salton of the GP eeprtion.

Discos in which limits the numeral solution cppencelus the Schisdiner en an TF solution.

