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Notations and definitions

We introduce the main notations used in this work (see also the List of Symbols below).
We denote stochastic, physical processes by Xt, where t ≥ 0 is a discrete (t = 0, 1, 2, . . .) or

continuous (t ≥ 0) time index, and where Xt takes values in the set X , which we call the state
space. Depending on the definition of X , the random variable Xt can be scalar or vectorial, and
discrete or continuous. For example, if X = R, then Xt is a one-dimensional process on the real
line. We denote the path (trajectory) of X in the time interval [s, t] by X[s,t] = {Xu}u∈[s,t].

Elements of the set X are denoted by x ∈ X . We use small letters to distinguish them from
the stochastic process X. Also, we use x[s,t] = {xu}u∈[s,t] for a deterministic trajectory, in contrast
with the stochastic trajectory X[s,t].

Random variables are associated with their probability P . For example, P(Xt > 0) is the
probability that Xt is positive. We also use P for a probability density of random variable. In
particular, when X is discrete, then the probability density of the trajectory X[0,t] reads

P(x[0,t]) ≡ P(X0 = x0, . . . , Xt = xt), (1)

for all x[0,t] ∈ X t+1, and when X is continuous, then the probability density is defined by

P(x[0,t]) ≡ P (X0 ∈ [x0, x0 + dx0] , , . . . ., Xt ∈ [xt, xt + dxt]) , (2)

for all x0, x1, . . . , xt ∈ X . Probability densities are normalized, i.e.,∑
x0∈X

· · ·
∑
xt∈X

P(x[0,t]) = 1 (3)

for discrete-time processes with discrete state space X , and∫
x0∈X

· · ·
∫

xt∈X
P(x[0,t])Dx[0,t] = 1, (4)

for discrete-time processes with continuous state space X , where we have introduced the notation
Dx[0,t] = dx0 . . . dxt.

We write expected values (averages) with respect to the path probability P as 〈·〉. For example,
for X discrete, the expectation (also called “average”) value of Xt is given by

〈Xt〉 =
∑
xt∈X

xt P(x[0,t]) =
∑
x∈X

x ρt(x). (5)

If Xt is continuous, we have

〈Xt〉 =
∫

xt∈X
Dx[0,t]xt P(x[0,t]) =

∫
x∈X

dx x ρt(x). (6)

We use ρt(x) to denote the instantaneous probability density for both continuous and discrete
random variables, see Equations (5) and (6). For discrete Xt, we formally define the instantaneous
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probability density by

ρt(x) = 〈δXt ,x〉 ≡
∑
xt∈X

P(x[0,t])δxt ,x =
∑
xt∈X

P(xt)δxt ,x, (7)

where δi,j is Kronecker’s delta. For Xt continuous, we have

ρt(x) = 〈δ(Xt − x)〉 ≡
∫

xt∈X
Dx[0,t]P(x[0,t])δ(xt − x) =

∫
xt∈X

dxtP(xt)δ(xt − x), (8)

where δ(x) is the Dirac delta function. The instantaneous density is normalized as
∑

x∈X ρt(x) =
1 for discrete Xt and as

∫
x∈X dxρt(x) = 1 for continuous Xt, for all t ≥ 0.

A key concept in martingale theory is the expectation of an observable at a time t conditioned
on its history up to a previous time s ≤ t. A simple example of conditional expectation is that of
the physical process Xt itself. If Xt is discrete, such conditional expectation is given by

〈Xt|X[0,s]〉 =
∑
x∈X

xP(Xt = x|X0, X1, . . . , Xs), (9)

whereas if Xt is a continuous random variable,

〈Xt|X[0,s]〉 =
∫

x∈X
dx xP(Xt ∈ [x, x + dx] |X0, X1, . . . , Xs). (10)

For a discrete random variable Y, we use ρY (y) = P(Y = y) to denote the probability. For a
continuous random variable Y, we denote the probability density by

ρY (y) ≡ P(Y ∈ [y, y + dy])

dy
. (11)

Analogously, we use the notation ρY (y|X0 = x) for a conditional probability density, in this case
conditioned on X0 = x.

List of symbols

X State space, continuous or discrete
δ(x) Dirac’s delta function for X continuous
δx,y Kronecker’s delta function for X discrete: δx,x = 1 and

δx,y = 0 for y �= x
dx Lebesgue measure (counting measure) for X continuous

(discrete)
t Time (continuous or discrete)
Xt Value of the physical process at time t, Xt ∈ X
X[s,t] Stochastic trajectory X[s,t] in [s, t], with s ≤ t
P(x[0,t]) = P[0,t](x[0,t]) Path probability for the stochastic trajectory X[0,t] to be

equal to x[0,t], i.e., path probability for x[0,t] to occur in the
interval [0, t]

P[r,s](x[0,t]) Path probability marginal of P(x[0,t]) on the time inter-
val [r, s], with 0 ≤ r ≤ s ≤ t

T Stopping time
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〈 · 〉 or 〈 · 〉P Expectation (average) with respect to the path probabil-
ity P , see Equations (5)–(6) for explicit expressions of the
average 〈Xt〉

Zt ≡ Z[X[0,t]] Functional of X[0,t] (X -adapted observable)
〈Zu|X[s,t]〉 Conditional expectation of Zu with respect to the filtration

generated by X[s,t]. For example, 〈Xt|X[0,s]〉 is the average of
Xt

conditioned on the process tracing a specific trajectory
X[0,s] in the interval [0, s], with 0 ≤ s ≤ t

ρY (y) Probability density ρY (y) ≡ P(Y ∈ [y, y + dy])/dy for a
continuous
random variable Y
Probability ρY (y) ≡ P(Y = y) for a discrete random vari-
able Y

ρt(x) or ρP
t (x) Instantaneous density (or probability) of the process,

given by ρt(x) = 〈δ(Xt − x)〉
One-point marginal of the path-probability P(x[0,t])

ρst(x) Stationary probability density (or probability) of the process
P(xt|xs) Conditional probability density for the process to be at Xt =

xt

at time t given that at time s the value of the process
Xs = xs, with xs, xt ∈ X

Lt Markovian generator of a generic Markov process
L†

t Adjoint of Markovian generator with respect to the canoni-
cal scalar product

πt Accompanying density, solution of L†
t πt = 0

T Temperature of the thermal bath
kB = 1 Boltzmann’s constant, set equal to one in this review
μt(x) Mobility matrix
Ft(x) = −(∇Vt)(x) + ft(x) Force vector, with Vt(x) potential and

ft(x) a non-conservative force
Dt(x) Diffusion matrix
Bt Wiener process
Ḃt Gaussian white noise
Ẋt = νt(Xt) +

√
2Dt(Xt)Ḃt Ito–Langevin equation (overdamped dynamics),

with νt(x) = (μtFt + ∇ Dt)(x)

Dt(x) = T

2
(μt(x) + [μt(x)]

†) Einstein’s relation for isothermal processes,

with † denoting matrix transposition
For symmetric mobility matrix, it reads Dt(x) = Tμt(x)

ωt(x, y) Transition rate at time t from state x to state y
for a Markov-jump process in continuous time

wt(x, y) Transition probability at time t from state x to state y
for a Markov-jump process in discrete time

Jt,ρ(x) Instantaneous probability current associated with the den-
sity ρt

For a diffusion process, Jt,ρ(x) = (μtFtρt)(x) − (Dt∇ρt)(x)
For a jump process, Jt,ρ(x, y) = ρt(x)ωt(x, y) − ρt(y)ωt(y, x)
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Wt Stochastic work done on the system in the time inter-
val [0, t]
along a stochastic trajectory X[0,t]

Qt Stochastic heat absorbed by the system in the time inter-
val [0, t]
along a stochastic trajectory X[0,t]

Qt + Wt = Vt(Xt) − V0(X0) First law of stochastic thermodynamics along a stochastic
trajectory X[0,t]

Ssys
t = − ln(ρt(Xt)) Stochastic system entropy at time t

The system entropy change along a stochastic trajectory
X[0,t]

in [0, t] reads �Ssys
t = Ssys

t − Ssys
0 = ln(ρ0(X0)/ρt(Xt))

Senv
t Stochastic environmental entropy change

along a stochastic trajectory X[0,t] in [0, t]
Stot

t Stochastic total entropy production
along a stochastic trajectory X[0,t] in [0, t]

�t Time reversal operator
In this Review, it is applied to a trajectory x[0,t]

as follows: [�t(x[0,t])]s ≡ xt−s

�
P ,Q
t = ln

[P(X[0,t])

Q(X[0,t])

]
�-entropic functional (associated with a pair

of path probabilities P and Q)
evaluated over the stochastic trajectory X[0,t]

�
P ,Q
t = ln

[ P(X[0,t])

Q(t)(�t(X[0,t]))

]
�-entropic functional (associated with a pair

of path probabilities P and Q)
evaluated over the stochastic trajectory X[0,t]

�
P ,Q
[r,s];t = ln

[
P[r,s](X[0,t])

Q(t)
[t−s,t−r](�t(X[0,t]))

]
Generalized �-entropic functional

over the subset time interval [r, s] ⊆ [0, t]
DKL[ρX (x)||σX (x)] Kullback–Leibler divergence between the normalized
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Chapter 1. Introduction

Before leaving, M. M. asked me to go to her casino, to take some money and to play, taking her
as my partner. I did so. I took all the gold I found, and playing the martingale, doubling my

stakes continuously, I won every day during the rest of the carnival. Giacomo Casanova, History
of My Life (1789).

1.1. Why this treatise?

Models based on stochastic processes have proven to be useful in non-equilibrium statistical
physics. As a consequence, an extensive set of techniques from stochastic processes have become
mainstream in non-equilibrium statistical physics, one notable example being large-deviation
theory [1]. Nevertheless, few works in statistical physicists use martingales.

Martingales play a central role in the theory of stochastic processes and find important appli-
cations in statistics and mathematical finance. In contrast, applications of martingale theory in
physics are limited. This is somewhat surprising, given that unbiased random walks and Brown-
ian motion are martingales. These processes are of paramount importance in physics and many
of their important properties can be easily derived using that they are martingales.

An explanation for the absence of martingales in contemporary statistical physics is that
martingales are not presented in textbooks and classic references used by physicists to study
stochastic processes [2–8]. For physicists, learning martingale theory is a quest, which can be
achieved through an exhaustive reading of mathematical textbooks, just like Don Quixote reading
cavalric romances, until losing their mind to become a knight errant [9].

This treatise gives an overview of the aspects of martingale theory that we think are impor-
tant for physics. In particular, we build on recent works that develop martingales in statistical
physics [10–16]. We emphasize this work is a treatise rather than a review, inasmuch we discuss
a topic in depth by providing a thorough overview of published results but also include extensive
novel material. We shall show that martingales are ubiquitous in nonequilibrium physics (i.e., in
stochastic thermodynamics), that martingales provide fundamental insights into central concepts
in nonequilibrium physics (i.e., on the second law of thermodynamics), and that martingales con-
stitute a powerful tool for mathematical derivations (i.e., for splitting probabilities and extreme
value statistics). The review is aimed at readers with a basic knowledge on nonequilibrium sta-
tistical mechanics and stochastic processes. It covers mathematical definitions and properties in a
comprehensive way, explains how to apply such results to nonequilibrium physics, and discusses
applications of martingales in interdisciplinary fields.

1.2. How to read this treatise

This treatise is organized as follows. Chapter 1 presents historical remarks on the origin of mar-
tingales and provides a few illustrative examples of martingales in physics. Chapter 2 introduces
mathematical definitions and key examples of martingales. Chapter 3 revisits the concept of
Markov processes and its importance in statistical physics, and discusses its relation with mar-
tingales. Chapter 4 presents martingale properties and theorems. Chapter 5 introduces martingale
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theory in stochastic thermodynamics through paradigmatic examples of stochastic processes.
Chapter 6 elaborates advanced knowledge in stochastic thermodynamics; it provides mathe-
matical rigor on how martingales can be identified and applied in the study of a broad class
of nonequilibrium processes (stationary and non-stationary), in particular martingales related to
path probability ratios. Chapter 7 further elaborates the connection between thermodynamics and
martingales by presenting universal properties of entropy production in nonequilibrium stationary
states. Chapter 8 reviews recent work that applied martingale theory to non-stationary isothermal
processes, revealing fluctuation theorems at stopping times. Chapter 9 presents a tree-like hier-
archy of second law that descends from martingale properties of probability ratios. Chapter 10
discusses martingales in the context of progressive quenching in physics. Finally, Chapters 11
and 12 review, respectively, applications of martingales in population dynamics and quantitative
finance. Chapter 13 briefly reviews applications of martingales in quantum collapse and presents
the conclusion of this review.

Key concepts, results, and theorems that we think are essential in this treatise are highlighted
in gray boxes. Sections with advanced content, most of which novel material, and often not
recommended for a first read unless for intrepid readers, are highlighted with a superscript♠

at the beginning of their title. We recommend to consult the List of Symbols placed after the
Table of Contents. Lengthy mathematical proofs and supplemental material are relegated to the
Appendices. As martingales are “fair” games, we do not guarantee potential readers will become
wealthy after reading this treatise, but to acquire rich knowledge after a patient and dedicated
read.

Depending on the reader’s interests and background, it may be preferable to focus on selected
chapters of this treatise. Below and in Figure 1.1, we provide possible roadmaps:

• To know what are martingales and their properties. We recommend to read Chapter 2 to
get a primer on martingales, Chapter 3 to establish connections with Markov processes and
Chapter 4 to learn about the key theorems and mathematical relations in martingale theory.

• To learn foundations of stochastic thermodynamics. We recommend to first read Chapter 5
and then if sufficiently audacious Chapter 6 (at valiant heart nothing is impossible).

• For readers with basic notions on stochastic thermodynamics wanting to learn its connec-
tion to martingales. We recommend to first read Chapter 5 to refresh key concepts and
learn the martingale structure of the second law in Langevin stationary processes. Further,
we recommend to read Chapters 7 and 8 (together with Chapter 4 as a mathematical back-
ground) to learn how martingale theory can unveil new universal properties in stochastic
thermodynamics.

• For readers with advanced notions on stochastic thermodynamics wanting to reach the
“nirvana” on martingality. We recommend first to read Chapters 5 and 6 to get the detailed
fundamentals on the martingale structure of stochastic thermodynamics, both in stationary
and non-stationary setups. Next, we suggest to read Chapters 7 and 8 (with Chapter 4
as a mathematical complement) to learn how martingale theory can unveil new universal
properties in stochastic thermodynamics. After this acquired knowledge, the nirvana on
martingality can be acquired through a dedicated read of Chapter 9.

• For fans of the second law of thermodynamics. We recommend to first read Chapter 5 and
then Chapters 7, 8, and 9.

• For biophysicists wishing to learn the basics of martingales and their applications. We
recommend to start with Chapter 2 to get an informal primer on martingales, Chapter 3.2
to learn basics of continuous-time Markov processes, then Chapter 5 to learn foundations
of stochastic thermodynamics and/or Chapter 11 to get familiarized with applications to
population dynamics.
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Figure 1.1. Roadmap to this treatise. The branches illustrate different tracks that readers may take when
reading this treatise. We classify the each chapter’s level of difficulty as * easy, ** normal, and ***
advanced.

• For experts in martingales that want to learn stochastic thermodynamics. We recommend
to first read Chapter 5 and then Chapter 6.

• To learn applications of martingales other than thermodynamics. We recommend to read
Chapters 2–4 to familiarize with the mathematical properties and examples of martin-
gales, before exploring applications of martingale theory in other domains, in particular
progressive quenching (Chapter 10) and population dynamics (Chapter 11).

• For those looking for arbitrage opportunities in the stock market. We highly recommend to
read Chapter 12 where we revisit how martingale theory is applied in quantitative finance.

1.3. History of martingales

1.3.1. Etymological origin of the word “ martingale”

The word “martingale” presents numerous etymologies that spread across disciplines including:
gambling, mathematics, finance, geography, technology and vernacular language [17–19]. The
origin of this word dates back to the sixteenth and seventeenth centuries at the foundations of
probability theory in France. One of its first appearances in the literature is Casanova’s memories
from 1754. Its etymology remains obscure; it is mentioned in early French, Spanish and Catalan
dictionaries, which highlight the Mediterranean roots of martingales. Some of the usages of the
word martingale, in roughly inverse chronological order, are:
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• The word “martingale” has a formal meaning in probability theory. Martingales are stochas-
tic processes without drift, i.e., their expected value in the future is given by the last value
of a sequence of past observations. Research on the mathematical properties of martingales
were mainly developed by Doob in the twentieth century, and applied to derive key results
in the theory of stochastic processes, as we discuss in the following chapters.

• In mathematical finance, martingale processes have been used for decades as paradigmatic
models of fair markets in which there exists no arbitrage opportunities. Martingale theory
has been notoriously boosted in financial research. Krickeberg famously stated:

I was never tempted to get involved in the applications of martingales to the theory and, worse,
the practice of financial speculations that have contributed in no small measure to the present
crisis of the world’s money markets and economy.

• In game theory and gambling, martingales represent fair games of chance in which any
player may win or lose with equal probability, irrespective of the previous outcomes of
the game. Such “fair” games of chance motivated the origin of probability theory in the
seventeenth century. Even earlier, the book of Fra Luca Paccioli (1494) already discussed
fair games in the spirit of what today are known as martingales.

• Giacomo Casanova’s memories [20] provide the arguably first literary reference of the
word:

J’y fus [au casino de Venise], j’ai pris tout l’or que j’ai trouvé, et portant avec la force qu’en
terme de jeu on dit à la martingale, j’ai gagné trois et quatre fois par jour pendant tout le rest de
carnaval.1

The dictionary of the Académie Française describes Casanova’s gaming strategy as
“betting all that was lost”.

• Abbé Prevost describes the martingale as the celebrated playing strategy where the gambler
doubles his/her stake at each loss to quit with a sure profit, provided that he/she wins once.
In casino’s roulette this is called the “Double Up” strategy. Alexandre Dumas describes this
strategy in La Femme au collier de velours as “introuvable comme l’âme” (unreachable like
the soul) being put at work during the last days of the life of an old gambler who spent all
his life looking for the martingale.

• Martingales have also an equestrian meaning, which is in nowadays registered in, i.e.,
Oxford’s English dictionary as “a strap or set of straps running from the noseband or reins
to the girth of a horse, used to prevent the horse from raising its head too high”. Similarly,
the Spanish word almártaga, which refers also to a horse harness is also considered among
one of the possible etymological roots of the word martingales.

• Mistral’s Provençal dictionary cites martegalo as the demonym of the residents of Mar-
tigues, a French city located northwest of Marseille, currently nested within the Provençe–
Alpes–Côte d’Azur region. The isolated location of the Martigues area, at the merger
of three boroughs, brought according to Mistral’s dictionary a “proverbial reputation of
naivety”. In the same dictionary, we find the Provençal expression jouga a la martegalo,
which means to play in an absurd – and thus not necessarily fair – way.

• The word martegalo is used in sailing as a rope attached above the bowsprit needed to
secure the flying jib, and sailors called martegaux were famous for net fishing in the south
of Italy and Andalusia.

• Cotgrave’s dictionary relates martingales to a sailor’s dance consisting of a repetitive and
rough stamping of the ground with the heels. This is mentioned in Charles IX trip to Brig-
noles (1564) with his court where “the citizens tried to please him through [. . . ] the dances
of the area [. . . ] dances named volte or martingale”.
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• In Rabelais’ series of novels Gargantua, the character Panurge wears the martingale pants,
which contain an orifice at the back. In Rabelais’ words, “a drawbridge [. . . ] that makes
excretion easier”.

• Letters from the seventeenth century of a prophetess nicknamed La Martingale have been
reported, containing doubtful prophecies (i.e., for the fate of Louis XIV) often accompanied
by requests for donations.

• In vernacular language, martingale has been used to refer to prostitutes, courtesans, street-
walkers, etc. This meaning can be found in old slang dictionary and also in Scarron’s Virgile
Travesti.

• In Italian language, “martingala” has yet another meaning: a sort of half-belt which tightens
the back of a jacket or a coat (Figure 1.2 ).

1.3.2. Martingales in probability theory

The true explosion of the concept of martingales in mathematics dates back to the works by
Joseph Leo Doob in the 1940s. Doob proved many fundamental inequalities and limit theorems
associated with martingales. These results deeply changed the field of probability theory. In the
following years, finding a suitable martingale became the “skeleton key” to solve a challenging
new problem in probability theory.

Two important precursors of Doob in martingale theory are:

• Jean Ville, who introduced for the first time the concept of martingale in mathematics in
his PhD Thesis “Etude critique de la notion de collectif” (1939) [21]. His thesis includes
the first proofs of the so-called Doob’s maximal inequality. Doob, who took part to Ville’s
PhD Thesis committee, recognized that Ville’s thesis was a major inspiration for his work.

• Paul Lévy, whose work is in some way, related to martingale theory. For instance, his book
“Stochastic Processes and Brownian Motion” (1948) deeply influenced probability theory.
Levy’s writing style is informal and focused on explanations rather than on mathematical
proofs, in contrast with Doob’s rigorous and dry mathematical style.

In 1953, Doob published the influential book “Stochastic Processes” [22], which con-
tains the mathematical foundations of what today is called martingale theory. In the second
half of the twentieth century, martingales have provided a new perspective on a plethora of
problems in probability theory, for example:

• Stroock and Varadhan introduced in 1969 the “martingale problem” [23], which enable
to characterize the distribution of a stochastic process through a martingale condition.
In particular, for Markovian processes, this martingale can be expressed in terms of the

Figure 1.2. Some celebrated “Martingales”. Left: Rules of game in the roulette of casino in Montecarlo.
Middle: Painting of the village of Martigues (France). Right: Joseph L. Doob, mathematician who pioneered
the development of martingale processes in probability theory.
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infinitesimal generator. This problem is particularly well suited to characterize the limit of
a family of Markov processes.

• In stochastic calculus, martingales are stochastic processes that form good integrators.
Indeed, the theory of integration with respect to a Wiener process has been extended to
integrals that use general martingales as integrators [24].

1.3.3. Martingales in gambling

Martingales originated in a class of betting strategies that were popular in the eighteenth-century
France. These strategies can be summarized by the principle: “if you lose, double your wager
size”. Consider a betting involving two gamblers X and Y. Suppose X starts to toss the coin,
taken to be fair, with a betting amount of 50. If the outcome is a head, X retains this amount,
otherwise loses it to Y. The coin is tossed, and it falls on the tail. Using the martingale strategy,
X now increases the betting amount to 100. The coin is tossed, but again it falls on the tail, and
so X again doubles the betting amount. So by the time X tosses the coin for the third time, the
total amount that X has lost to Y is 350. The coin is tossed, and now, to X’s merriment, the coin
falls on the head, and so X gets from Y an amount of 400. In the process, X has retained the
initial amount of 50. The amount of the winning trade in the above martingale betting strategy
exceeds the combined losses of all the previous trades, and the difference is the amount of the
original trade. It is evident that the strategy would result in a profit for a gambler, but as we will
see in this treatise this assumes that the gambler has infinite (i.e., unbounded) wealth to keep
on betting and doubling the betting amount until he wins. Note also that the casino knows that
bankruptcy is a possible outcome in case of infinite wealth. To avoid such possibility, a casino
often uses table limits to control the maximum bets that a player can play. Most casinos in Las
Vegas Strip usually offer tables with a 10,000$ limit. We note, however, that such limits do not
exist in financial markets, and investing in the stock market with Casanova’s strategy could imply
a huge bankruptcy!

The strategy of doubling up on a loss is what had been the betting strategy of Casanova
mentioned earlier. Denoting by Si the total accumulated score up to the ith toss included, and
given the outcomes of i > 1 tosses, the expectation value of Si+1 reads

〈Si+1|S1, S2, . . . , Si〉 ≥ Si, (1.1)

which makes the stochastic process Si a submartingale, see Ch. 2 for formal definitions.

1.3.4. Martingales in finance

Quantitative finance employs mathematical and statistical tools to anticipate the value of financial
assets as stocks and options. From early days, physics models such as random walks have been
invoked to discuss stock pricing. Jules Augustin Frédéric Regnault, an assistant to a French stock
broker, was one of the first to propose a modern theory of stock pricing in his 1863 treatise Calcul
des Chances et Philosophie de la Bourse, in which he writes “l’écart des cours est en raison
directe de la racine carrée des temps”, which translates as “price deviation is directly proportional
to the square root of time”. Louis Jean-Baptiste Alphonse Bachelier, a French mathematician
who lived at the turn of the twentieth century, was the first to propose as part of his PhD thesis
Théorie de la spéculation a mathematical model for Brownian motion and how it may be used
for discussing stock pricing. His contributions make him arguably the forefather of mathematical
theory of finance.

However, it is the American economist Eugene Francis “Gene” Fama whom some people
argue is the father of finance, owing to his ground-breaking work in the area, and in particular,
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for proposing the so-called efficient-market hypothesis. This hypothesis states that in an efficient
market, it would not be possible to make definite predictions about future price on the basis of the
information available today, so that the best prediction that one can make for the expected future
price discounted to the present time is today’s price itself. The hypothesis forms a cornerstone of
modern financial theory, and in the light of the present review, an implication of the hypothesis
is that asset price is a martingale. We will explore this connection in more detail in Chapter 12,
in which, among others, we will discuss the very-influential Black–Scholes model used widely
by options market participants round the world. This model, named after American economists
Fischer Black and Myron Scholes, provides a theoretical estimate of the price of European-style
option. The model was introduced in the 1973 paper by Black and Scholes titled “The Pricing of
Options and Corporate Liabilities”, and published in the Journal of Political Economy. Robert C.
Merton published his article in this area, “Theory of Rational Option Pricing”, in The Bell Journal
of Economics and Management Science, in which he coined the term “Black–Scholes theory of
option pricing”. For their work, Black and Merton were awarded the Nobel Prize in Economic
Sciences for the year 1997 (Scholes because of his death in 1995 was considered ineligible for
the prize).

1.3.5. Martingales in stochastic thermodynamics

Stochastic thermodynamics describes the non-equilibrium behavior of mesoscopic systems [25–
27]. The application of martingale theory to stochastic thermodynamics has a short yet fruitful
history, see, i.e., Refs. [10–16,28–32]. Classical fluctuation relations of stochastic thermodynam-
ics, such as the integral fluctuation relation and Jarzynski’s equality, can be understood with
martingale theory, and martingale theory generalizes these fluctuation relations, providing a bet-
ter understanding of fluctuations in mesoscopic systems. In particular, with martingale theory we
obtain fluctuation relations at random times and for the extreme values of stochastic processes,
while stochastic thermodynamics usually deals with fluctuations at fixed time. Also, martingale
theory implies versions of the second law of the thermodynamics for mesoscopic systems that
are stronger than those obtained in “standard” stochastic thermodynamics, providing us with a
better understanding of the implications of the second law at mesoscopic scales. In particular, the
martingale versions of the second law reveal how the observer’s knowledge about a system’s his-
tory affects the second law of thermodynamics. This body of work forms the core of this review
(Chapers 5–9), and now we provide some “historical” remarks.

The link between fluctuation relations in stochastic thermodynamics and martingales was
first highlighted in Ref. [10]. Reference [11] rediscovered the link between martingales and
fluctuation relations in stochastic thermodynamics within the setup of stationary processes, and
moreover used the mathematical properties of martingales to derive universal relations for the
statistics of extreme-values and stopping-times of entropy production. The results from Ref. [11]
were rederived in Ref. [12] within the context of Langevin processes by using Itô calculus and
random-time transformations, and Ref. [13] shows how most of the results of Ref. [11] follow
readily from one relation, namely, the integral fluctuation relation for entropy production at stop-
ping times. The integral fluctuation relation for entropy production at stopping times is thus a
key result of martingale theory for stochastic thermodynamics, and Ref. [13] also introduces the
ensuing second law of thermodynamics at stopping times. This latter version of the second law
of thermodynamics describes how classical limits in thermodynamics can be overcome by stop-
ping at a cleverly chosen moment. Some of these results have been experimentally verified in
single-electron boxes [33] and granular systems [29].

Martingales theory also plays a role for trade-off inequalities between the rate of entropy
production, speed, and precision. Reference [34] derives a bound relating first-passage times of
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Figure 1.3. Illustration of a discrete-time biased random walk. A particle (gray circle) moves in a one
dimensional lattice X (black line). At every (discrete) time step, the particle jumps either forward (positive
X direction) with probability q or backward (negative X direction) with probability 1− q.

current-like observables to the average rate of dissipation. A more in-depth analysis in Ref. [35]
shows that this bound can be interpreted as a tradeoff between dissipation, speed, and precision
within a first-passage setup, and that the bound is related to the so-called thermodynamic uncer-
tainty relations [36–38]. Moreover, using martingale theory, Ref. [35] shows that the bound is
tight for currents proportional to the entropy production, and hence is optimal in this case.

More recently, martingales have been employed to describe fluctuations of generic nonequi-
librium Markov process driven by arbitrary external protocols [14,15,28,31,39]. Reference [14]
derives in this setup a second law of thermodynamics at stopping times and a Jarzynski equality
at stopping times. Reference [15] also provides Jarzynski-like relations and generalized second
laws at stopping times, albeit using nonequilibrium free energies instead of equilibrium free ener-
gies, and illustrates the result in an experimentally-realized “gambling” demon which stops the
dynamics of a process following specific criteria. Further applications of martingales in stochas-
tic thermodynamics have been reported, e.g., in quantum systems [40], molecular motors [41],
periodically-driven systems [31], and photoelectric devices [42].

1.4. “Warm-up” on martingales

As a first encounter with martingales, we discuss simple random walks, which are possibly the
simplest example of martingale processes.

We denote by Xt the position of a one-dimensional, discrete-time, biased, random walk at
times t = 0, 1, 2, . . . , with initial condition X0 = 0 (see Figure 1.3 for an illustration). For t ≥ 1,
the position of the walker is given by

Xt ≡
t∑

s=1

ξs, (1.2)

where ξs are independent increments which take the value +1 with probability q < 1 and −1
with probability 1−q. The average (expectation) value of X at time t reads 〈Xt〉 =

∑t
s=1〈ξs〉 =

(2q − 1)t.
What is the expected value of Xt at time t > 0 given its history X[0,s] up to a previous time

s < t? This conditional expectation is formally defined as

〈Xt|X[0,s]〉 =
∑
x∈X

xP(Xt = x|X0, X1, . . . , Xs), (1.3)

where P(Xt|X0, X1, . . . , Xs) is the conditional probability of Xt given X[0,s] = X0, X1, . . . , Xs. For
our example,

〈Xt|X[0,s]〉 = Xs +
t∑

r=s+1

〈ξr〉 = Xs + (2q − 1)(t − s). (1.4)
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If q = 1/2, then the random walk is unbiased and satisfies the martingale property expressed by

〈Xt|X[0,s]〉 = Xs. (1.5)

If q ≥ 1/2, then Xt is a, so-called, submartingale for which 〈Xt|X[0,s]〉 ≥ Xs, whereas if q ≤ 1/2,
then Xt is a supermartingale 〈Xt|X[0,s]〉 ≤ Xs. In words, a martingale is a fair, unbiased process
whereas a submartingale (supermartingale) is a biased process with positive (negative) drift.

Interestingly, we can transform a biased random walk (sub or supermartingale) into a mar-
tingale. For example, the position of the walker in the comoving frame Yt = Xt − vt, with
v = (2q − 1) the net drift, is a martingale.

We can construct infinite martingales from Xt systematically, as we discuss now. A useful
trick is to use the multiplicative structure

Mt ≡
t∏

s=1

ηs, (1.6)

where ηs are independent random variables with 〈ηs〉 = 1, and thus 〈ηsηt〉 = 〈ηs〉〈ηt〉 = 1 for all
s �= t. As one can readily verify, processes of the form (1.6) are martingales, i.e., 〈Mt|M[0,s]〉 =
Ms, for any t ≥ s ≥ 0. A possible choice is [43]

ηs ≡ exp(yξs)

〈exp(yξs)〉 = exp(yξs)

q exp(y) + (1 − q) exp(−y)
, (1.7)

where y ∈ R is a real number. Plugging (1.7) into (1.6), we obtain

Mt = exp(yXt)

[q exp(y) + (1 − q) exp(−y)]t
, (1.8)

which are martingales for all y ∈ R. As we motivate later in this treatise, a “popular” choice in
stochastic thermodynamics is y = ln[(1 − q)/q], yielding the exponential process

Mt = exp

[
−Xt ln

(
q

1 − q

)]
=
(

1 − q

q

)Xt

. (1.9)

Let us investigate some consequences of the family of martingales Mt, given by Equation (1.8).
Expanding Mt in small values of y yields

Mt = 1 + ∂Mt

∂y

∣∣∣∣
y=0

y + ∂2Mt

∂y2

∣∣∣∣
y=0

y2

2!
+ O(y3)

= 1 + y(Xt − vt) + y2

2
[(Xt − vt)2 − σ 2t] + O(y3), (1.10)

where

v ≡ 〈Xt〉/t = (2q − 1) (1.11)

and

σ 2 ≡ 4q(1 − q). (1.12)

Because Mt is a martingale for all values of y ∈ R, also M (k)
t = ∂kMt

∂yk |y=0 are martingales, as for
any integer k ≥ 1 they can be written as the difference between two martingales. As a result, all
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the coefficients in the expansion (1.10) are martingales, in particular,

M (1)
t = Xt − vt (1.13)

M (2)
t = (Xt − vt)2 − σ 2t, (1.14)

and so forth, are martingales. Note that the higher-order derivatives give M (k)
t in terms of powers

of Xt up to degree k. The martingale property of M (k)
t can be used to obtain exact expressions for

the centered moments of Xt, i.e., 〈Xt〉 = vt and 〈(Xt − 〈Xt〉)2〉 = σ 2t.
Martingales are also useful for studying stochastic processes at stopping times. Stopping times

generalize first-passage times [8]. Put simply, a stopping time is the first time when a process
satisfies a certain prescribed condition, provided that the condition is fulfilled at a finite time;
otherwise the stopping time is infinite. An example of a stopping time T is the first time when
the biased random walk Xt, starting at X0 = 0, reaches any of two absorbing boundaries located
at L > 0 and −L < 0, i.e., the first exit time from the interval (−L, L). In some cases, such as in
the present example of a biased random walk, it is possible to use martingales to determine
analytically the absorption probabilities and the mean first-passage time [8,44]. The absorp-
tion probabilities P+ and P− = 1 − P+ for the walker at the positive and negative boundaries,
respectively, are given by

P+ =
1 −

(
1−q

q

)L

1 −
(

1−q
q

)2L and P− =
(

1−q
q

)L
−
(

1−q
q

)2L

1 −
(

1−q
q

)2L , (1.15)

for q �= 1/2 (biased random walk), and

P+ = P− = 1/2, (1.16)

for q = 1/2 (unbiased random walk); see Appendix A for an explicit derivation of Equa-
tions (1.15)–(1.16). Note that the average value of the “exponential” martingale given by
Equation (1.9) evaluated at the first exit time T out of the (−L, L) reads

〈MT 〉 = P−

(
1 − q

q

)−L

+ P+

(
1 − q

q

)L

= P+ + P− = 1, (1.17)

i.e., it is equal to the initial value of the martingale M0 = ((1 − q)/q)0 = 1. In other words, using
exit times out of a symmetric interval, the process MT can on average neither win not lose with
respect to the initial wealth M 0 = 1, see Eq. (1.9).

The mean first-passage time for q �= 1/2 is given by (see Appendix A)

〈T 〉 = L

1 − 2q
− 2L

1 − 2q

1 −
(

1−q
q

)L

1 −
(

1−q
q

)2L = L

1 − 2q
− 2L

1 − 2q
P+ = L

v
(P+ − P−), (1.18)

where we have used v = 2q−1, and for q = 1/2 the mean first-passage time reads

〈T 〉 = L2. (1.19)

Combining Equations (1.15) and (1.18), and using v = 2q− 1 we obtain that

〈M (1)

T 〉 = L(P+ − P−) − v〈T 〉 = 0, (1.20)

which holds for all values of q ∈ [0, 1]. This further illustrates the fairness of martingales, as the
average value of M (1) at the first exit time equals to its initial value M (1)

0 = 0.
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Perhaps more striking (and less intuitive) is the fact that Equation (1.20) also holds for the
mean escape time of the unbiased random walk M (1)

t from asymmetric intervals (−L−, L+) with
L+, L− > 0 any two integer threshold values, with L+ �= L−. In other words, one cannot “win”
neither “lose” with the martingale M (1)

t irrespective of the chosen stopping strategy. For example,
for L− � L+, the many trajectories that escape the interval through the positive boundary, L+, are
balanced by the few trajectories that escape the interval through the negative boundary, L−. This
points out to the flaw in Casanova’s gambling strategy as the wins on most days are balanced by
a few big losses.

This result is illustrated in the left panel in Figure 1.4 for the choice L+ = 5 and −L− =
−10. Consider a gambler that expects to obtain profit by “stopping” an unbiased random walk
whenever it escapes the interval (−L−, L+). Let L+ the wealth gained by the gambler if the
random walk first reaches the positive threshold, and −L− the wealth lost by the gambler if
instead the random walk first reaches the negative threshold. The gambler may expect that he/she
could get a net profit from the fact that the random walk will reach the positive threshold more
often than the negative one, even if the dynamics of the process is unbiased. However, because
the unbiased random walk is a martingale, the probability for first reaching the positive threshold
P+ = L+/(L+ + L−) whereas P− = L−/(L+ + L−) for first reaching the negative one [8]. As a
result, the net wealth after many repetitions of this gambling strategy 〈MT 〉 = P+L+ − P−L− =
0 = M0 equals to its initial value, i.e., it is a fair strategy that leads to no net win neither to net
loss on average. The validity of this property for arbitrary values of the negative threshold value
−L− is further illustrated with numerical simulations in the right panel in Figure 1.4

Equations (1.17) and (1.20) are two examples of the so-called Doob’s optional stopping
theorem. Loosely said, Doob’s optional stopping theorem states that the martingale condition
also holds when stopping a process at a clever moment, viz.,

〈MT 〉 = 〈M0〉 (1.21)

holds, where M is a martingale and T a stopping time. Drawing an analogy with fair games,
Equation (1.21) states that it is not possible to win on average with a martingale, as its
expected outcome at the end of the game equals to its expected initial value. In this treatise,
we will use repeatedly Doob’s optional stopping theorem to simplify first-passage-time calcula-
tions. For example, as we will show in this treatise, using Doob’s optional stopping theorem,
Equation (1.17) and (1.20) can be used to shortcut analytical calculations for, i.e., splitting
probabilities P− and P+ and mean first-passage times.

1.5. Martingales in biophysics

We discuss briefly how martingales can be a useful concept in biophysics. For this purpose, we
discuss a minimal model of the motion of a molecular machine (motor) on a filament (Figure 1.5).

A molecular motor binds to a linear filament, which provides a periodic, one-dimensional,
lattice of binding sites. The filament has a polar asymmetry, which specifies the direction of
motion. The motor catalyzes the hydrolysis of a fuel, Adenosinetriphosphate (ATP) to the
diphosphate form (ADP), releasing inorganic phosphate (P). This reaction provides an amount
�μ = μATP − (μADP + μP) of chemical free energy. As the system is driven out of thermody-
namic equilibrium, it will step stochastically from binding site to binding site with a bias in a
direction given by the filament polarity. In the presence of an external force fext, it can perform
mechanical work fexta per step, where a is the spacing between binding sites.

For simplicity, we describe the molecular motor stepping process as a continuous-time
Markov-jump process (a biased random walk), using a discrete position variable Xt = x ∈ Z
which describes the discrete binding sites. Transitions from site x to x + 1 occur at a rate
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Figure 1.4. Gambling with martingales and stopping conditions. Left: Sample trajectories (lines) of the mar-
tingale given by the one-dimensional, discrete-time, random walk described by Equation (1.2), and sketched
in Figure 1.3, with equal forward and backward jump probabilities p = q = 1/2. Right: Average value 〈MT 〉
of the random walk evaluated at the stopping time T given by the first time Mt reaches either −L− or L+,
for fixed L+ = 5 and different values of −L−. The symbols are obtained from N = 106 simulations and the
error bars from the standard error of the mean. The horizontal dotted lines set to M0 = 0 illustrate Doob’s
optional stopping theorem 〈MT 〉 = M0 = 0.

ω(x, x + 1) = ω+, and transitions in the opposite direction occur at a rate ω(x, x − 1) = ω−. We
can write

ω± = ν exp(±A/2), (1.22)

where

ν = √
ω+ω− and A = ln(ω+/ω−) (1.23)

are the kinetic rate and affinity of the motor, respectively. In the simplest case of a motor that
tightly couples ATP hydrolysis and stepping in a one-to-one manner, thermodynamics requires
that the ratio between forward and backward rates is

ω+
ω−

= exp[β(�μ − afext)], (1.24)

and thus

A = β(�μ − afext), with β = T−1. (1.25)

Figure 1.5. Illustration of the minimal stochastic model of molecular motor motion, given by a
Markov-jump process in a discrete lattice (a 1D biased random walk). The transition rates are given by
ω+ = ν exp(A/2) and ω− = ν exp(−A/2), for forward and backward steppings respectively. See text for
further details.



Advances in Physics 23

We recall readers that we take the Boltzmann constant kB = 1 throughout the treatise. The kinetic
rate ν depends on ATP concentration, the external force, and on internal time scales of the motor
molecule.

The probability ρt(x) to find the motor at position x = Xt at time t obeys the Master equation

∂ρt(x)

∂t
= ω+ρt(x − 1) − (ω+ + ω−)ρt(x) + ω−ρt(x + 1). (1.26)

For the initial condition ρ0(x) = δx,0, the solution is given by

ρt(x) =
(

ω+
ω−

)−x/2

exp [−(ω+ + ω−)t] Ix(2
√

ω+ω−t), (1.27)

where Ix(y) denotes the modified Bessel function of the first kind. This can be seen using the rela-
tions dIx(y)/dy = Ix−1(y) − (x/y)Ix(y) and dIx(y)/dy = Ix+1(y) + (x/y)Ix(y) which follow from
the generating function

∞∑
x=−∞

zxIx(y) = exp
[
y(z + z−1)/2

]
. (1.28)

The position of the motor is described by the stochastic variable Xt where we choose X0 = 0.
Interestingly, the stochastic process [cf. Equation 1.9]

Mt = exp(−AXt) = exp

[
−
(

ln
ω+
ω−

)
Xt

]
(1.29)

is a martingale with respect to Xt. This can be proved by noting first that

〈
Mt+dt|X[0,t]

〉 = Mt

〈
Mt+dt

Mt

∣∣∣∣X[0,t]

〉
= Mt

〈(
w−
w+

)Xt+dt−Xt
∣∣∣∣∣X[0,t]

〉
. (1.30)

Then the central argument here is then that by definition of the transition rate we have the equality〈(
w−
w+

)Xt+dt−Xt
∣∣∣∣∣X[0,t]

〉
=
(

w−
w+

)
w+dt +

(
w−
w+

)−1

w− dt

+
(

w−
w+

)0

(1 − (w+ + w−) dt) + O(dt2)

= 1 + O(dt2). (1.31)

Combining (1.30) with (1.31), we get 〈Mt+dt|X[0,t]〉 = Mt + O(dt2), therefore using the tower rule
(Appendix B.2) we have for any 0 ≤ s < t :〈

Mt+dt|X[0,s]
〉 = 〈〈Mt+dt|X[0,t]

〉 |X[0,s]
〉 = 〈Mt|X[0,s]

〉+ O(dt2), (1.32)

which implies that d
dt 〈Mt|X[0,s]〉 = 0, and then the martingale property〈

Mt|X[0,s]
〉 = Ms. (1.33)

Analogously, one can retrieve the martingale Mt in Equation (1.29) by taking the continuous-time
limit of the process (1.8) for the choice z = A = ln(ω+/ω−).

We also note that exp(−AXt) is not the only martingale associated with Xt. In fact, an infinite
number of martingales can be defined as functions of Xt and can be constructed similarly as for
the discrete-time case in Section 1.4 (see Equation 1.8). The treatise will shed light on how to
construct martingales from Xt and why this is useful.
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Figure 1.6. Illustration of a minimal stochastic model of nonequilibrium dynamics. A Brownian particle
(gray circle) immersed in a thermal bath at temperature T (red box) is subject to move along a ring under
the action of an external constant force f.

1.6. Martingales on a ring

The martingales given by Equations (1.9) and (1.29) in Sections 1.4 and 1.5, respectively, can be
expressed as

Mt = exp(−Entropy production in [0, t]). (1.34)

For a single step of the random walker, the entropy flow into the environment is given by (Xt −
Xt−1) log q/(1 − q), which measures the degree of irreversibility via the ratio of the probabilities
of forward and backward steps, as will be discussed in Chapter 5. In the example of the molecular
motor, the entropy flow associated with a step is proportional to ±A = ±β(�μ − afext) which
is the heat dissipated to the environment in a forward or backward step. The martingality of the
process (1.34) lies at the root of the use of martingales in stochastic thermodynamics, and we
discuss this extensively in this treatise.

In this section, we review the connection between stochastic thermodynamics and martingales
by discussing the paradigmatic example of a driven particle on a ring. This example, besides
its simplicity, is illuminating because it reveals the martingale structure of stochastic entropy
production in a simple yet nontrivial way.

We consider the dynamics of a driven overdamped Brownian particle on a ring, see Figure 1.6
for an illustration. A constant, homogeneous external force f is applied to the particle along the
ring. The particle moves with mobility μ within a thermal bath that is at temperature T. The
dynamics of the position X of the particle is assumed to obey a one-dimensional overdamped
Langevin equation

Ẋt = μf +
√

2μTḂt, (1.35)

where Ḃt is a zero-mean Gaussian white noise 〈Ḃt〉 = 0 with autocorrelation 〈ḂtḂs〉 = δ(t − s),
see Section 3.2.3 for further details about this class of processes. Here, and throughout the treatise,
we have set the Boltzmann constant equal to 1. We also assume that the initial state is drawn from
the stationary distribution in the ring which is here uniform because f is constant.

In a small interval [t, t + dt] of time, the particle moves by a stochastic amount dXt. The work
done on the particle in [t, t + dt] by the external force f is stochastic and given by

dW = f dXt. (1.36)
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In this example, the particle has no internal degrees of freedom and its internal energy U = U0 is
constant and does not change in time, i.e., dUt = 0. We thus obtain from the first law of stochastic
thermodynamics dUt = dQt + dWt the following expression for the heat absorbed by the particle
in [t, t + dt], viz.,

dQt = −dWt = −f dXt. (1.37)

Using the Langevin equation (1.35) in Equation (1.37), we obtain a stochastic differential
equation for the heat, viz.,

− Q̇t

T
= μf 2

T
+
√

2μf 2

T
Ḃt = vQ +

√
2vQḂt, (1.38)

where we have defined the expected heat rate

vQ ≡ −〈Q̇t〉/T = μf 2

T
. (1.39)

Furthermore, changing variables in Equation (1.38) and applying Ito’s lemma (see Appendix
B.3), we find that the exponential exp(

Qt

T ) satisfies the stochastic differential equation

d

dt
exp

(
Qt

T

)
= −

√
2vQ exp

(
Qt

T

)
Ḃt . (1.40)

Since the dissipated heat divided by the temperature is the entropy produced in this process,
Equation (1.40) reveals that the exponential of the negative entropy production a martingale. This
follows from (1.40) which shows that exp(Qt/kBT) has no drift term, and hence is a martingale.
Because Q0 = 0, we find that 〈exp(Qt/kBT)〉 = 1 at all times, which is often referred to as the
“integral fluctuation relation (or theorem)” for the absorbed heat, and this relation is thus closely
related to the martingality of exp(

Qt

T ).
For the present example, the stochastic heat and its exponential can be determined analyti-

cally. Solving (1.38) we get

Qt = −TvQt − T
√

2vQBt, (1.41)

where Bt is the value of the Wiener process at time t > 0. Because vQ ≥ 0 and 〈Bt〉 = 0, we
retrieve the second law of thermodynamics for this example, viz., 〈Qt〉 ≤ 0. In other words, on
average the particle dissipates heat into the environment. Moreover, the relation (1.41) implies
that the integral of Equation (1.40) is given by

exp

(
Qt

T

)
= exp

(
−vQt −

√
2vQBt

)
. (1.42)

In other words, exp(Qt/T) is a geometric Brownian motion with zero drift and volatility
√

2vQ,
a process that has been widely used, i.e., in modelling stock fluctuations in quantitative finance,
see Chapter 12.

Chapter 2. Martingales: definitions and examples

The name “supermartingale” was spoiled for me by the fact that every evening the exploits of
“Superman” were played on the radio by one of my children.

A conversation with Joe Doob, J. L. Snell, Stat. Sci. 12 (4) (1947).
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In this chapter, through examples of martingales, we convince ourselves that martingales are
ubiquitous. This chapter is organized into two main parts. Section 2.1 defines and provides exam-
ples of martingales in discrete time, and Section 2.2 does the same for martingales in continuous
time.

For the sake of clarity, in Chapters 2, 3, and 4 we use the symbol n ∈ N ∪ {0} for a discrete-
time index (see Section 2.1) and t ∈ R+ for a continuous time index (see i.e., Section 2.2). On the
other hand, in the other chapters of this treatise we will use t indiscriminately for both continuous
and discrete time.

2.1. Martingales in discrete time

2.1.1. Martingales, submartingales and supermartingales

Martingales are stochastic processes that have no net drift. Formally, we define discrete-time
martingales relative to a stochastic process Xn ∈ X as follows.

Let Mn ∈ R be a discrete-time stochastic process given by a real-valued function defined on
the set of trajectories X[0,n] = (X0, X1, . . . , Xn). We assume that Mn is integrable, i.e., 〈|Mn|〉 < ∞
for all n.

We say that Mn is a discrete-time martingale relative to Xn if Mn has no drift, i.e.,

〈Mn |X[0,m]〉 = Mm, (2.1)

for all 0 ≤ m ≤ n.

Note that conditional expectations are defined as in Equation (1.3). We require that Mn

is integrable, as otherwise the conditional expectation is not well defined. See Section 9.7 of
Ref. [45] for a list of useful properties of conditional expectations and Figure 2.1 for an illustra-
tion of the martingale concept. As done in Figure 2.1, it is often assumed that Xn = Mn and thus
〈Mn |M[0,m]〉 = Mm for 0 ≤ m ≤ n.

We define submartingales (supermartingales) as processes with a nonnegative (nonpositive)
drift. Specifically, consider a real-valued function Sn defined on the set of trajectories X[0,n],
and let us assume that Sn is integrable, i.e., 〈|Sn|〉 < ∞. We say that Sn is a submartingale
(supermartingale) relative to Xn if it has a nonnegative (nonpositive) drift, i.e.,

〈Sn |X[0,m]〉 ≥ Sm (〈Sn |X[0,m]〉 ≤ Sm) (2.2)

for all 0 ≤ m ≤ n. With these definitions, martingales are particular cases of submartingales. In
what follows, when we refer to martingales (or submartingales) we imply that they are defined
with respect to a reference stochastic process Xn. See Fig. 2.2 for simple example trajectories of
martingale, submartingale, and supermartingale processes.

The condition (2.1) can be complicated to verify in concrete examples of stochastic processes.
However, in discrete time there exists a simpler, equivalent condition for martingality, which is
a consequence of the tower property of conditional expectations, see Appendix B. The tower
property states that for any (integrable) functional Zp = Z[X[0,p]] it holds that

〈〈Zp |X[0,n]〉 |X[0,m]〉 = 〈Zp |X[0,m]〉, (2.3)

for all 0 ≤ m ≤ n. Using this tower property, we get the following simpler “one-step-ahead”
martingale criterion [46].
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One-step-ahead criterion for martingality. The martingale property in discrete time
(2.1) is equivalent to the simpler condition

〈Mn+1 |X[0,n]〉 = Mn, (2.4)

for all n.

The equivalence between the conditions (2.1) and (2.4) follows from the tower property of
conditional expectations. Indeed, for all m < n it holds that〈

Mn |X[0,m]
〉 = 〈 〈Mn |X[0,n−1]

〉∣∣X[0,m]
〉 = 〈Mn−1|X[0,m]

〉
,

which iterates up to 〈
Mn |X[0,m]

〉 = 〈Mm |X[0,m]
〉 = Mm.

2.1.2. ♠Backward martingales, submartingales and supermartingales

In the definition of the martingale, Equation (2.1), we have that n ≥ m, and hence the martingale
definition uses a part of the trajectory that happened in the past. We can also define martin-
gales conditioned on a part of the trajectory that takes place in the future. In this way, we obtain
backward martingales, i.e. processes that are martingales backward in time.

Let Mn be a real-valued function defined on the set of trajectories X[n,∞] =
(Xn, Xn+1, . . . , X∞). In addition, we assume that Mn is integrable, i.e., 〈|Mn|〉 < ∞ for all n ∈ N.

Figure 2.1. Illustration of a martingale process Mn in discrete time n ∈ N. Here Mn is given by the cumu-
lative sum of n independent Gaussian random numbers with zero mean and standard deviation equal to 1/2.
The filled circles with lines illustrate a specific trajectory of the process up to time m = 30. The unfilled
circles denote the expected values of the martingale 〈Mn |M[0,m]〉 = Mm at future times n > m, conditioned
on the past sequence M[0,m] shown in the figure. The grey cartoon illustrates an observer that collects the
values of the sequence M[0,m] and makes predictions about its future expected value.
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We say that Mn ∈ X is a backward martingale relative to Xn if Mn has no drift when
conditioned on events in the future, i.e.,

〈M� |X[m,n]〉 = Mm, (2.5)

for all 0 ≤ � ≤ m ≤ n.

Backward submartingales and backward supermartingales are defined by replacing the equal-
ity in Equation (2.5) by ≥ and ≤ , respectively. To distinguish martingales from backward
martingales, we sometimes call the former forward martingales.

2.1.3. Examples of martingales in discrete time

• Gambler’s fortune in a fair game of chance: A gambler’s fortune in a fair game of chance
is a martingale [22]. Let us consider the example of a coin toss. The game consists of a
series of coin flips with equally likely outcomes Xn ∈ {Head, Tail}. Each betting round, the
gambler guesses the outcome of the coin toss through a betting system. The gambler’s guess
is denoted by Yn ≡ Y (X[0,n−1]) ∈ {Head, Tail}, where Y (X[0,n−1]) means that Yn depends on
X[0,n−1]; such processes Yn are called predictable processes. If the gambler guesses right,
i.e., Yn = Xn, they wins 1 euro, otherwise, if the gambler guesses wrong, i.e., Yn �= Xn, they
loses 1 euro. The gambler’s fortune Fn after n betting rounds satisfies

Fn ≡ F0 +
n∑

m=1

(
2δXm,Ym − 1

)
, (2.6)

and is a martingale process. Here, δi,j denotes the Kronecker delta function. The martingale
property 〈Fn |X[0,m]〉 = Fm reflects the fairness of this game.

• Sums of independent random variables: Let Xi (i ∈ N ∪ {0}) be a sequence of independent
and identically distributed – denoted iid here and in the following – random variables with
finite variance. The sum

X̃n ≡
n∑

i=0

Xi (2.7)

has conditional average

〈X̃n |X[0,m]〉 =
m∑

i=0

Xi +
n∑

i=m+1

〈Xi〉. (2.8)

Therefore, X̃n is a martingale, submartingale, or supermartingale, if Xi has zero mean,
positive mean, or negative mean, respectively. Indeed, it holds that

〈X̃n |X[0,m]〉

⎧⎪⎨⎪⎩
= X̃m, if 〈Xi〉 = 0,

≥ X̃m, if 〈Xi〉 ≥ 0,

≤ X̃m, if 〈Xi〉 ≤ 0.

(2.9)
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Moreover, because the square root is a concave function, we have

〈|X̃n|〉 =
〈√

X̃ 2
n

〉
≤
√〈

X̃ 2
n

〉
< ∞, (2.10)

where in the second inequality we used that Xi, and thus also X̃n, has a finite variance.
The sum X̃n also obeys a strong law of large numbers, which states that X n = X̃n/n

converges almost surely to its mean value μ = 〈Xi〉 [44]. In addition, X̃n satisfies the central
limit theorem, which states that (X̃n − μ n)/

√
n converges in distribution to a standard,

normally distributed random variable. In Sections 4.1.4 and 4.1.6, we consider extensions
of these properties to martingale processes.

• Conditional-expectation process (closed Martingale): Let Xi (i ∈ N ∪ {0}) be a sequence
of integrable, possibly correlated, random variables.

We consider the conditional expectation

C�
m,n ≡ 〈X� |X[m,n]〉, (2.11)

which depends on three integers 0 ≤ m ≤ n and � ≥ 0. We can interpret C�
m,n as a forward

martingale or a backward martingale:
– If we keep � fixed and set m = 0, then the process C�

0,n is a forward martingale for
values of n in 0 ≤ n ≤ �. Indeed,

〈C�
0,n |X[0,n′]〉 = C�

0,n′ , (2.12)

for all 0 ≤ n′ ≤ n ≤ �. This relation follows from the tower property of conditional
expectations (see Equation 2.3),

〈C�
0,n |X[0,n′]〉 = 〈〈X� |X[0,n]〉 |X[0,n′]〉 = 〈X� |X[0,n′]〉 = C�

0,n′ , (2.13)

where we have used the definition (2.11) in the first and third equalities, and the tower
property in the second equality. A proof of the tower property can be found in Appendix
B.2.

– Alternatively, for fixed � and n, the process C�
m,n with m such that 0 ≤ � ≤ m ≤ n, is a

backward martingale. Indeed,

〈C�
m,n |X[m′,n]〉 = C�

m′,n, (2.14)

for all 0 ≤ � ≤ m ≤ m′ ≤ n. Also this result follows from the tower property of
conditional expectations (see Equation 2.3),

〈C�
m,n |X[m′,n]〉 = 〈〈X� |X[m,n]〉 |X[m′,n]〉 = 〈X� |X[m′,n]〉 = C�

m′,n, (2.15)

where here also we have used the definition (2.11) in the first and third equalities, and
the tower property in the second equality.
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• Martingale transform: Let Mn be a martingale relative to Xn, and let Dn be a process
determined by X[0,n]. The martingale transform

(D · M )n ≡ D0M0 +
n∑

k=1

Dk−1(Mk − Mk−1) (2.16)

with (D · M )0 = M0, is a martingale if |Dn| ≤ c, with c a positive constant. Indeed, it holds
that 〈

(D · M )n |X[0,n−1]
〉 = 〈(D · M )n−1 + Dn−1 (Mn − Mn−1) |X[0,n−1]

〉
,

= (D · M )n−1 + Dn−1
〈
(Mn − Mn−1) |X[0,n−1]

〉
,

= (D · M )n−1 + 0,

= (D · M )n−1. (2.17)

In the second equality, we have used that Dn−1 is fully determined by X[0,n−1], and the
third equality follows from the martingale property of M. By virtue of the one-step-ahead
condition (2.4), Equation (2.17) implies that D · M is a martingale. Note that the use of
Dk−1 in the definition (2.16) is important to guarantee the martingality of (D · M )n. In the
continuous time limit, martingale transforms take the form of Ito integrals, see Eq. (2.64).

• Ratios of path probability densities: Martingales play an important role in stochastic ther-
modynamics [13], as well as in statistics [47]. One reason is that several quantities of
central interest in these fields are expressed as ratios of probability densities, and ratios
of probability densities are martingales.

Specifically, consider two probability densities P(x[0,n]) and Q(x[0,n]), defined on the
same set of trajectories x[0,n] ∈ X n. We assume that Q(x[0,n]) = 0 if P(x[0,n]) = 0 for all
n ∈ N, and we say that Q is locally, absolutely continuous with respect of P when this
condition holds. For Q that are locally, absolutely continuous with respect of P , the process

Rn ≡ Q(X[0,n])

P(X[0,n])
, (2.18)

with the convention that 0/0 = 0 exists and is a martingale. Note that in Equation (2.18), we
evaluate the probability density P(x[0,n]) on the random realization X[0,n] of the trajectory
x[0,n], and analogously for Q.

The fact that Rn is a martingale can be proven as follows:

〈Rn |X[0,m]〉 =
∑
xm+1

· · ·
∑

xn

P(x[m+1,n] |X[0,m])
Q(X[0,m], x[m+1,n])

P(X[0,m], x[m+1,n])

=
∑
xm+1

· · ·
∑

xn

P(X[0,m], x[m+1,n])

P(X[0,m])

Q(X[0,m], x[m+1,n])

P(X[0,m], x[m+1,n])

=
∑

xm+1
· · ·∑xn

Q(X[0,m], x[m+1,n])

P(X[0,m])

= Q(X[0,m])

P(X[0,m])
= Rm, (2.19)

where in the second equality we have used the definition of a conditional probability
distribution, and in the last step we have used that Q(X[0,m]) is the marginal probability
distribution of Q(X[0,n]) for m < n.
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If instead Rn is the ratio of a sequence of densities Q(n)(X[0,n]) and P (n)(X[0,n]) that
depend explicitly on time n, then the marginalization condition, used in the last step of the
derivation of Equation (2.19), does not hold in general, and in this case Rn is in general not
a martingale.2 This observation plays an important role in stochastic thermodynamics, as
we discuss in detail in Section 6.2.

• Random walker on Z: Let Xn denote the position of a biased random walker on Z with
X0 = 0. The random walker makes one step in the positive direction with a probability q
and one step in the negative direction with a probability 1− q. This model was introduced
in Section 1.4, and see Figure 1.3 for an illustration.

The position of the walker relative to its mean, i.e.,

Mn ≡ Xn − n(2q − 1), (2.22)

is a martingale because it is a sum of independent random variables with zero mean, as in
Equation (2.7). As shown in Section 1.4 (see Equation (1.8)), the exponential

En(y) ≡ exp(yXn)

[q exp(y) + (1 − q) exp(−y)]n
(2.23)

is a martingale process for all values of y ∈ R. This statement is also proven in Appendix B
by expressing En(y) as a ratio of two probability densities. Using y = ln[(1 − q)/q], we
obtain that

En

(
ln

1 − q

q

)
= exp

[
Xn ln

(
1 − q

q

)]
=
(

1 − q

q

)Xn

, (2.24)

which coincides with the martingale given by Equation (1.9).
Since En(y) is a martingale, it holds that

〈En(y)〉 = 〈E0(y)〉 = 1. (2.25)

Therefore, the generating function of Xn is given by

gn(y) = 〈exp(yXn)〉 = (q exp(y) + (1 − q) exp(−y))n , (2.26)

which can also be verified with a direct computation. Expanding (2.23) in y, we obtain

En(y) = 1 +
∞∑

j=1

yjM (j)
n (Xn) (2.27)

and hence the processes M (j)
n (Xn) are martingales, viz., the processes

M (1)
n (Xn) = Xn − n(2q − 1), (2.28)

M (2)
n (Xn) = (Xn − n(2q − 1))2 − 4nq(1 − q), (2.29)

. . .

M (k)
n (Xn) = ∂(k)En(y)

∂yk

∣∣∣∣
y=0

, (2.30)

and so forth are martingales relative to Xn (cf. Equations 1.13 and 1.14).
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Figure 2.2. Illustration of a martingale (left), submartingale (middle) and supermartingale (right). Sam-
ple trajectories of discrete-time random walks on the real line, Xn, as a function of time n, as given by
Equation (2.31) with Yn extracted from a Gaussian distribution with zero mean and standard deviation
equal to 2. The different panels are obtained for three different values of the bias parameter a: a = 0
(left), a = 1 (middle), and a = − 1 (right), which correspond respectively to martingale, submartingale
and supermartingale processes.

Figure 2.3. An example of one realization of a branching process. In this example, the parent gener-
ates a finite population of three generations. For the example shown, {Y1,0 = 2}, {Y1,1 = 3, Y2,1 = 1},
{Y1,2 = 0, Y2,2 = 1, Y3,2 = 0, Y4,2 = 1}, and {Y1,3 = 0, Y2,3 = 0}.

• Random walker on R: We consider a random walker moving on the real line. The position
Xn of the random walker satisfies

Xn ≡ Xn−1 + a + Yn (2.31)

for all n ≥ 1 and X0 = 0. The increments Yn are iid random variables with zero mean and
finite variance, and not necessarily drawn from a Gaussian distribution. If a = 0, then
Xn is a martingale. On the other hand, if a > 0 or a < 0, then Xn is a submartingale or a
supermartingale, respectively. See Figure 2.2 for illustrations.

• Martingales in branching processes: Branching processes are simple models for reproduc-
tion [48–50]. Consider a population of constituents, which may be, i.e., nuclei, molecules,
viruses, cells, or animals, that multiply themselves. We denote the number of members in
the population at time n by Xn ∈ N ∪ {0}, with the initial condition X0 = 1. At each time
step reproduction takes place, and thus each time step corresponds with one generation. We
assume that all members live for exactly one generation. We denote by Yi,n ∈ N ∪ {0} the
number of progeny of the ith member of the population at generation n, see Figure 2.3 for
an explanation. It holds then that

Xn ≡
Xn−1∑
i=1

Yi,n. (2.32)
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Figure 2.4. A graphical illustration of the self-consistent equation η = g(η) =∑y=0 ρY (y)ηy for the extinc-
tion probability of a branching process. The extinction probability η, denoted by the filled circle, is equal to
the probability that the parent, denoted by an unfilled circle, has no progeny (Y = 0), plus the probability
that the parent has one child (Y = 1) and this child generates a finite population, plus the probability that
the parent has two children (Y = 2), both of which generate finite populations, etc.

We assume that the Yi,n are iid drawn random variables from a distribution ρY (y) with y ∈
N ∪ {0}. We denote by μ =∑∞

y=0 ρY (y)y the mean value of Y and by g(s) =∑∞
y=0 ρY (y)sy

the generating function of Y. One can verify that 〈Xn〉 = μn and that the extinction proba-
bility η, which is the probability that the parent generates a finite population, is the smallest
nonnegative root of the equation η = g(η) [49,51]; see Figure 2.4 for a derivation.

The normalized population size

Wn ≡ Xn

〈Xn〉 (2.33)

is a martingale. Indeed,

〈Wn |X[0,n−1]〉 = 〈Xn |Xn−1〉
〈Xn〉 = μXn−1

μn
= Xn−1

〈Xn−1〉 = Wn−1, (2.34)

where in the first equality we have used the Markov nature of the process and in the second
equality we have used that Xn is the sum of Xn−1 independent random variables with mean
μ. It follows from (2.34) and the tower property of conditional expectations that Wn is a
martingale (see discussion around Equation 2.4).

More surprising is that the process [49]

Vn ≡ ηXn , (2.35)

with η the extinction probability, is a martingale. Indeed, it holds that

〈Vn |X[0,n−1]〉 = 〈η
∑Xn−1

j=1 Yj |X[0,n−1]〉 =
Xn−1∏
j=1

〈ηYj〉 = (g(η))Xn−1 = ηXn−1 = Vn−1,

and thus according to the one-step-ahead condition given by Equation (2.34) Vn is a
martingale.

• Martingales in elephant random walks: So far, we have considered examples of martingales
in processes X that are Markovian. We consider now an example of a martingale relative
to a non-Markovian process X, namely, the elephant random walk.

Elephant random walks were introduced in Ref. [52] as examples of non-Markovian
processes with long-range memory that can exhibit anomalous diffusion. A diffusing par-
ticle exhibits anomalous diffusion when its mean squared displacement grows as a power
law, i.e., 〈X 2

n 〉 ∼ nα with an exponent α �= 1 [53]. Anomalous diffusion has been observed,
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amongst others, in the motion of lipid granules in the cytoplasm [54], in colloidal parti-
cles in an optically controlled medium [55] and active particles [56]. Although Markov
processes can exhibit anomalous diffusion transiently, i.e., within a finite time window,
asymptotically they inevitably transition to a regime with standard diffusion, see Ref. [57].
The elephant random walk describes how superdiffusion emerges in a microscopic random
walk model due to the presence of long-range temporal correlations.

References [58,59] identify martingale processes associated with elephant random
walks and use these martingales to characterize properties of elephant random walks. Here
we review some of their findings in a minimal example.

Let us consider an elephant random walk located at the position Xn ∈ Z at time n =
{0, 1, . . . }. The initial position of the walker is X0 = 0. At time n = 1 the walker moves to
X1 = Y1, where Y1 equals +1 with probability 1/2 and −1 with probability 1/2. In the next
steps, n ≥ 1, the motion of the walker is as follows:

Xn+1 ≡ Xn + Yn+1, (2.36)

where Yn+1 is obtained by the following rule. We select uniformly at random an inte-
ger (previous time) k ∈ {1, . . . , n} and we then reverse with probability p the sign of the
corresponding value at previous time Yk , i.e.,

Yn+1 ≡
{

Yk with probability p,
−Yk with probability 1 − p.

(2.37)

In other words,

Yn+1 = σnYβn , (2.38)

where σn = 1 (σn = −1) with probability p (1− p) and βn is drawn from a discrete uniform
distribution in {1, . . . , n}.

The parameter p is called the memory parameter of the elephant random walk. For p ∈
[0, 3/4), a central limit theorem applies, and the elephant random walk is diffusive (Xn ∼√

n), while for p ∈ (3/4, 1) the elephant random walk is superdiffusive (Xn ∼ nα with α >

1/2). These results can be derived with martingale theory, as we discuss in Chapter 4.
The process Xn is, up to a time-dependent constant, related to a martingale process.

Indeed, using Equations (2.36)–(2.38) we find that

〈Yn+1 | Y[0,n]〉 = 〈σn〉〈Yβn | Y[0,n]〉 = 〈σn〉
∑n

k=1〈Yk | Y[0,n]〉
n

= (2p − 1)

∑n
k=1 Yk

n
= (2p − 1)

Xn

n
, (2.39)

where we have used that Y0 = 0. From Equations (2.36)–(2.39), it follows that the position
of the elephant random walker is not a martingale, except for the case p = 1/2 when the
elephant random walk is a simple random walk. In fact, (2.36) and (2.39) imply that

〈Xn+1 | Y[0,n]〉 = n + 2p − 1

n
Xn = γnXn, (2.40)

where γn = (n + 2p − 1)/n. Yet, from this result, we obtain a martingale with multiplica-
tive structure. Indeed, let us introduce the quantity

an ≡
n−1∏
k=1

γ−1
k = �(n + 1)�(2p)

�(n + 2p)
, (2.41)
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Figure 2.5. Left: Example trajectories of the elephant random walk, Xn, whose dynamics is given by Equa-
tions (2.36) and (2.37), as a function of time n, with parameter p = 0.7. Right: Martingale process, Mn,
constructed using Equation (2.43), and associated with the trajectories in the left panel. The trajectories in
the right panel are examples of martingales in a non-Markovian process X. Observe the reduced size of
fluctuations in Mn when compared with Xn. Lines are linear interpolation between the discrete values Xn

and serve as a guide to the eye.

where � is the Gamma function; note that asymptotically,

an ∼ �(2p)n1−2p. (2.42)

Defining

Mn ≡ anXn, (2.43)

we obtain from the definition (2.43) and Equations (2.39) that

〈Mn+1 | Y[0,n]〉 = an+1〈Xn+1 | Y[0,n]〉 = an+1γnXn = anXn = Mn, (2.44)

and hence also 〈Mn+1 |X[0,n]〉 = Mn. Thus, according to the one-step-ahead condition (2.4),
Mn is a martingale. Figure 2.5 shows a couple of trajectories drawn from the elephant
random walk Xn and their associated martingale process Mn given in Equation (2.43). As
illustrated in Figure 2.5, martingalization not only reduces the persistence of the elephant
random walks, rendering them driftless, but also reduces the amplitude of their fluctuations.

• Run-and-tumble motion: The run-and-tumble process is an example of a “false friend” of
the martingale. This process has zero average drift, but nevertheless is not a martingale. The
position of a one-dimensional run-and-tumble particle with initial position X0 = 0 may be
described as

Xn = Xn−1 + σvn, (2.45)

where the instantaneous normalized velocity vn = {−1, 1} is a Markovian dichotomous
noise process, and σ > 0 the step size. More precisely, the initial value of the normalized
velocity is drawn at random P(σ0 = ±1) = 1/2, and in the subsequent steps it flips its sign
(“tumbles”) with probability q, i.e., P(vn | vn−1) = qδvn,−vn−1 + (1 − q)δvn,vn−1 for all n ≥ 1.
See Refs. [60–62] for generalizations and extensions.

Figure 2.6(a) shows an example trajectory of the position of a run-and-tumble particle
described in Equation (2.45), which has a zig-zag-like structure. The unconditioned aver-
age 〈Xn〉 = X0 = 0 vanishes because we have fixed the initial position to X0 = 0 (black
line in Figure 2.6 b). On the other hand, the average of the position conditioned over its
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Figure 2.6. Run and tumble motion. (a) Example trajectory of the position of a discrete-time run-and-tumble
particle described in Equation (2.45). Lines are linear interpolation between the discrete values Xn and serve
as a guide to the eye. (b) Average position as a function time (black solid line), and conditional average
of the position over trajectories with a given history X0, X1 up to the first jump (blue dashed line, and
red dash-dotted line). Results are obtained from numerical simulations with parameters: tumble probability
q = 1/4; jump amplitude σ = 0.05, and averages are done over 105 numerical simulations.

history X[0,1] = X0, X1 up to the first step n = 1 reveals that Xn is not a martingale. Indeed,
〈Xn|X0, X1〉 for n > 1 is time dependent for the two possible values of (X0 = 0, X1 = σ ; and
X0 = 0, X1 = −σ ), see blue dashed line and red dash-dotted line in Figure 2.6(b). Thus we
conclude 〈Xn |X0, X1〉 �= X1, which implies that Xn is not a martingale.

2.2. Martingales in continuous time

2.2.1. Martingales, submartingales, supermartingales

We consider martingales Mt in continuous time t ∈ R+. Just as for the discrete-time case,
martingales in continuous time are processes that have no drift.

Let Mt be a real-valued functional defined on the set of trajectories of X[0,t] = {Xs}s∈[0,t]. In
addition, assume that Mt is integrable, i.e., 〈|Mt|〉 < ∞.

We say that a process Mt is a martingale with respect to the process Xt ∈ X if Mt has
no drift, i.e., it holds with probability 1 that

〈Mt |X[0,s]〉 = Ms (2.46)

for all 0 ≤ s ≤ t.

In continuous time, the condition 〈Mt |X[0,s]〉 = Ms holds with probability 1, as we omit events
that occur with zero probability. Also, conditional expectations 〈Mt |X[0,s]〉 in continuous time
should be understood as conditional expectations with respect to the filtration generated by X[0,s],
see Appendix B.1 for a brief introduction and further references.

Similarly, we define submartingales (supermartingales) as processes with a nonnegative
(nonpositive) drift. We say that St is a submartingale (supermartingale) relative to Xt if it is
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Figure 2.7. Example trajectories for two continuous martingales, namely, the one-dimensional Brownian
motion Bt (left panel) and the stochastic exponential Et(zB) of zBt, as defined in Equation (2.59), for the
parameter z = 0.4 (right panel). Note that Bt can take negative values, whereas Et(zB) is a positive martin-
gale. Trajectories have been generated with the Euler numerical integration scheme with time discretization
step 0.1.

an integrable stochastic process that has a nonnegative (nonpositive) drift, i.e., it holds with
probability 1 that

〈St |X[0,s]〉 ≥ Ss (〈St |X[0,s]〉 ≤ Ss) (2.47)

for all 0 ≤ s ≤ t.
We define backward (sub)martingales by conditioning on a future part of the trajectory,

analogously to the discrete-time case considered in Section 10.4.1.

2.2.2. Key examples

• The Brownian motion (Wiener process) Bt: The Brownian motion is a one-dimensional
stochastic process that satisfies the following four conditions [63,64]:

– B0 = 0;
– the increments Bt − Bs are normally distributed with mean zero and variance |t − s|;
– for 0 ≤ t1 < t2 < · · · < tn < ∞ it holds that the increments Bt1 , Bt2 − Bt1 , . . . , Btn −

Btn−1 are independent;
– the process Bt is continuous with probability 1.

Brownian motion Bt is a paradigmatic physical example of a martingale. The left panel
of Figure 2.7 shows a few examples of Brownian trajectories.

• Counting processes: Let Nt ∈ N be a Poisson process with rate λ, i.e., Nt denotes the
number of ticks in the interval [0, t] of a Poisson point process of constant rate λ. Nt is
a submartingale. On the other hand, the process

Mt ≡ Nt − λt (2.48)

is a martingale. Indeed, since a Poisson process is Markovian and time-homogeneous, it
holds that

〈Mt |N[0,s]〉 = 〈Nt |N[0,s]〉 − λt = 〈Nt |Ns〉 − λt = Ns − λs = Ms. (2.49)
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Figure 2.8. Randomly generated trajectories of a Poisson process Nt with rate parameter λ = 1 (left) and the
corresponding trajectories of the martingale Nt − λt (right). The black dashed line in the left panel denotes
the deterministic process λt.

Figure 2.8 illustrates four randomly generated trajectories of both the counting (Poisson)
process Nt and the corresponding martingale Mt, given by Equation (2.48), as a function of
time.

• Radon–Nikodym density processes (a.k.a. path probability ratios): We consider an exten-
sion of the probability ratio (2.18) that applies to processes in continuous time. These
processes are martingales and are important for the applications discussed in this review.

Let Xt be a stochastic process whose statistics are described by one of the two prob-
ability measures P or Q. Probability measures are functions that assign probabilities to
measurable sets � of trajectories through [65]

P (�) ≡ 〈1�(X[0,t])〉P , (2.50)

where

1�

(
X[0,t]

) ≡ {1, if X[0,t] ∈ �,
0, if X[0,t] /∈ �,

(2.51)

is the indicator function that equals 1 when X[0,t] ∈ � and equals 0 otherwise.
We define a density process Rt ≡ R(X[0,t]) ∈ R+ such that

〈f (X[0,t])〉Q = 〈f (X[0,t])Rt〉P , (2.52)

holds for all nonnegative, measurable functions f. We denote the process Rt by

Rt = Q(X[0,t])

P(X[0,t])
, (2.53)

and call it the Radon–Nikodym density process (a.k.a. path probability ratio) of Q with
respect to P , as Rt plays the role of the density of Q with respect of P . Note that
in Equation (2.53) the numerator Q(X[0,t]) does not exist separately from the denom-
inator P(X[0,t]), which distinguishes probability ratios in discrete time, as defined in
Equation (2.18), from those in continuous time.
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According to the Radon–Nikodym theorem [66], the process R exists as long as Q is
locally, absolutely continuous with respect to P , which means that

P(�) = 0 ⇒ Q(�) = 0 (2.54)

for all measurable sets � defined on the set of trajectories X[0,t] and for finite t. Provided
the absolute continuity conditions are satisfied, the process Rt given by Equation (2.53) is
a martingale with respect to P .

An alternative way to represent probability measures P is through the Onsager–
Machlup method, see, i.e., Refs. [67–69]. In this approach, we consider a family of
equivalent probability measures P that are mutually absolutely continuous, i.e., if P ,Q ∈
P , then

P(�) = 0 ⇔ Q(�) = 0. (2.55)

The probability measures in this family, i.e., P and Q, can be represented as

P
(
x[0,t]

) = N−1 exp
(−AP(x[0,t])

)
(2.56)

and

Q
(
x[0,t]

) = N−1 exp
(−AQ(x[0,t])

)
, (2.57)

where AP and AQ are functionals (often called “action” functionals) defined on the tra-
jectories of the process, and N is a common prefactor. Even though the prefactor N
is ill-defined, the Onsager–Machlup representation is convenient as we obtain Radon–
Nikodym density processes between any two probability measures in the equivalence class
P from ratios

Rt =
Q
(
X[0,t]

)
P
(
X[0,t]

) = exp
(−AQ(X[0,t]) +AP(X[0,t])

)
. (2.58)

In other words, the Onsager–Machlup representation allows us to represent the numerator
and denominator of Rt independently in terms of the so-called actions AQ and AP.

As suggested before, often we will use the physics’ slang path probability for P(x[0,t])

and path probability ratio for Rt, even though P is not really a probability, but rather a
representation of the measure P in terms of the action.

• The stochastic exponential of zBt: The exponential

Et(zB) ≡ exp

(
zBt − 1

2
z2t

)
(2.59)

is a martingale for all z ∈ R, as shown in Appendix B; see the right panel of Figure 2.7
for an illustration of trajectories of Et(zB). Note that (2.59) can be obtained from the
continuous-time limit of the martingale (2.23) for q = 1/2 by making the substitutions
n = t/�t, Xn = Bt/

√
�t, and y = z

√
�t, and by subsequently taking the limit �t → 0.
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Expanding the exponential (2.59) around z = 0, we obtain [63]

exp

(
zx − 1

2
z2t

)
=

∞∑
n≥0

zn

n!
Hn(t, x). (2.60)

Setting x = Bt in Equation (2.60), it follows from the martingale property of the exponen-
tial (2.59) that the functions Hn(t, Bt) are martingales for all n ∈ N. Thus the processes

H1(t, Bt) = Bt, (2.61)

H2(t, Bt) = B2
t − t, (2.62)

H3(t, Bt) = B3
t − 3tBt, (2.63)

and so forth, are martingales.
• The Itô integral: Let Zt = Z(B[0,t]) be a function defined on the space of trajectories of the

Brownian motion. Let P = [t1 < t2 < . . . < tn], with t1 = 0 and tn = t, be a finite partition
of the interval [0, t], and define its norm ‖P‖ be given by the maximum spacing ti − ti−1

between two consecutive values. The Itô integral is defined by the limit [64,70]

It =
∫ t

0
Zs dBs = lim

‖P‖→0

n−1∑
i=0

Zti

(
Bti+1 − Bti

)
, (2.64)

where the convergence should be understood in probability. The Brownian motion is recov-
ered as the special case when the diffusion coefficient Zt is constant. We can also express
Itô integrals as stochastic differential equations, i.e.,

dIt

dt
= Zt

dBt

dt
, (2.65)

or even more briefly as

İt = ZtḂt, (2.66)

where the dot represents a derivative towards time. Itô integrals of the form (2.64) are
martingales when [64,71] ∫ t

0
〈Z2

s 〉 ds < ∞. (2.67)

Consequently, one has

〈It〉 = 0. (2.68)

However, there exist Itô integrals that are not martingales and this leads to the concept of a
local martingale, which we introduce later in this review.

Martingales play an important role in the theory of stochastic integration. In fact, Itô
integrals also exist when the integrator is a martingale [71], viz.,

It =
∫ t

0
Zs dMs ≡ lim

‖P‖→0

n−1∑
i=0

Zti

(
Mti+1 − Mti

)
, (2.69)

where Ms is now a martingale process, not necessarily Brownian motion Bs. Note that the
Itô integral is the continuous-time version of the martingale transform (2.16). The integral
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given by Equation (2.64) is a special case of Equation (2.69) for an integrator that is a
Brownian motion. In fact, the martingale representation theorem states that square inte-
grable, continuous martingales can be written as Itô integrals for which the integrator Ms

is a Brownian motion [64], and hence the generic form of the Itô integral equation (2.69)
is mainly relevant for martingales that admit jumps. The requisite for martingality (2.67)
for the special case of an Itô integral with respect to the Brownian motion, reads for the
generic Itô integral equation (2.69) as∫ t

0
〈Z2

s 〉 d[Ms, Ms] < ∞, (2.70)

where [Ms, Ms] is the quadratic variation process, defined by

[Mt, Mt] ≡ lim
‖P‖→0

n−1∑
i=0

(
Mti − Mti−1

)2
. (2.71)

For illustration purposes, let us consider two canonical examples of Itô integrals. When the
integrator Mt = Bt is a Brownian motion, then

[Mt, Mt] = t. (2.72)

Note that the quadratic variation can be obtained informally by using the notation
d[Z, Z]s = (dZs)

2 and the rules of Itô calculus.

Rules of Itô calculus (see Appendix B.3.1):

(dBt)
2 = dt, dBt dt = 0, and (dt)2 = 0. (2.73)

A second canonical example of an integrator is a shifted Poisson process of rate λ, i.e.,
Mt = Nt − λt, for which

[Mt, Mt] = Nt. (2.74)

Equation (2.74) follows from taking the limit ‖P‖ → 0 in the right-hand side of
Equation (2.71), leading to a sum of three kinds of terms of the form (Mti − Mti−1)

2: (i)
there are no jumps between ti and ti−1, in which case (Mti − Mti−1) → 0 when ‖P‖ → 0;
(ii) there is exactly one jump between ti and ti−1, in which case (Mti − Mti−1) → 1 when
‖P‖ → 0; (iii) there are multiple jumps between ti and ti−1, in which case (Mti − Mti−1)

2

converges to a nontrivial limit. However, the number of such terms converges to zero when
‖P‖ → 0.

• Itô process with nonnegative drift: The stochastic differential equation

J̇t = bt +
√

2DtḂt, (2.75)

where bt ≡ bt(X[0,t]) ≥ 0 is a drift term and Dt ≡ Dt(X[0,t]) ≥ 0 satisfying
∫ t

0 D2
udu < ∞, is

solved by

Jt =
∫ t

0
bu du +

∫ t

0

√
2Du dBu. (2.76)

The process Jt is a submartingale when bt ≥ 0.
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• The multidimensional Itô integral: The multidimensional Itô integral It solves

İt ≡
d∑

a=1

Za,tḂa,t, (2.77)

where Ba,t with a = 1, 2, . . . , d are a set of d independent Brownian motions and Za,t ≡
Za,t(B1,[0,t], B2,[0,t], . . . , Bd,[0,t]), is a martingale if

d∑
a=1

〈∫ t

0
Z2

a,s ds

〉
< ∞. (2.78)

• The Doléans–Dade stochastic exponential of an Itô integral It: Let Xt be a possibly high
dimensional Itô process, and let St ∈ R be an Itô process that solves

Ṡt = Dt +
√

2DtḂt, (2.79)

where Dt ≡ D(X[0,t]) is a functional defined on the trajectories of X and Bt is a Brownian
motion process that may be correlated with X. Applying Itô’s formula for the variable
change S → exp(−S), see Equation (B14) in Appendix B.3.1 and below in Equation (2.88)
for the one-dimensional case, we obtain

d

dt
exp(−St) = − exp(−St)(Ṡt − Dt) = − exp(−St)

√
2DtḂt, (2.80)

and hence exp(−St) is an Itô integral. If we identify in the above equation the Itô integral

İt ≡ −
√

2DtḂt, (2.81)

then Equation (2.80) reads

d

dt
exp(−St) = exp(−St)İt. (2.82)

We call the solution to an equation of the form (2.82) the Doléans–Dade stochastic
exponential of It, and we denote it by Et(I) = exp(−St). Stochastic exponentials play an
important role in stochastic thermodynamics and quantitative finance, as we will see in
Chapters 5 and 12, respectively.

• Position of a tagged particle in the symmetric exclusion process: We present an example
in continuous time of a “false friend” of the martingale, i.e., a process with zero average
drift that is not a martingale. Consider the position of a tagged particle in the symmetric
exclusion process (SEP) on Z [72]. This is a continuous-time random walk of a particle
that moves in a crowded environment.

In the initial configuration, each site of Z is occupied with probability ρ by a particle,
and it is empty with a probability 1 − ρ. Subsequently, each particle moves at a rate 1/2
to its right or with a rate 1/2 to its left neighbor. If the neighboring site is occupied by a
particle, then the jump is blocked and the particle stays in its original position.

Interestingly, although the particle position Xt of a tagged particle is on average driftless,
it is not a martingale. Indeed, in Figure 2.9 we plot 〈Xt |X0 = 0, X0+ = 1〉 as a function of
time. If it was a martingale, then one would have 〈Xt |X0 = 0, X0+ = 1〉 = 1, independent
of t. Note that this is indeed approximately the case for small ρ, but for large enough ρ,
there is a clear drift towards the left, as the particle leaves a hole in its trail when jumping
to the right at time t = 0.
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Figure 2.9. The position of a tagged particle in the symmetric exclusion process on Z is not a martingale.
The average position 〈Xt |X0 = 0, X0+ = 1〉 as a function of t, conditioned on the event that Xt makes a jump
to the right at time t = 0, in the symmetric exclusion process on Z. The total particle occupation probability
ρ is given in the legend. Results are empirical means from repeated simulations.

2.2.3. On stochastic calculus: Itô, Stratonovich, and beyond

In Section 2.2.2, we have reviewed the prominent role of Itô integrals in martingale theory. In
physics, it is often common to use the Stratonovich integral as defined in the books [4,73,74] and
the original references [75,76]

St =
∫ t

0
Zs ◦ dBs = lim

‖P‖→0

n−1∑
i=0

(
Zti + Zti+1

2

) (
Bti+1 − Bti

)
, (2.83)

where we recall that the limit ‖P‖ → 0 means the limit of small norm ‖P‖ of a finite parti-
tion P = [0 = t1 < t2 < · · · < tn = t] of the interval [0, t]. The Stratonovich–Fisk convention
has the advantage that it allows us to use the standard rules of differential calculus, i.e., the chain
rule for derivatives and the fundamental theorem of calculus, see Appendix B.3. However, the
Stratonovich integral has the inconvenience of not being a martingale as it contains a spurious
drift term, see Appendix B.3.4 for details. We recall readers the definition of the Itô integral given
in Equation (2.64), copied here for convenience,

It =
∫ t

0
Zs dBs = lim

‖P‖→0

n−1∑
i=0

Zti

(
Bti+1 − Bti

)
, (2.84)

which differs to the Stratonovich convention on the time point at which the process in the inte-
grand Z is evaluated. The fact that in Itô convention the summation rule is done by evaluating Z
at the beginning of each interval of the partition is crucial for Itô processes of the type (2.84) to
be martingales.

More generally, we define the α-discretization convention, with 0 ≤ α ≤ 1, via the infinitesi-
mal rules3

Yt =
∫ t

0
Zs ◦α dBs = lim

‖P‖→0

n−1∑
i=0

(
(1 − α)Zti + αZti+1

) (
Bti+1 − Bti

)
. (2.85)



44 É. Roldán et al.

Apart for the Ito corresponding to α = 0, and the Stratonovich–Fisk corresponding to α = 1/2,
another α-discretization scheme that is widely used in the literature is the anti-Itô convention,
corresponding to α = 1. However, only in the case of α = 0 stochastic integrals are martingales.

In the case of Itô convention, we will omit the ◦0 symbol throughout the treatise. In the
following, we use the symbol o to denote the Stratonovich–Fisk convention. As we will show
in the subsequent chapters, in physics (i.e., stochastic thermodynamics) it is customary to con-
sider stochastic Itô (Stratonovich) integrals of the type

∫ t
0 Zs dXs (

∫ t
0 Zs ◦ dXs) for Zs = Z[X[0,t]] a

functional of the trajectory X[0,t].

2.2.3.1. Itô’s formula. A useful result in Itô’s calculus regards the change of variables, see
Appendix B.3.1 for details. Let Xt ∈ R be a stochastic process that solves a one-dimensional Itô
stochastic differential equation of the form

Ẋt = bt(X[0,t]) + σt(X[0,t])Ḃt, (2.86)

where Bt is the one-dimensional Brownian motion (see Section 2.2.2), and where bt and σt satisfy
suitable integrability conditions (see Appendix B.3.1).

Let gt(x) be a twice continuously differentiable function in t ∈ R+ and x ∈ R that may
depend explicitly on time t. Then the process

Yt = gt(Xt), (2.87)

with Xt described by the Itô stochastic differential equation (2.86), solves the stochastic
differential equation [64]

Ẏt =
(

∂gt

∂t

)
(Xt) +

[(
∂gt

∂x

)
(Xt)

]
Ẋt +

[
1

2

(
∂2gt

∂x2

)
(Xt)

]
σ 2

t (X[0,t]), (2.88)

which is known as Itô’s lemma (or Itô’s formula).

Itô’s formula may be understood from a Taylor expansion of gt+dt(Xt+dt), viz.,

gt+dt(Xt+dt) − gt(Xt) =
[(

∂gt

∂t

)
(Xt)

]
dt +

[(
∂g

∂x

)
(Xt)

]
dXt +

[
1

2

(
∂2gt

∂t2

)
(Xt)

]
(dt)2

+
[

1

2

(
∂2gt

∂x2

)
(Xt)

]
(dXt)

2 +
[

1

2

(
∂2gt

∂t∂x

)
(Xt)

]
dt dXt + · · · (2.89)

Using dXt = Ẋt dt, the rules of Itô calculus (Equations 2.73), and neglecting contributions of
orders higher than dt, we get Equation (2.88). Similarly, one can show that if instead one has a
Stratonovich stochastic differential equation

Ẋt = bt(X[0,t]) + σt(X[0,t]) ◦ Ḃt, (2.90)

the process Yt = gt(Xt) obeys the standard “chain rule”

Ẏt =
(

∂gt

∂t

)
(Xt) +

[(
∂gt

∂x

)
(Xt)

]
◦ Ẋt. (2.91)
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Indeed, this follows from using[(
∂g

∂x

)
(Xt)

]
dXt +

[
1

2

(
∂2gt

∂x2

)
(Xt)

]
(dXt)

2 = 1

2

[(
∂gt

∂x

)
(Xt) +

(
∂gt

∂x

)
(Xt+dt)

]
dXt

=
(

∂gt

∂x

)
(Xt) ◦ dXt. (2.92)

We refer readers to Appendix B.3 for further details, generalizations and extensions to, i.e., d > 1
dimensions.

2.2.3.2. From Itô to Stratonovich and back. As we will show in the subsequent chapters, in
statistical physics it is important to convert Itô integrals of the type

∫ t
0 gs(Xs) dXs into Stratonovich

integrals of the type
∫ t

0 gs(Xs) ◦ dXs, and vice versa. The theorem below provides a rigorous
answer for such conversions in the case when Xt is a one-dimensional stochastic process and
gt(x) a smooth function.

Theorem 1 (Conversion from Stratonovich to Itô integrals in one dimension) Let
Xt ∈ R be the solution of the Itô stochastic differential equation

Ẋt = bt(Xt) + σt(Xt)Ḃt, (2.93)

with Bt the one-dimensional Brownian motion and bt and σt two functions satisfying suit-
able integrability conditions (see Appendix B.3.1). Then the following identity between the
Stratonovich and Itô products holds:

gt(Xt) ◦ dXt = gt(Xt) dXt + σ 2
t (Xt)

2

[(
∂gt

∂x

)
(Xt)

]
dt, (2.94)

which is valid for any function gt(x) that may depend explicitly on time and is continuously
differentiable function in t ∈ R+ and x ∈ R.

The relation (2.94) implies that under the assumptions of Theorem 1, one has the following
rule to convert a Stratonovich integral into an Itô integral:∫ t

0
gs(Xs) ◦ Ẋs ds =

∫ t

0
gs(Xs)Ẋs ds +

∫ t

0

σ 2
s (Xs)

2
[(∂xgs)(Xs)] ds, (2.95)

which holds for any t ≥ 0. Equations (2.94) and (2.94) can be generalized to, i.e., processes Xt

following (d > 1)-dimensional stochastic differential equations, see Equation (3.72).

Chapter 3. Martingales and Markov processes

Time, dear friend, time brings round opportunity; opportunity is the martingale of man. The
more we have ventured the more we gain, when we know how to wait.

The three musketeers, A. Dumas (1844).
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As discussed in Chapter 2, not all martingales are defined in Markov processes. Nevertheless,
in this chapter we focus on martingales associated with Markov processes, as they play a central
role in physics. In fact, most mesoscopic, physical processes, whether they are an object in a
fluid, transport processes, or chemical reactions, are described by Markov processes.

This chapter is organized into two main parts. Section 3.1 is devoted to martingales in discrete-
time Markov processes, and Section 3.2 reviews the theory of martingales in continuous-time
Markov processes.

3.1. Markov processes and martingales in discrete time

We review the theory of discrete-time martingales Mn defined with respect to Markov chain
Xn. First, in Section 3.1.1 we revisit the definition of Markov chains. Next, in Section 3.1.2,
we consider the martingale problem, which is one of the central results in the theory of Markov
processes. Subsequently, we consider important examples of martingales in Markov processes. In
Section 3.1.3, we define Dynkin’s martingales (also referred to Lévy’s Martingales [77]). Then,
in Section 3.1.4 we define multiplicative martingales, which are simple examples of martingales
that are not Dynkin’s martingales. In Section 3.1.5, we consider martingales that are ratios of path
probability densities of Markov chains, which play a prominent role in physics, in particular, in
nonequilibrium thermodynamics (see Chapters 5–9).

3.1.1. Definition of Markov chains

A discrete-time Markov chain is a stochastic process such that its future values con-
ditioned on its current value are statistically independent of its past values. For processes
on discrete state space X this implies

P
(
Xn = xn |X[0,n−1]

) = P (Xn = xn |Xn−1) , (3.1)

which motivates us to introduce the transition matrix of a time-homogeneous discrete-
time Markov chain Xn in discrete state space X as

w(x, y) ≡ P (Xn = y |Xn−1 = x) , ∀ x, y ∈ X . (3.2)

For processes in continuous state space X , we define their transition matrix as

w(x, y) ≡ P (Xn ∈ [y, y + dy] |Xn−1 = x)

dy
, ∀ x, y ∈ X . (3.3)

Equations (3.1)–(3.3) imply that the probability (density) for a sequence x[0,n] =
(x0, x1, . . . , xn) to occur in the discrete-time Markov chain is given by

P(x[0,n]) = ρ0(x0)

n∏
j=1

w(xj−1, xj), (3.4)

where ρ0(x) is the probability (density) of the initial state X0.
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In general, Markov chains are inhomogeneous, i.e., their transition probabilities wn(x, y)
may depend explicitly on time n. However, for clarity we postpone the discussion of time-
inhomogeneous Markov processes to Section 3.2 on Markov processes in continuous time,
while in discrete time we focus on time-homogeneous processes, i.e., we use wn(x, y) = w(x, y)
throughout Section 3.1.

3.1.2. Constructing martingales from Markov processes

Martingales play a prominent role in the theory of Markov processes [78,79]. One reason is due
to the following theorem (Theorem 4.1.3. in [78]):

Theorem 2 (Characterization of Markov processes with martingales) Let Xn be a
stochastic process that takes values in X . The following two statements are equivalent:

• Xn is a Markov chain with transition matrix w(x, y);
• for all real-valued, bounded functions f defined on X it holds that the process

Mn = f (Xn) − f (X0) −
n−1∑
m=0

∑
x∈X

(
w(Xm, x) − δx,Xm

)
f (x) (3.5)

is a martingale with respect to Xn.

Taken together, Equation (3.5) implies that Mn is a martingale if and only if Xn is
Markovian.

Theorem 2 follows from the identity Mn+1 − Mn = f (Xn+1) −
∑

x∈X w(Xn, x)f (x), which
implies 〈

Mn+1|X[0,n]
〉 = Mn + 〈 f (Xn+1)|X[0,n]

〉−∑
x∈X

w (Xn, x) f (x).

Due to this last relation, we obtain〈
Mn+1|X[0,n]

〉 = Mn ⇐⇒ 〈
f (Xn+1)|X[0,n]

〉 =∑
x∈X

w (Xn, x) f (x). (3.6)

The right-hand side of the second equality of the equivalence (3.6) is a function of Xn only, which
implies that Xn is a Markov chain with transition matrix w.

3.1.3. Dynkin’s martingales

Processes of the form (3.5) are called Dynkin’s additive martingales, and we can also express
them as

Mn =
n−1∑
m=0

(
f (Xm+1) −

∑
x∈X

w(Xm, x)f (x)

)
. (3.7)

Put simply, Dynkin’s additive martingales, as defined by Equation (3.7), are the cumulative dif-
ferences between the function f (Xm+1) evaluated on the process X at time m + 1 minus the
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expected value of f at time m + 1 when conditioned on its value at the previous time step. In
what follows, we discuss two key examples of Dynkin’s martingales.

3.1.3.1. Processes without memory. Let us consider the case when Xn is an i.i.d. sequence.
This is the particular case of a Markov chain with transition probability w(y, x) = P(x), where
P(x) is the law of the variables in an i.i.d. sequence. In this case, Dynkin’s martingale takes the
form

Mn =
n−1∑
m=0

(f (Xm+1) − 〈f (Xm)〉) . (3.8)

Specializing to the case f (x) = ln(x), we obtain the martingale

Mn =
n−1∑
m=0

(ln(Xm+1) − 〈ln(Xm)〉) = ln

(
n−1∏
m=0

Xm+1

)
− n〈ln X0〉. (3.9)

On the other hand, for the choice f (x) = x we obtain the additive martingale

Mn =
n−1∑
m=0

Xm+1 − n〈X0〉, (3.10)

which coincides with the martingale (2.7) when X ∈ {1,−1} with probabilities P(1) = q and
P(−1) = 1 − q.

3.1.3.2. Harmonic functions. We say that h(x) is a harmonic function if it is a bounded
function for which ∑

x∈X
w(y, x)h(x) = h(y), ∀ y ∈ X . (3.11)

Hence, harmonic functions are the right eigenvectors associated with the Perron root of w; note
that these are different from the left eigenvectors of the Perron root, which represent the stationary
probability distributions. For an unbiased random walk, Equation (3.11) is a discrete version of
the equation ∂2

x h(x) = 0, which clarifies why we call h a harmonic function. Analogously, we say
that s(x) is a subharmonic function if it is a bounded function for which∑

x∈X
w(y, x)s(x) ≥ s(y), ∀ y ∈ X . (3.12)

Theorem 2 implies that processes of the form h(Xn), with h a harmonic function, are martingales.
Indeed, plugging Equation (3.11) in Equation (3.5), Theorem 2 implies that h(Xn) is a martingale.
We can also prove this result directly:

〈h(Xn) |X[0,n−1]〉 = 〈h(Xn) |Xn−1〉 =
∑
x∈X

w(Xn−1, x)h(x) = h(Xn−1), (3.13)

where the first equality follows from the Markov property, the second from the definition of the
transition matrix (3.2), and the third equality from the definition of harmonic functions (3.11).
Analogously, processes of the form s(Xn) with s a subharmonic function are submartingales [77].

For ergodic Markov processes, the trivial function h(x) = 1 is the only harmonic function
[77]. Indeed, for ergodic processes, the Perron root of the operator w(x, y) is nondegenerate, and
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hence the left eigenvector of w(x, y) associated with the Perron root is unique. On the other hand,
for nonergodic processes, the Perron root is degenerate, and we can construct nontrivial harmonic
functions.

As an example of a nontrivial harmonic function, consider the process Xn with initial condition
X0 ∈ X \ (X1 ∪ X2) that “stops” as soon as Xn reaches the absorbing set X1 ∪ X2. In other words,
the transition matrix is given by

w̃(y, x) =
{
δx,y, if y ∈ X1 ∪ X2,
w(y, x), if y ∈ X \ (X1 ∪ X2) .

(3.14)

We assume that X1 ∩ X2 = φ. In this case, the process is nonergodic as the states in the sets X1

and X2 are absorbing. Let

TX1 = min {n ≥ 0 : Xn ∈ X1} and TX2 = min {n ≥ 0 : Xn ∈ X2} (3.15)

be the first-passage times when Xn hits the sets X1 or X2, respectively. Let us now define the
splitting probability that the process Xt hits the set X1 before hitting the set X2 given that the state
at time k was Xk = x,

hX1,X2(x) = P
(
TX1 < TX2 |Xk = x

)
. (3.16)

Note that, because the transition rates are considered to be time homogeneous, the splitting prob-
abilities (3.16) are independent of k. It holds that the splitting probability hX1,X2(x) is a harmonic
function related of w̃(y, x) [80]. Indeed, using the Markovianity of X, we find iteration

P
(
TX1 < TX2 |X0 = x

) =∑
y∈X

w̃(x, y)P
(
TX1 < TX2 |X0 = y

)
, (3.17)

and hence hX1,X2(x) solves the Dirichlet problem

hX1,X2(x) =

⎧⎪⎪⎨⎪⎪⎩
1, if x ∈ X1,
0, if x ∈ X2,∑
y∈X

w(x, y)hX1,X2(y), if x ∈ X \ (X1 ∪ X2).
(3.18)

Consequently, the splitting probability hX1,X2(x) is an example of a nontrivial harmonic function,
and it is a martingale.

3.1.3.3. Doob’s h-transform. An interesting application of positive harmonic functions h is
the construction of path probability ratios associated with h through the, so-called, Doob’s h-
transform, which we introduce below.

Let X be a Markov process, and let h be a positive and harmonic function. Then there exists
a Markov process with path probability density Ph such that

〈f (X[0,n]) |X0〉h = 1

h(X0)
〈h(Xn)f (X[0,n]) |X0〉, (3.19)

for all n ∈ N ∪ {0}, where 〈·〉h denotes the expectation with respect to Ph. We call Ph the Doob
h-transform of P .
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Theorem 3 (Doob’s h-transform) Let P be the path probability density of a Markov
chain with transition matrix w(y, x). If h is a non-negative harmonic function associated
with this Markov chain, then there exists a Markov chain Ph with transition matrix wh(y, x)
such that

Ph(x[0,n] | x0)

P(x[0,n] | x0)
= h(xn)

h(x0)
. (3.20)

Proof Since h is a positive and harmonic function, it holds that

wh(y, x) = h(x)

h(y)
w(y, x) (3.21)

is a transition matrix. Indeed, wh(y, x) ≥ 0 and∑
x∈X

wh(y, x) =
∑
x∈X

h(x)

h(y)
w(y, x) = 1. (3.22)

Using that

Ph(X[0,n] |X0) =
n∏

j=1

wh(Xj−1, Xj), P(X[0,n] |X0) =
n∏

j=1

w(Xj−1, Xj), (3.23)

we obtain

Ph(X[0,n] |X0)

P(X[0,n] |X0)
=

n∏
j=1

wh(Xj−1, Xj)

w(Xj−1, Xj)
= h(Xn)

h(X0)
, (3.24)

which completes the proof. �

Doob’s h-transform can be used to map the statistics of a conditioned process, provided by the
measure Ph, on the statistics provided by an unconditioned process, given by P , see Refs. [81,82]
for some explicit examples. For example, if h is the splitting probability (3.16), h(x) = hX1,X2(x),
then

wh(y, x) = h(x)

h(y)
w(y, x)

= hX1,X2(x)

hX1,X2(y)
w(y, x)

= P
(
TX1 < TX2 |Xn = x

)
P
(
TX1 < TX2 |Xn−1 = y

)P (Xn = x |Xn−1 = y)

= P
(
Xn = x, TX1 < TX2 |Xn−1 = y

)
P
(
TX1 < TX2 |Xn−1 = y

)
= P

(
Xn = x |Xn−1 = y, TX1 < TX2

)
. (3.25)

Hence, Ph is the probability distribution of a Markov process that describes the statistics
conditioned on the event TX1 < TX2 .
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3.1.4. Multiplicative martingales

Given a real-valued, bounded function f, the product

Mn =
n−1∏
j=0

f (Xj+1)∑
x∈X w(Xj, x)f (x)

(3.26)

is martingale. The martingality of Mn follows from the identity

Mn+1 = Mn
f (Xn+1)∑

x∈X w(Xn, x)f (x)
, (3.27)

together with

〈f (Xn+1) |X[0,n]〉 =
∑
x∈X

w(Xn, x)f (x). (3.28)

For the particular case of i.i.d. sequences with transition probability w(y, x) = P(x), the
multiplicative martingale (3.26) takes the form

Mn =
∏n−1

j=0 f (Xj+1)

〈f (X0)〉n
. (3.29)

Setting f (x) = exp(yx) and assuming that X = {1,−1} is a binary random variable with P(1) =
q, we recover the martingale given by Equation (1.8).

3.1.5. Ratios of path probability densities

We consider the ratio Rn (see Equation 2.18) of two path probability densities P and Q of two
time-homogeneous Markov processes in discrete time. To obtain an explicit expression for Rn,
we denote P(x[0,n]) as in Equation (3.4), and we write

Q
(
x[0,n]

) = ρQ (x0)

n∏
j=1

wQ(xj−1, xj). (3.30)

When (i) wQ(y, x) = 0 for all x, y ∈ X for which w(y, x) = 0 and (ii) ρQ(x) = 0 for all x ∈ X for
which ρ(x) = 0, then the probability density Q is locally absolutely continuous with respect of
P , such that the ratio

Rn = ρQ (X0)

ρ (X0)

n∏
j=1

wQ(Xj−1, Xj)

w(Xj−1, Xj)
(3.31)

exists and is a P-martingale.

3.2. Martingales in continuous-time Markov processes

The second section of this chapter deals with martingales that are defined relative to a Markov
process Xt that runs in continuous time. These are arguably the most important examples of
martingales for physics, as the lion’s share of models that describe physical processes at the
mesoscopic scale are continuous time Markov processes, see [25,26,83].
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The present section is organized as follows. In Section 3.2.1, we introduce the mathemati-
cal quantities defining Markov processes in continuous time. In the following two sections, we
define two main classes of Markov processes in continuous time, namely, Markov jump pro-
cesses in Section 3.2.2 and diffusion processes in Section 3.2.3. In Section 3.2.4, we formulate
the martingale problem for Markov processes in continuous time. The last three sections are
devoted to examples of martingales that are defined relative to a continuous-time Markov pro-
cess, namely, Dynkin’s martingales in Section 3.2.5, exponential martingales in Section 3.2.6,
and Radon–Nikodym derivative processes in Section 3.2.7.

3.2.1. Markov processes in continuous time: three definitions

We discuss three complementary ways to define Markov processes [78]. The first approach is
based on the path probabilities P(x[0,t]). The second approach is based on the observation that for
Markov processes on a discrete state space X

P(Xt = y |X[0,s]) = P(Xt = y |Xs) (3.32)

for any t ≥ s ≥ 0, and therefore to determine a Markov process it is sufficient to define the tran-
sition function P(Xt = y |Xs = x) that gives the transition probability between two states Xs and
Xt at times s and t, respectively. A third way to define Markov processes is with the generator or
adjoint generator of the process; the former determines the evolution with respect of time s with
t ≥ s ≥ 0 of the transition function P(Xt = y |Xs = x), and the latter determines the evolution in
time of the instantaneous probability density of X.

3.2.1.1. Path probabilities. Let us start with a description of Markov processes through path
probabilities.

The measures P(x[0,t]) specify the probability to observe sets of paths x[0,t] in the time
window [0, t]. In general, it is not possible to present an explicit expression for P(x[0,t]).
However, we can express the density of P(x[0,t]) relative to another equivalent measure
Q(x[0,t]) through the Radon–Nikodym derivative process, see Equation (2.52), or we can
use the Onsager–Machlup approach to represent each member P of an equivalence class
P of mutually absolutely continuous measures in terms of the action functional AP(x[0,t]),
see Equations (2.56)–(2.58). At the end of this section, we present a couple of examples of
Radon–Nikodym derivatives of jump processes and diffusions.

3.2.1.2. Transition functions. According to Equation (3.32), Markov processes can also be
specified with their transition function (again, for discrete state space X )

Ps,t(x, y) ≡ P(Xt = y |Xs = x), (3.33)

for t ≥ s ≥ 0, see Refs. [84,85]. For continuous state space X , we define transition function as

Ps,t(x, y) ≡ P(Xt ∈ [y, y + dy] |Xs = x)

dy
. (3.34)
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The transition function operates on bounded, real-valued functions φ defined on X
through

Ps,t[φ](x) ≡ 〈φ(Xt) |Xs = x〉 =
∫
X

dyPs,t(x, y)φ(y). (3.35)

The transition function satisfies the Chapman–Kolmogorov condition∫
X

dyPs,t(x, y)Pt,t′(y, z) = Ps,t′(x, z), (3.36)

for all s ≤ t ≤ t′.

3.2.1.3. Generators. A third approach to define a Markov process is through either its gen-
erator Lt or the adjoint generator L†

t that describes the evolution in time of the instantaneous
probability density ρt. Since the latter is used more often in physics, we introduce it first.

The instantaneous density of a continuous-time Markov process Xt ∈ X is defined as

ρt(x) ≡ 〈δ(Xt − x)〉, (3.37)

where 〈·〉 is the average over repeated realizations of the Markov process X. The
instantaneous density ρt is the solution of the Fokker–Planck or Master equation

∂tρt = L†
t ρt, (3.38)

where L†
t is the adjoint of the generator Lt that expresses the evolution in time of the

transition function,

∂tPs,t = Ps,tLt. (3.39)

The explicit time dependence in L†
t is relevant for Markov processes with time-dependent,

external driving. An invariant density ρst(x) is a time-independent distribution that solves
for all t ≥ 0

0 = L†
t ρst (3.40)

and we say that ρst is a stationary probability density if in addition to Equation (3.40)
one has the normalization condition ∫

X
ρst(x) dx = 1. (3.41)

For the special the case of time-homogeneous dynamics, we have L†
t = L†.

Let us clarify some of the mathematical notation used in Equations (3.38)–(3.40):
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• The generator Lt is a linear operator that acts on the Hilbert space L2(X ) of functions
φ : X → R with finite norm

∫
x∈X dxφ2(x) and endowed with the inner product

(φ1, φ2) =
∫

x∈X
dxφ1(x)φ2(x). (3.42)

In Equation (3.42), dx refers to the Lebesgue measure if the space X is continuous and to
the counting measure if X is discrete. For the latter, integrals are finite sums, i.e.,∫

x∈X
dxφ1(x)φ2(x) =

∑
x∈X

dxφ1(x)φ2(x), (3.43)

and operators Lt are matrices. We will follow this convention throughout this treatise.
• The operator L†

t can be seen as the adjoint of the operator Lt on the Hilbert space L2(X ).
In other words, the L†

t φ2 is the function such that

(φ2,Ltφ1) =
(
L†

t φ2, φ1

)
(3.44)

for all functions φ1 in the domain of Lt. Consequently, the right-hand side of
Equation (3.38) is the function(

L†
t ρt

)
(x) =

∫
X

dyρt(y)Lt(y, x). (3.45)

In the particular case where X is finite, L†
t is the matrix transpose of Lt.

• We underline that the left-hand side of Equation (3.39) should be understood as acting on
scalar functions φ(x) as in Equation (3.35), as for the right-hand side

(Ps,t[Ltφ])(x) =
∫
X

dyPs,t(x, y)
∫
X

dzLt(y, z)φ(z). (3.46)

• Note that time-homogeneous and stationary Markov processes are, in general, not equiva-
lent. Indeed, a time-homogeneous Markov processes is nonstationary when its distribution
ρt is nonstationary, and a stationary Markov process is time-inhomogeneous when the gen-
erator Lt depends on time t. Indeed, a Markov process may obey detailed balance with a
certain potential V (x) and have time-dependent rates.

Although the most general Markov process consists of a mixture of diffusions and random
jumps [86,87], in this treatise, we will focus on two paradigmatic classes of Markov processes
in nonequilibrium physics, namely pure jump processes (for which the continuous part is absent)
and pure diffusion processes (for which the jump part is absent).

3.2.2. Markov jump processes

Markov jump processes are Markov processes for which the process Xt changes its state in a
purely discontinuous manner. Figure 3.1 shows an example of a minimal model of a continuous-
time Markov jump process in a discrete set of states together with an illustration of a single
trajectory of the process.
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Figure 3.1. Left: Illustration of a three-state continuous-time Markov jump process between the states (gray
circles) A, B, and C. The transition rate values between each pair of states are indicated on the arrows. Right:
Example trajectory of the process, where the system jumps at a random time T1 from the initial state C to
state A and at a later time T2 from state A to state B. See text for further details.

3.2.2.1. Mathematical form. The trajectories of a Markov jump process are piecewise con-
stant functions, with jump times Ti, with T0 = 0 and with i ∈ {1, 2, . . . , Nt}, and where Nt is the
number of times the process has jumped in the time interval [0, t]. In between two jump times,
the process Xt does not change its value. We denote the value of Xt right before the ith jump by

XT −
i

= lim
ε→0,ε>0

XTi−ε (3.47)

and right after the ith jump by

XT +
i

= lim
ε→0,ε>0

XTi+ε , (3.48)

so that

Xt = XT +
i−1

= XT −
i

if t ∈ [Ti−1, Ti). (3.49)

The transition rate ωt(x, y) of the jump process is the rate for the transition x → y at time t, i.e.,
the average number of jumps from state x to state y occurring in the time interval [t, t + dt].

Other observables that we often use for Markov jump processes are the number of times
Nt(x, y) that Xt has jumped form x to y in the time window [0, t] and the residence time τt(x) that
the process Xt has spent in the xth state. For discrete sets X , these quantities are formally defined
as

Nt(x, y) ≡
Nt∑

j=1

δXT −
j

,xδXT +
j

,y (3.50)

and

τt(x) ≡
∫ t

0
δXs,x ds, (3.51)

where δ is here the Kronecker delta function; analogous definitions can be written down for
continuous sets X . Occasionally, we also use Ṅt(x, y), for which it should be understood that

Nt(x, y) =
∫ t

0
Ṅs(x, y) ds. (3.52)
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The Markov generator associated with the Fokker–Planck equation (3.38) is given by

(Ltφ) (x) ≡
∫
X

dyωt(x, y) (φ(y) − φ(x)) , (3.53)

where X can be either discrete or continuous. If X is discrete, the integral in (3.53) must
be read as a sum.

When Xt has no explosions [78], i.e., the total number of jumps
∑

x�=y Nt(x, y) is with
probability 1 finite, then the generator Lt uniquely defines the Markov jump process.

The Fokker–Planck equation (3.38) associated with a Markov jump process reads

∂tρt(x) = −
∫
X

dyJt,ρ(x, y), (3.54)

where the probability current reads

Jt,ρ(x, y) = ρt(x)ωt(x, y) − ρt(y)ωt(y, x). (3.55)

The Fokker–Planck equation (3.54) can be also written as

∂tρt(x) =
∫
X

dy [ρt(y)ωt(y, x) − ρt(x)ωt(x, y)] , (3.56)

which for X discrete reads

∂tρt(x) =
∑
y∈X

[ρt(y)ωt(y, x) − ρt(x)ωt(x, y)] . (3.57)

Equation (3.57) provides the familiar form for the Master equation of a continuous-time
Markov chain where we identify the first term in the right-hand side as probability influxes
to state x and the second term as probability outfluxes from state x.

3.2.2.2. Physical setup: isothermal case. To add physical content to the dynamics of a Markov
jump process, we use the principle of local detailed balance [26,88]. Consider a mesoscopic
system, say a molecular motor, that is pushed by an external force of magnitude ft and is in
contact with one thermal bath at temperature T, and m particle reservoirs characterized by the
chemical potentials μ(a), where a = 1, 2, . . . , m. We assume that all particle reservoirs are at
temperature T. For isothermal processes, the principle of local detailed balance implies that the
ratio of transition rates satisfies

ωt(x, y)

ωt(y, x)
= exp

(−(Vt(y) − Vt(x)) + ftr(x, y) +∑n
a=1 μ(a)na(x, y)

T

)
, (3.58)

where Vt(x) is a thermodynamic potential, r(x, y) is the distance moved when the system jumps
from x to y, and na(x, y) is the number of particles exchanged with the ath particle reservoir when
the system jumps from x to y. The plus sign in front of ft indicates that a negative force opposes
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forward motion, and the plus sign in front of μ(a) indicates that na > 0 when the system binds
particles and na < 0 when the system releases particles. Generalization to particle reservoirs at
different temperatures can be found in [89].

3.2.3. Diffusion processes

A continuous-time Markov process is a diffusion process if its trajectories Xt are continuous
functions of t [90]. We determine diffusion processes through stochastic differential equations,
which we first discuss in their mathematical form, and subsequently, we discuss their physical
interpretation.

A d-dimensional Itô process Xt = (X 1
t , X 2

t , . . . , X d
t ) ∈ Rd solves the stochastic differ-

ential equation

Ẋt = bt(Xt) + σt(Xt)Ḃt, (3.59)

where bt = (b1
t , b2

t , . . . , bd
t )

† ∈ Rd is a smooth, vectorial function; σt is a smooth matrix
– not necessarily square – defined on X with size d × n, and n arbitrary which is the
number of noises. In other words, Bt = (B1

t , B2
t , . . . , Bn

t )
† ∈ Rn is a vector of n independent

Brownian processes. We call

Dt(x) = σt(x)σ
†
t (x)

2
(3.60)

the diffusion matrix which is nonnegative and of size d × d.

3.2.3.1. Mathematical form. The generator associated with the diffusion process given by
Equation (3.59) takes the form

Lt = bt∇ + Dt∇ ∇, (3.61)

where ∇ = (∂x1 , ∂x2 , . . . , ∂xd )† is the gradient vector. On a scalar function φ, the generator
equation (3.61) acts as

(Ltφ) (x) = bt(x) (∇φ) + Dt(x) (∇∇φ) . (3.62)

The Fokker–Planck equation (3.38) associated with a d-dimensional Itô process (3.59)
takes the form

∂tρt +∇ · Jt,ρ = 0, (3.63)

where the probability current

Jt,ρ(x) = bt(x)ρt(x) − ∇ · (Dt(x)ρt(x)) . (3.64)



58 É. Roldán et al.

3.2.3.2. Physical setup: Langevin equations. In physics, Equation (3.59) is often written in
a different form that highlights physically relevant quantities, such as the potential and exter-
nal forces, which is commonly called the Langevin equation [4,25,73]. The Langevin equations
are mathematically equivalent to (3.59), and when describing multi-dimensional diffusions in
a physics context we consider Langevin equations, as these equations are useful for describ-
ing physical process, i.e., the dynamics of a set of interacting mesoscopic systems moving in
multi-dimensions under external driving.

The Langevin equation is the Itô process equation (3.59) for d = n written in terms of
physical meaningful quantities [4,25,73]. In particular, we write

Ẋt = μt(Xt)Ft(Xt) + (∇ Dt) (Xt) +
√

2Dt(Xt)Ḃt, (3.65)

where μt(x) is the mobility matrix that may depend on time and space, and is not
necessarily symmetric. The force vector Ft(x) can be decomposed as

Ft(x) ≡ − (∇Vt) (x) + ft(x), (3.66)

where Vt(x) is a time-dependent potential and ft(x) is a non-conservative force. The poten-
tial is controlled by an external agent through a deterministic protocol λt, such that Vt(x) =
V (x, λt). The Markovian generator (3.61) associated with the Langevin equation (3.65)
takes the form

Lt = (μtFt)∇ + ∇ Dt ∇, (3.67)

and the probability current equation (3.64) takes the form

Jt,ρ(x) ≡ (μtFt)(x)ρt(x) − Dt(x)∇ρt(x). (3.68)

The noise vector Bt in the Langevin equation (3.65) consists of d independent standard Brow-
nian motions. The d-dimensional vector Xt may contain both position and momentum variables,
such as underdamped Langevin equations, in which case the diffusion matrix Dt is singular; this
is the reason why in Equation (3.59) the matrix Dt(x) is nonnegative instead of positive. The term
(∇ Dt)

i(x) =∑d
j=1(∂jDt(x))ij is a spurious drift term which comes from the x dependence of the

diffusion matrix; its physical origin is discussed below.
In many physical situations, the mobility matrix μt and the diffusion matrix Dt depend

on space. Examples are, among others, the Landau–Lifshitz–Bloch dynamics of a Brownian
spin [91] and the diffusion of water molecules near soft-matter phase boundaries [92]. For sim-
plicity, we provide in Figure 3.2 three paradigmatic examples of diffusions that are relevant to
physics.

For isothermal systems, the mobility matrix μt(x) is related to the diffusion matrix Dt(x) by
Einstein’s relation

Dt(x) = T

2

(
μt(x) +

[
μt(x)

]†)
, (3.69)

where T is the temperature of the environment and we have used units for which the Boltz-
mann constant is equal to one. Einstein’s relation (3.69) states that friction (dissipation) and
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Figure 3.2. Illustration of three diffusion processes described by a Langevin equation of the type (3.65).
(a) A Brownian particle moves in a tilted periodic 1D sawtooth potential, Ẋt = μ[f − ∂X V (Xt)] +

√
2DḂt,

with V (x) = (U0 x)/x∗ for x ∈ [0, x∗] and V (x) = U0(1 − x)/(1 − x∗) for x ∈ [x∗, 1]. (b) Motion of a col-
loid in a 2D force field: Ẋt = μf cos(2πYt) +

√
2DḂx,t and Ẏt =

√
2DḂx,t. (c) Chiral active Brownian

motion described by the position coordinates Ẋt = μf cos(φt) +
√

2DḂx,t, Ẏt = μf sin(φt) +
√

2DḂy,t and
the orientation angle φ̇t = μφω + √

2DωḂφ,t. See Ref. [12] for further details.

noise (fluctuation) are two conjugated effects of the interaction with the thermal bath. For this
reason, Equation (3.69) is also called fluctuation–dissipation theorem [93]. When the Einstein
relation (3.69) holds, we say that Equation (3.65) is an isothermal Langevin equation, and when
in addition the mobility matrix is symmetric, i.e., μt = [μt]

†, then one retrieves

Dt(x) = Tμt(x) (3.70)

and we say that Equation (3.65) is an isothermal overdamped Langevin. Note that Einstein’s
relations do not apply if the system interacts with multiple thermal reservoirs at different
temperatures, or if the system interacts with a thermal reservoir that is not at equilibrium.

The presence of the “spurious” drift4term (∇Dt)(Xt) in Equation (3.65) may appear exotic
to readers, however, we note that this term ensures thermodynamic consistency in the following
sense: if we consider a time-independent potential Vt = V and if we assume that the Einstein rela-
tion holds, then in the absence of a non-conservative force (f = 0), the term (∇Dt)(Xt) ensures
that the stationary distribution of Equation (3.40) is the Boltzmann distribution

ρst(x) = exp(−V(x)/T)

Z
, (3.71)

where Z is the partition function, see Refs. [94,95] for details. Note that if the diffusion matrix Dt

depends explicitly on time, then the process is stationary but time-inhomogeneous.
In the following chapters, it will be useful to consider the following identity relating

Stratonovich and Ito integrals associated with∫ t

0
gs(Xs) ◦ Ẋs ds =

∫ t

0
gs(Xs)Ẋs ds +

∫ t

0
Ds(Xs) [(∇gs) (Xs)] ds, (3.72)

which is valid for any function gt(x) that is smooth on x and t. This relation is a generalization of
Equation (2.95) (see also Theorem 1) to d dimensions.

3.2.4. ♠Stroock–Varadhan martingale problem

Martingales play a prominent role in the theory of continuous-time Markov processes because,
among others, it is possible to characterize Markov processes using martingales [23,79]. This is
proved rigorously in the Theorem on page 182 in Ref. [80]. Here we give an informal version of
the theorem:
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Theorem 4 (Characterization of Markov processes with martingales) Let Xt be a
continuous-time stochastic process that takes values in X . The following two statements
are equivalent:

• Xt is a Markov process with generator Lt, i.e., its instantaneous density obeys ∂tρt =
L†

t ρt, see Equation (3.38).
• The process

Mt = gt(Xt) − g0(X0) −
∫ t

0
ds (∂sgs + Lsgs) (Xs) (3.73)

is a martingale with respect to Xt for all family of real-valued bounded functions
gt(x) defined on X .

The martingale Mt in Equation (3.73) is called Dynkin’s martingale associated with the
function g. Written in an infinitesimal way, the relation (3.73) gives the generalized Itô
formula

d (gt(Xt)) = (∂tgt + Ltgt) (Xt) dt + dMt. (3.74)

Theorem 4 is useful in at least two ways. First, given a Markov process Xt, we can construct
an arbitrary number of martingales by using different choices of the function g in Equation (3.73).
Second, if one proves that the right-hand side of (3.73) is a martingale for all bounded functions
g, then it is guaranteed that Xt is a Markov process with generator Lt. Despite its simplicity,
Theorem 4 is one of the most important results of probability theory, as it has no counterpart
in the theory of ordinary or partial differential equations. It was introduced in the late 1960s
by D.W. Stroock and S.R.S. Varadhan, and it contributed to the boost of martingales in modern
probability theory.

We sketch the proof of the equivalence in the first direction, i.e., we show that Mt given
by Equation (3.73) is a martingale when Xt is a Markov process. Indeed, starting from
Equation (3.73), we obtain

Mt − Ms = gt(Xt) − gs(Xs) −
∫ t

s
du (∂ugu + Lugu) (Xu). (3.75)

Taking the expectation value of Equation (3.75) conditioned on X[0,s] yields

〈
(Mt − Ms)|X[0,s]

〉 = 〈gt(Xt)|X[0,s]
〉− gs(Xs) −

∫ t

s
du
〈
(∂ugu + Lugu) (Xu)|X[0,s]

〉
= 〈gt(Xt)|Xs〉 − gs(Xs) −

∫ t

s
du 〈 (∂ugu + Lugu) (Xu)|Xs〉
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=
(
Ps,t [gt] − gs −

∫ t

s
duPs,u [(∂u + Lu) gu]

)
(Xs)

=
(
Ps,t [gt] − gs −

∫ t

s
du∂u

(
Pu

s [gu]
))

(Xs)

= 0. (3.76)

The second equality of Equation (3.76) follows from the Markov property, the third equality
comes from the definition equation (3.35) of the transition function. In particular, in this equality,
we have used for the first term the relation

〈gt(Xt)|Xs〉 =
∫

dyPs,t(Xs, y)gt(y) = Ps,t[gt](Xs), (3.77)

which follows from the convention given by Equation (3.46), and we have proceeded analo-
gously for the third term. Finally, the fourth equality follows from the forward Kolmogorov
equation (3.39) ∂uPs,u = Ps,uLu, fulfilled by the transition probability.

3.2.5. Dynkin’s martingales

For each function gt, Equation (3.73) provides us a recipe to construct a martingale Mt associated
with a given Markov process Xt. Hence we can use Equation (3.73) to either systematically con-
struct martingales in Markov processes, or to show whether a given process gt(Xt) is a martingale
or not. We call martingales of the form (3.73) Dynkin’s additive martingales. Note that gt does
not necessarily need to be a bounded function to be a martingale, but it is sufficient to guarantee
that 〈|Mt|〉 < ∞. We illustrate some examples below.

3.2.5.1. Dynkin’s martingales associated with jump processes. If Xt is a Markov jump pro-
cess, as defined in Section 3.2.2 with generator given in Equation (3.53), then Dynkin’s
martingales (3.73) take the expression

Mt = gt(Xt) − g0(X0) −
∫ t

0
ds

(
(∂sgs) (Xs) +

∫
X

dy ωs (Xs, y) (gs(y) − gs(Xs))

)
, (3.78)

where we recall that gt(x) here is an arbitrary real function of t ≥ 0 and of x ∈ X . To illustrate how
martingales can be constructed with Dynkin’s formula (3.73), we give some explicit examples.

(1) A Dynkin Martingale associated with the Poisson process. For a Poisson process Nt with
time-dependent transition rate λt, i.e., X = N, N0 = 0, and ωt(n, n + 1) = λt with n ∈ N,
the associated Dynkin’s martingale is given by

Mt = gt(Nt) − g0(0) −
∫ t

0
ds ((∂sgs) (Ns) + λs (gs(Ns + 1) − gs(Ns))) . (3.79)

In particular, the Dynkin martingale associated with the function gt(n) = n takes the
simple expression

Mt = Nt −
∫ t

0
dsλs, (3.80)

which is a generalization of the martingale equation (2.48) for time-independent rates
λt = λ. Analogously, using gt(n) = n2, we obtain the martingale

Mt = N2
t −

∫ t

0
dsλs (2Ns + 1) . (3.81)
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(2) A Dynkin Martingale associated with a three-state model. Let Xt be a three-state
continuous-time Markov jump process defined on X = {A, B, C} and with time-
independent transition rates ω(X , Y ) between states X ∈ X and Y ∈ X (see Figure 3.1
for an illustration). For X0 = A, and for the choice gt(x) = δC,x, with δi,j the Kronecker
delta, the associated Dynkin martingale is given by

Mt = δC,Xt −
∫ t

0
dsω(Xs, C) + (ω(C, B) + ω(C, A))

∫ t

0
dsδC,Xs . (3.82)

The second term in (3.82) is the accumulated inflow probability [96] to state C. On the
other hand, the third term in (3.82) depends on the escape rate from state C, λ(C) =
ω(C, B) + ω(C, A), and also on the empirical occupation probability (1/t)

∫ t
0 dsδ.(Xs) of

state C.

3.2.5.2. Dynkin’s martingales associated with Langevin dynamics. If Xt is a Markov diffusion
process defined by the Langevin equation (3.65), then using the explicit expression (3.67) of the
generator, we obtain Dynkin’s martingales of the form:

Mt = gt(Xt) − g0(X0) −
∫ t

0
ds
(
∂sgs + (μsFs)∇gs +∇ (Ds ∇gs)

)
(Xs). (3.83)

We now provide few illuminating physical examples of the Martingales (3.83).

(1) Martingales associated with Brownian motion. For a Wiener process Xt = Bt with B0 =
0, Dynkin’s martingales are given by

Mt = gt(Bt) − g0(0) −
∫ t

0
ds

(
∂sgs + 1

2
∂xxgs

)
(Bs). (3.84)

For example, the Dynkin martingale associated to the functions gt(x) = x, gt(x) = x2 and
gt(x) = x3 are, respectively, the martingales Bt, B2

t − t and B3
t − 3tBt given by, respec-

tively, Equations (2.61), (2.62) and (2.63), the key examples presented in Section 2.2.2 of
martingales associated with the Wiener process.

(2) Martingales associated with Brownian motion in two dimensions. For Xt = (Bx,t, By,t)
T a

two-dimensional Brownian motion with Bx,t and By,t two independent Wiener processes,
and initial condition X0 = (0, 0)T , Dynkin’s martingales are given by

Mt = gt(Bx,t, By,t) − g0(0, 0) −
∫ t

0
ds

(
∂sgs + 1

2
∂xxgs + 1

2
∂yygs

)
(Bx,t, By,t). (3.85)

For example, Dynkin’s martingale associated with the function gt(x, y) = x2y2 is given
by

Mt = B2
x,tB

2
y,t −

∫ t

0
ds
(

B2
x,s + B2

y,s

)
. (3.86)

3.2.5.3. Dynkin’s martingales associated with harmonic functions. Dynkin’s martingale con-
struction implies that processes of the form ht(Xt), with ht(x) a harmonic function are martingales,
for generic Markovian Xt. We say that ht(x) is a space–time harmonic function if

∂shs + Lshs = 0. (3.87)

As a key example, consider the one-dimensional Brownian motion Bt (Wiener process), whose
Markovian generator is L = 1

2∂xx. An example of a space–time harmonic function associated
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with this generator is ht(x) = x2 − t. Then we recover again that ht(Bt) = B2
t − t is a martingale

with respect to the Wiener process.
Similarly, ht(x) = exp(zx − 1

2 z2t) is an space–time harmonic function for z any real number.
From this result, we recover that the stochastic exponential of Bt introduced in (2.59), ht(Bt) =
exp(zBt − 1

2 z2t), is a martingale with respect to the Wiener process for all values of z.
The harmonic martingale ht(Xt), with ht(x) a space–time harmonic function, plays a crucial

role in Doob’s conditioning theory, which has applications in control theory [82].

3.2.6. Exponential martingales

For all real-valued, bounded functions g, the continuous version of the discrete time multiplica-
tive martingale (3.26) is the exponential martingale

Mt = (g0(X0))
−1 exp

[
−
∫ t

0
ds
(
g−1

s (∂sgs) + g−1
s Ls [gs]

)
(Xs)

]
gt(Xt). (3.88)

A canonical example of an exponential martingale is the stochastic exponential (2.59), cor-
responding to the choices gt(x) = exp(zx) and Xt = Bt the Wiener process. Multiplicative
martingales (3.88) have important applications in nonequilibrium physics. As a matter of fact,
it was shown in [10] that the martingale condition 〈Mt |X[0,s]〉 = Ms for the martingales (3.88) is
a nonperturbative version of the fluctuation–dissipation theorem. Notably, these martingales are
also related to the conditioning theory on rare events [82,97,98].

To prove that Mt in Equation (3.88) is a martingale we first differentiate the process

dMt = −Mt
(
f −1
t (∂tft) + f −1

t Lt [ft]
)
(Xt) dt + Mtf

−1
t (Xt) d (ft (Xt)) . (3.89)

Next, we apply the generalized Itô formula (3.74) to the function ft(Xt), which reads

d (ft(Xt)) = (∂tgt + Ltgt) (Xt) dt + dM g
t , (3.90)

where we note that M g
t is the Dynkin’s martingale associated with gt see Equation (3.73).

Combining Equations (3.89)–(3.90), we obtain

dMt = Mtg
−1
t (Xt) dM g

t . (3.91)

Equation (3.91) implies that Mt is a martingale because M g
t is a martingale and Mt is an Itô

integral of the form (2.69), or equivalently because Mg is the stochastic exponential that we will
introduce later in Section 4.2.5.

3.2.7. Path probability ratios

As a last step in our “world tour” on the relation between Markov processes and martingales
in continuous time, we present explicit expressions for the path probability ratios Rt, as defined
in Equations (2.52)–(2.53). To this aim, we use the Onsager–Machlup approach that represents
measures P that belong to a class P of mutually absolutely continuous measures with action
functionals A(X[0,t]) (see the discussion around Equations 2.56–2.58).

3.2.7.1. Markov jump processes. We consider a Markov jump process with transition rates
ωt(x, y) that determine its generator through Equation (3.53). In addition, we assume that the ini-
tial distribution is ρ0(x). Recall that the trajectories X[0,t] of Markov Jump processes are piecewise
constant functions with consecutive states Xi and jump times Ti, see Equation (3.49).
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The action functional associated with a Markov jump process is

A(X[0,t]) = − ln (ρ0(X0)) −
Nt∑

j=1

ln
(
ωTj(XT −

j
, XT +

j
)
)
+
∫ t

0
dsλs(Xs), (3.92)

where we have used

λt(x) =
∫

y∈X
dyωt(x, y), (3.93)

for the exit rate from state x.

3.2.7.2. Diffusion processes. We consider diffusion processes Xt ∈ Rd defined through their
generator, given in Equation (3.67) with mobility matrix μt ∈ Rd2

, force vector Ft ∈ Rd , and
diffusion matrix Dt ∈ Rd2

, all of which are time dependent. Also, we consider initial distributions
ρ0(x). Note that absolute continuity of the measures P in P requires, among others, that all
measures have the same diffusion matrix Dt.

If the diffusion matrix Dt is independent of X, then the action takes the form [99,100]

A(X[0,t]) = − ln ρ0(X0) − 1

2

∫ t

0

(
D−1

s μsFs
)
(Xs) ◦ Ẋs ds

+ 1

4

∫ t

0

(
μsFs

) · (D−1
s μsFs

)
(Xs) ds + 1

2

∫ t

0
∇ · (μsFs

)
(Xs) ds, (3.94)

where the last term in Equation (3.94) appears due to the Stratonovich convention used in the first
integral. We use the Stratonovich convention here as this convention will prove to be useful in
physics because of its properties under time reversal. An alternative form of the action A, more
commonly used in physics, reads

A(X[0,t]) = − ln ρ0(X0) +
∫ t

0

1

4

(
Ẋs − μs(Xs)Fs(Xs)

)
D−1

s

(
Ẋs − μs(Xs)Fs(Xs)

)
ds

+ 1

2

∫ t

0
∇ · (μsFs

)
(Xs) ds, (3.95)

which is equivalent to Equation (3.94), as in Equation (2.56) the ẊsD−1
s Ẋs can be absorbed into

the normalization constant N ; note that this is possible as Dt is the same for all measures P ∈ P .
However, a complication with Equation (3.95) is that the mathematical meaning of ẊsD−1

s Ẋs is
not clear, even though this term, whatever it signifies, disappears when taking the ratio between
P and another measure Q ∈ P .

The action can also be expressed as

A(X[0,t]) = − ln ρ0(X0) +
∫ t

0
dsLs(Xs, Ẋs), (3.96)

in terms of a Lagrangian

Ls(Xs, Ẋs) ≡ 1

4

(
Ẋs − μs(Xs)Fs(Xs)

)
D−1

s

(
Ẋs − μs(Xs)Fs(Xs)

)+ 1

2
∇ · (μsFs

)
(Xs). (3.97)

If Dt depends on Xt, then the mathematical meaning of the action A is less simple [95,100,101].
In this case, we directly consider the Radon–Nikodym derivative process Rt of Q with respect to
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P that reads [23,85]

Rt = Q(X[0,t])

P(X[0,t])
= ρQ

0 (X0)

ρP
0 (X0)

exp

(
1

2

∫ t

0

(
(μQ

s FQ
s − μP

s FP
s )
)
(Xs) · D−1

s (Xs) ◦ Ẋs

)
,

× exp

(
−
∫ t

0

1

4
(μQ

s FQ
s − μP

s FP
s )(Xs) · D−1

s (Xs)
(
μQ

s FQ
s + μP

s FP
s − 2∇ · Ds

)
(Xs) ds

)
× exp

(
−
∫ t

0

1

2
∇ · [μQ

s FQ
s − μP

s FP
s

]
(Xs) ds

)
. (3.98)

Here, it should be understood that ρP
0 (ρQ

0 ), DP
s (DQ

s ), μP
s (μQ

s ), and FP
s (FQ

s ) determine P (Q).

Chapter 4. Martingales: Mathematical properties

There exist only two kinds of modern mathematics books: one which you cannot read beyond
the first page and one which you cannot read beyond the first sentence.

Cheng Ning Yang. Physics Nobel prize (1957).

The properties of martingales are rich, encompassing various branches of mathematics, see,
e.g., the textbooks [45,63,66]. Instead of giving a complete overview of martingale theory, we
focus on those properties that we think are important for physics. To this aim, we are guided by
recent works on martingales in physics, which we review in later chapters.

This chapter is divided into two main sections: Section 4.1 deals with martingales in discrete
time and Section 4.2 deals with martingales in continuous time.

4.1. Discrete time

4.1.1. Relating submartingales to martingales

If Mn is a positive martingale, then − ln Mn is a submartingale. This is because − ln(x) is con-
vex (its second-order derivative is nonnegative), and a convex function of a submartingale is a
submartingale, as formulated by the following theorem:

Theorem 5 (Convex nondecreasing functions of submartingales) Let Sn be a sub-
martingale and let f (x) be a real-valued function defined on R that is nondecreasing,
convex, and 〈|f (Sn)|〉 < ∞ for all n ∈ N. Then the process f (Sn) is a submartingale.

Proof We verify condition (2.2) that appears in the definition of the submartingale. First, we
apply Jensen’s inequality to the average of the convex function f, leading to

〈f (Sn)|X[0,m]〉 ≥ f
(〈Sn|X[0,m]〉

)
. (4.1)

Subsequently, we use that Sn is a submartingale,

〈Sn|X[0,m]〉 ≥ Sm (4.2)
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and that f is nondecreasing

f
(〈Sn|X[0,m]〉

) ≥ f (Sm). (4.3)

Relation (4.1) together with (4.3) implies that f (Sn) has a nonnegative drift and is thus a
submartingale. �

We will use Theorem 5 in Chapters 5 and 7 to derive the submartingale property of entropy
production and the second law of thermodynamics.

If S is a submartingale and its mean value is a constant independent of time, i.e.,

〈St〉 = c, (4.4)

then St is a martingale. Indeed, the process

〈St|X[0,s]〉 − Ss, t ≥ s, (4.5)

for fixed s, is a nonnegative process with zero expectation, and thus

〈St|X[0,s]〉 = Ss. (4.6)

4.1.2. Doob’s decomposition theorem

We call a stochastic process An predictable if An is a function of X[0,n−1] and we say that a process
is increasing if with probability one, 0 = A0 ≤ A1 ≤ A2 · · · .

It is always possible to decompose a submartingale into a martingale and an increasing process
that is predictable, and this decomposition is unique (see Theorem 2.13 in Ref. [66]).

Theorem 6 (Doob’s decomposition) Let Yn be a discrete-time process that is a function
of the set of trajectories X[0,n] = (X0, X1, . . . , Xn), and integrable (i.e., 〈|Yn|〉 < ∞ for all
n). Then it can be uniquely decomposed as

Yn = Y0 + Mn +
n−1∑
k=0

vk︸ ︷︷ ︸
An

, (4.7)

where we have introduced the conditional velocity

vk = 〈(Yk+1 − Yk) |X[0,k]
〉
. (4.8)

The predictable process An is called the compensator and Mn, defined as

Mn+1 − Mn = Yn+1 − Yn − vn, (4.9)

is a martingale with respect to the underlying process Xn, i.e., 〈Mn|X[0,m]〉 = Mm, for m ≤ n.
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If Yn is a submartingale (supermartingale), then vk ≥ 0 (vk ≤ 0), and the compensator An is
increasing (decreasing). In Theorem 6 “unique” means that if there exist two Doob decompo-
sitions Sn = Mn + An and Sn = M ′

n + A′
n, then for all n ∈ N one has P(Mn = M ′

n, An = A′
n) =

1.

Example 1 Doob decomposition for the square of a stochastic process We consider the Doob
decomposition of the square Yn = Z2

n of a discrete-time process Zn, namely,

Z2
n = Z2

0 + Mn +
n−1∑
k=0

vk , (4.10)

where {
vk ≡ 〈(Z2

k+1 − Z2
k

) |X[0,k]
〉
,

Mn+1 ≡ Mn + Z2
n+1 − Z2

n − vn.
(4.11)

The velocity vn is called the angle bracket process of Zn. Now, if additionally Zn is a martingale
with respect to Xn, then the angle bracket process satisfies

vk = 〈(Z2
k+1 − Z2

k

) |X[0,k]
〉

(4.12)

= 〈(Zk+1 − Zk)
2 |X[0,k]

〉+ 2
〈
Zk+1Zk|X[0,k]

〉− 2
〈
Z2

k |X[0,k]
〉

(4.13)

= 〈(Zk+1 − Zk)
2 |X[0,k]

〉
, (4.14)

where we have used the martingale property of Zn in the third equality. Processes of the type
〈(Zk+1 − Zk)

2|X[0,k]〉 are often called sharp bracket processes and the associated compensator,
which is also called the conditional variance of Zn, reads

Vn =
n−1∑
k=0

vk =
n−1∑
k=0

〈
(Zk+1 − Zk)

2 |X[0,k]
〉
. (4.15)

Note that if Zn is a martingale, then by virtue of Theorem 5 Z2
n is a submartingale with respect to

Xn.

Example 2 Doob decomposition for a function of a Markov chain Xn Theorem 2 directly gives
the Doob decomposition of f (Xn) for all real-valued bounded functions f, viz.,

f (Xn) = f (X0) + Mn +
n−1∑
m=0

∑
x∈X

(
w(Xm, x) − δx,Xm

)
f (x)︸ ︷︷ ︸

An

, (4.16)

where Mn is Dynkin’s additive martingale, as defined in (3.5), and w(x, y) is the transition matrix
of the Markov chain Xn.
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4.1.3. Extreme values

4.1.3.1. Doob’s maximum inequality. Let A be a positive random variable. Markov’s inequal-
ity states that

P (A ≥ λ) ≤ 〈A〉
λ

. (4.17)

Doob’s maximum inequality is a refinement of Markov’s inequality that involves the supremum
of a submartingale. More precisely the following theorem holds:

Theorem 7 (Doob’s maximum inequality) Let Sn be a submartingale. Then

P
(

sup
m≤n

Sm ≥ λ

)
≤ 〈max {Sn, 0}〉

λ
, (4.18)

where λ ≥ 0.

Proof We consider the sequence of sets

�1 = {S1 > λ}, (4.19)

�2 = {S1 ≤ λ, S2 > λ}, (4.20)

...

�k = {S1 ≤ λ, S2 ≤ λ, . . . Sk−1 ≤ λ, Sk > λ}, (4.21)

with λ > 0 and k ≥ 2. Doob’s maximum inequality follows from the following inequalities:

〈Sn〉 ≥
n∑

k=1

P (�k) 〈Sn|�k〉 (4.22)

≥
n∑

k=1

P (�k) 〈Sk|�k〉 (4.23)

≥ λ

n∑
k=1

P (�k) = λ P
(

sup
n′≤n

Sn′ ≥ λ

)
. (4.24)

The first inequality (4.22) follows from the fact that Sn is nonnegative. The second inequal-
ity (4.23) holds because S is a submartingale. Finally, the last inequality is a consequence of the
definition of the sets �k . �

Note that in discrete time, the supremum can be replaced by the maximum, whereas in
continuous time this will not be the case.

In Chapter 7, we use Doob’s maximum inequality to derive the infimum law for entropy
production.
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Figure 4.1. Top: Example trajectory Xn (blue line) of a discrete-time random walker on R given by
Xn = Xn−1 + a + Yn, with X0 = 0, a = 0.1, and Yn (n ≥ 1) a Gaussian random number with zero mean
and unit standard deviation. The red dashed line is the running maximum X ∗

n = maxn′≤n Xn′ associated with
the trajectory, see Equation (4.25). Bottom: Distributions ρX ∗

n
of the maximum X ∗

n of a random walker on
the real line with parameters n = 50, a = 0 (bottom left) and a = 0.1 (bottom right) and with Y a Gaussian
random variable with zero mean and unit variance. Markers are the numerical results of the distribution ρX ∗

n

and the solid line is the martingale bound given in Equation (4.18) with 〈max {Xn, 0}〉 = √
n/2π (left) and

〈max {Xn, 0}〉 = an + O(
√

n exp(−a2n/2)) (right).

4.1.3.2. Application: extreme values of random walkers. Doob’s maximum inequality can be
used to bound the cumulative distribution of extreme values of stochastic processes, which have
attracted considerable attention in various scientific disciplines such as statistical physics [102–
105], climate science [106,107], and finance [108]. Here, for illustrative purposes, we consider
the discrete-time random walk Xn = Xn−1 + a + Yn, as defined in Equation (2.31), for different
values of a and with the noise variable Yn a random variable with zero mean and finite variance,
see Figure 4.1.

It is in general difficult to obtain an exact expression for the cumulative distribution of the
finite-time maximum

X ∗
n = max

n′≤n
Xn′ . (4.25)

For example, for the special case of a = 0 the cumulative distribution of the maximum is
described by the Pollaczek–Spitzer formula [109–112]. The quantity qn(λ) = 1 − P

[
X ∗

n ≥ λ
]

denotes the probability that the process stays below the threshold λ, and therefore we call
it the survival probability. The Pollaczek–Spitzer formula provides a formula for the dou-
ble inverse Laplace transform of the survival probability in terms of the Fourier transform
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φ(k) = ∫∞
−∞ ρY (y) exp(iky) dy of the distribution ρY of the increment [112], viz.,∫ ∞

0

[ ∞∑
n=0

qn(x0)s
n

]
exp(−px0) dx0 = 1

p
√

1 − s
exp

(
− p

π

∫ ∞

0

ln (1 − sφ(k))

p2 + k2
dk

)
. (4.26)

Although it is in general difficult to take the inverse of the double Laplace transform in
Equation (4.26), one can readily bound the distribution of the maximum of a random walker
with the martingale bound equation (4.18). Indeed, it is often easy to determine 〈max {Xn, 0}〉, as
illustrated in Figure 4.1. In Figure 4.1, we compare numerically obtained results for the distribu-
tion of X ∗

n with analytical results from the martingale bound 〈max {Xn, 0}〉/x∗ in Theorem 7. In
particular, we consider the case when Y is a random variable drawn from a standard Gaussian
distribution with a = 0 (left) and with a > 0 (right).

4.1.4. Convergence theorems

A fundamental result in martingale theory is that, under a set of conditions specified in the mar-
tingale convergence theorems, the fluctuations in the trajectories of a martingale decrease as a
function of n, yielding the convergence to an asymptotic limit, i.e.,

lim
n→∞ Mn = M∞. (4.27)

The martingale convergence theorem is a fundamental property of martingales that follows from
the fact that martingales represent a gambler’s fortune in a fair game of chance. Consequently, a
martingale process cannot keep fluctuating as otherwise a gambler could exploit a buy low and
sell high strategy to make profit out of a fair game of chance. Note that this is more than a simple
analogy as the martingale convergence theorem is proved with Doob’s upward crossing lemma,
which precisely bounds the profit a gambler can make out of the buy low and sell high strategy.

There exist two versions of the martingale convergence theorem, one that holds for submartin-
gales bounded from above and another that holds for uniformly integrable martingales.

Now, let us get to the specifics. Let xn, with n ∈ N, be a nondecreasing deterministic
sequence of real numbers that is bounded from above (i.e., supn xn < ∞), then elementary math
gives limn→∞ xn = x∞ ∈ R. The following theorem (Theorem 2.6 in Ref. [66]) generalizes the
previous result to submartingale processes.

Theorem 8 (Submartingale convergence theorem) Let Sn be a submartingale for
which

sup
n
〈max {Sn, 0}〉 < ∞. (4.28)

Then there exists a S∞ for which

〈max {S∞, 0}〉 < ∞, (4.29)

such that

P
(

lim
n→∞ Sn = S∞

)
= 1. (4.30)
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Next we discuss the second version of the martingale convergence theorem that holds for
uniformly integrable processes. We say that a stochastic process An is uniformly integrable if

lim
m→∞ sup

n∈N∪{0}
〈|An| 1|An|≥m〉 = 0. (4.31)

Note that because m in Equation (4.31) is independent of n, Equation (4.31) implies that An cannot
escape to infinity. Uniform integrability is important since it allows us to swap expectation values
with limits, i.e., 〈

lim
n→∞ An

〉
= lim

n→∞〈An〉, (4.32)

if limn→∞ An exists with probability 1.
The properties of uniformly integrable martingales can be characterized with the follow-

ing theorem (Theorem 2.7 in Ref. [66]), which states that uniformly integrable martingales and
conditional expectations processes are equivalent:

Theorem 9 (Convergence theorem for uniformly integrable martingales) Let Mn be
a martingale defined on n ∈ N ∪ {0}. The following conditions are equivalent:

• the process Mn is uniformly integrable;
• supn〈|Mn|〉 < ∞ and thus M∞ = limn→∞ Mn exists. In addition, Mn is regular, which

means that with probability 1 it holds that

Mn = 〈M∞|X[0,n]〉. (4.33)

• M∞ = limn→∞ Mn exists and

lim
n→∞〈|M∞ − Mn|〉 = 0. (4.34)

Uniform integrability extends thus the martingale sequence from the natural numbers N to the
natural numbers extended with infinity N ∪ {∞}.

Several fundamental results in probability theory can be derived from Doob’s martingale
convergence theorem. A notable example is Lévy’s upwards theorem, which states that

lim
n→∞〈A|X[0,n]〉 = 〈A|X[0,∞)〉 (4.35)

holds for integrable random variables A, where convergence should be understood either with
probability 1 or in the L1 norm. In addition, Lévy’s upwards theorem implies Kolmogorov’s
zero-one law, which states that tail events �, which are events independent of any finite sequence
X1, X2, . . . , Xn, i.e.,

P
[
�, X[0,n] = x[0,n]

] = P [�] P
[
X[0,n] = x[0,n]

]
(4.36)

occur either with probability 1, P[�] = 1, or with probability 0, P[�] = 0. This law is used,
i.e., in percolation theory [113], to show that an infinite, percolating cluster exists either with
probability 0 or 1 [114].
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Figure 4.2. Three examples of stopping times evaluated over trajectories of a discrete-time biased random
walk on Z, with forward jump probability q = 0.7 and backward jump probability 1− q = 0.3. Left: First
passage time to reach the absorbing boundary �+ = 5. Middle: First escape time from the interval [−3, 5].
Right: min(T1, 10) with T1 the first passage time to reach the absorbing boundary �+ = 5. In the three
examples, the blue zigzag lines are a linear interpolation between the discrete values Xn and a guide to the
eye, the thick horizontal lines illustrate the boundaries of the stopping-time problem, and the dashed vertical
lines denote the time when the stopping condition takes place.

4.1.5. Stopping times

Martingales can be used to study stochastic processes at random times, and this has been up to
now one of its main uses in stochastic thermodynamics. Therefore, in this section we introduce
the concept of a stopping time.

4.1.5.1. Definition and examples. Put simply, a stopping time is the time when a specific cri-
terion is met for the first time. Importantly, the stopping criterion obeys causality, and this makes
stopping times suitable for modelling physical processes.

A stopping time is a nonnegative random variable T = T (X[0,∞)) ∈ N ∪ {0,∞} that is
statistically independent of the part of the trajectory X[T +1,∞) that comes after the stopping
time.

Note that this definition can be generalized to continuous time. Examples of stopping times
are:

• The mth time a stochastic process visits a subset of X . In the particular case of m = 1, we
obtain first-passage times.

• The first time a functional f (X[0,n]) ∈ R defined on the trajectories of X exits an interval
(−�−, �+). Since the main observables of stochastic thermodynamics are functionals, this
example is of particular importance. In the specific case of f (X[0,n]) = Xn, this stopping
time equals the first escape time of Xn from the interval (−�−, �+).

• T1 ∧ n = min(T1, n), where T1 is the first time that a prescribed condition is met for the
stochastic process of interest, and n ∈ N determines a finite time horizon.

On the other hand, the following quantities are not stopping times:

• The time when a random walker leaves indefinitely a subset of X
• The time a stochastic process attains a minimum or maximum value (which may be a local

minimum or maximum)
• The occupation time spent in a given subset of X (Figure 4.2).
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4.1.5.2. Doob’s optional stopping theorems. Consider a gambler who participates in a fair
game of chance. Can (s)he make on average profit by leaving the game at an intelligently chosen
moment T ? In other words, is it possible that 〈MT 〉 > 〈M0〉?

The optional stopping theorem states that 〈MT 〉 = 〈M0〉, given certain conditions on the stop-
ping time T and the martingale M. Loosely said, these conditions impose that the gambler does
not have access to an infinite budget. Indeed, if the gambler has access to an infinite budget, then
strategies to make profit out of a fair game of chance exist, and this leads to paradoxes, the most
well known being the St. Petersburg paradox [115].

We illustrate the optional stopping theorem with the example of a gambler’s wealth Fn in a
fair coin toss game, see Equation (2.6). We assume that F0 = finit. If

T (1) = min {n ≥ 0 : Fn = finit + m+} (4.37)

with m+ ∈ N, then

〈FT (1)〉 = finit + m+ ≥ finit = F0, (4.38)

which implies that the gambler is earning money on average and that the optional stopping
theorem does not apply. However, if

T (2) = min {n ≥ 0 : Fn = finit + m+ or Fn = finit − m−} (4.39)

with m+, m− ∈ N, then

〈FT (2)〉 = finit = F0. (4.40)

The difference between the stopping times T (1) Equation (4.37) and T (2) Equation (4.39) is
that in the first case the gambler has access to an infinite budget (Fn can take arbitrary large
negative values) whereas in the second case the gambler has a finite budget (Fn is bounded
between finit − m− and finit + m+).

In what follows, we consider several versions of Doob’s optional stopping theorem. Amongst
Doob’s theorems, the first important result that we review is the following (Theorem 2.1, chapter
VII in Ref. [22]).

Theorem 10 (Doob’s optional sampling theorem) Let Mn be a martingale (submartin-
gale) and let T be a stopping time, both with respect to the process Xn. Then the
stopped process MT ∧n, with T ∧ n = min{T , n} a finite stopping time, is also a martingale
(submartingale), i.e.,

〈MT ∧n|X[0,m]〉 = MT ∧m
(〈MT ∧n|X[0,m]〉 ≥ MT ∧m

)
, (4.41)

for 0 ≤ m ≤ n.
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Proof The process MT ∧n is integrable, since it is a finite sum of integrable random variables.
Because of the tower property of conditional expectations, it is sufficient to show that

〈MT ∧n|X[0,n−1]〉 = MT ∧(n−1). (4.42)

It holds that

〈MT ∧n|X[0,n−1]〉 = MT ∧(n−1) + 〈(Mn − Mn−1)1T ≥n|X[0,n−1]〉 (4.43)

= MT ∧(n−1) + 1T ≥n〈(Mn − Mn−1)|X[0,n−1]〉 = MT ∧(n−1), (4.44)

where we used the indicator function Equation (2.51) for

� = {X[0,∞] : T (X[0,∞]) ≥ n
}

. (4.45)

The proof in the case of submartingales is analogous. �

Applying the optional sampling theorem to uniform integrable martingales, see
definition (4.31), we obtain Doob’s optional stopping theorem (Theorem 2.9 in [66]).

Theorem 11 (Doob’s Optional stopping, version I) Let Mn be a uniformly integrable
martingale and let T1 and T2 be two stopping times with P(T2 ≥ T1) = 1, then

〈MT2 |X[0,T1]〉 = MT1 . (4.46)

For the particular case of T1 = 0 and T2 = T , we obtain

〈MT |X0〉 = M0, (4.47)

i.e., the average of a uniformly integrable martingale conditioned on the initial state X0

equals its initial value M0.

For simplicity, we give here the proof of the particular case (4.47).
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Proof According to Theorem 10, it holds that

lim
n→∞〈MT ∧n|X0〉 = M0. (4.48)

Since MT ∧n is a uniformly integrable, it holds that

lim
n→∞〈MT ∧n|X0〉 = 〈 lim

n→∞ MT ∧n|X0〉. (4.49)

In addition,

〈 lim
n→∞ MT ∧n|X0〉 = 〈MT ∧∞|X0〉 = 〈MT |X0〉. (4.50)

Equations (4.48)–(4.50) imply (4.47), which is what we meant to prove. �

An alternative version of Doob’s optional stopping theorem corresponds to the case of a
gambler that has a finite budget (Theorem 4.1.1 in [78]).

Theorem 12 (Doob’s optional stopping, version II) Let Mn be a martingale and let T
be a stopping time. If P(T < ∞) = 1 and if there exists a constant m such that |Mn| ≤ m
for all n ≤ T , then

〈MT 〉 = 〈M0〉. (4.51)

The two versions of Doob’s optional stopping theorem are related to each other, and in fact
one can derive Theorem 12 from Theorem 11, see for example the proofs in the appendix of
Ref. [13].

The optional stopping theorem is one of the key properties that characterize martingales, and
in fact, it is a defining property of martingales [90]. Indeed, as we will show, the condition
equation (2.1) can be written in terms of the stopping time

T = m1�(X[0,m]) + n1�c(X[0,m]), (4.52)

where � is a measurable subset of the set of trajectories x[0,m], where �c is the complement of
�, where 1�(x[0,m]) is the indicator function that returns the value 1 when x[0,m] ∈ � and 0 when
x[0,m] /∈ �, and where m ≤ n.

Theorem 13 A stochastic process Mn = M [X[0,n]] is a martingale if and only if for every
bounded stopping time T ,

〈|MT |〉 < ∞ (4.53)

and

〈MT 〉 = 〈M0〉. (4.54)
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Proof We show the if part, as the only if part readily follows from the optional stopping theorem.
Applying the optional stopping theorem to the stopping time T defined in Equation (4.52)

yields

〈M0〉 = 〈MT 〉 = 〈Mn1�c(X[0,m])〉 + 〈Mm1�(X[0,m])〉, (4.55)

and applying Equation (4.54) to the stopping time n yields,

〈M0〉 = 〈Mn〉 = 〈Mn1�c(X[0,m])〉 + 〈Mn1�(X[0,m])〉. (4.56)

Equations (4.55) and (4.56) imply that

〈Mn1�(X[0,m])〉 = 〈Mm1�(X[0,m])〉 (4.57)

for all subsets � of the set of trajectories x[0,m]. By the tower property of conditional expectations,
we can rewrite this equation as

〈〈Mn|X[0,m]〉1�(X[0,m])〉 = 〈Mm1�(X[0,m])〉, (4.58)

for all subsets � of the set of trajectories x[0,m], and therefore by the definition of conditional
expectations it holds with probability 1 that

〈Mn|X[0,m]〉 = Mm. (4.59)

�

4.1.5.3. First-passage problems of random walks with martingales. We use the optional stop-
ping theorem to derive the statistics of first-passage times in a stochastic process. We consider the
random-walk example Xn discussed in Section 2.1.3. Here, Xn is a discrete-time, biased random
walker on Z with X0 = 0; it moves one step in the positive (negative) direction with probability
q (1−q). We consider the first-passage time

T (2) = min {n ≥ 0 : Xn = −x− or Xn = x+} , (4.60)

where the constants x−, x+ ∈ N, such that −x− and x+ are absorbing sites. In other words, T (2)

is the first escape time of the walker from the interval (x−, x+). Using Doob’s optional stop-
ping theorem, version II, we derive exact results for the statistics of T (2). Let us consider the
martingale (2.24), denoted here as

Mn = ηXn with η = (1 − q)/q. (4.61)

Applying Theorem 12 to the martingale Mn given by Equation (4.61), we obtain

〈MT (2)〉 = P+ηx+ + (1 − P+)η−x− = 1, (4.62)

where P+ = P(XT (2) = x+), and we have used the fact that P− = P(XT (2) = −x−) = 1 − P+
(i.e., Xn escapes the interval at finite time with probability 1). Solving Equation (4.62) towards
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P+ we obtain

P+ = 1 − η−x−

ηx+ − η−x−
. (4.63)

Second, we apply Theorem 12 to the martingale Xn − (2q − 1)n, see Equation (2.28), obtaining

〈T (2)〉 = 〈XT (2)〉
(2q − 1)

. (4.64)

Using

〈XT (2)〉 = P+x+ − (1 − P+)x− = 1 − η−x−

ηx+ − η−x−
x+ − ηx+ − 1

ηx+ − η−x−
x− (4.65)

in (4.66), we obtain the following explicit expression for the mean first-passage time:

〈T (2)〉 = 1

2q − 1

(
1 − η−x−

ηx+ − η−x−
x+ − ηx+ − 1

ηx+ − η−x−
x−

)
. (4.66)

Analogously, the optional stopping theorem can be used to derive an explicit expression for the
second moment 〈(T (2))2〉 of the first-passage time and its generating function, see , e.g., the
appendices of Ref. [35].

4.1.6. ♠Martingale central limit theorem

Central limit theorems refer to a collection of results that describe how the sum of a large number
of random variables converges to a normal distribution. The study of central limit theorems initi-
ated in the beginning of the nineteenth century with the work of Pierre–Simon Laplace, who was
the first to observe the universal character of the Gaussian distribution [116]. The central limit
theorem has been extended and refined in various ways ever since, see Ref. [117] for an overview
of the history of central limit theorems. The idea underlying the different central limit theorems
is however the same, viz., the statistics of the sum of a large number of variables converges to a
normal distribution if the variables are weakly correlated and the sum is not dominated by a few
large outliers.

Let us consider a sum of n real-valued random variables Yj given by

X̃n =
n∑

j=1

Yj. (4.67)

Central limit theorems determine under which conditions the statistics of a rescaled and shifted
version of X̃n are described by the normal distribution, i.e.,

lim
n→∞

〈
δ

(
X̃n − μn

σn
− x

)〉
= 1√

2π
exp(−x2/2), (4.68)

where δ(x) is the Dirac delta distribution, μn is the average shift, and σn determines the scaling
of X̃n − μn with n.

The version of the central limit theorem that is best known holds for sums X̃n of iid random
variables Yj with fixed mean μ and finite variance σ 2, as defined in Equation (2.7). This central
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limit theorem states that Equation (4.68) holds for the standard “norming” (see Theorem 27.1 of
Ref.[118])

μn = μ n, and σn = σ
√

n. (4.69)

A natural extension of the central limit theorem for iid random variables considers sums of
random variables Yj that are independent, but not identically, distributed, random variables.
Assuming that Yj are independent random variables with mean μj and finite variance σj, then
Equation (4.68) applies for (see Theorem 27.2 of Ref. [118])

μn =
n∑

j=1

μj and σ 2
n =

n∑
j=1

σ 2
j , (4.70)

as long as the Lindeberg condition

lim
n→∞

1

σ 2
n

n∑
j=1

∫
|yj|≥εσn

dyj y2
j ρY

(
yj
) = 0 (4.71)

holds for all ε > 0. Note that the Lindeberg condition compares the total accumulated variance
σ 2

n , which is a measure for the number of variables contained in the sum, with the statistical
weight accumulated in the tails of the distribution determined by

∑n
j=1

∫
|yj|≥εσn

dyj y2
j ρY (yj). The

central limit theorem holds as long as the former is infinitely larger than the latter.
Martingales are natural candidates to extend the central limit theorem to the case of dependent,

albeit uncorrelated, random variables Yj. Indeed, a martingale Mn can be written as the sum of
martingale differences

Yj = Mj − Mj−1. (4.72)

The martingale condition implies that

〈Yi1 Yi2 . . . Yik 〉 = 0 (4.73)

holds for any k-tuple of distinct indices (i1, i2, . . . , ik). Therefore, Mn is a sum X̃n of n random
variables Yj with vanishing autocorrelation function.

Central limit theorems for martingales have been derived originally by Lévy [119,120], and
many extensions has been derived since, see [121] for an overview. We consider here the version
of the martingale central limit theorem of Ref. [122], as for clarity we do not want to deal with
the more general case of double indexed sequences considered in Ref. [121].

Theorem 14 (Martingale central limit theorem) Let Mn =∑n
j=1 Yj be a zero mean

martingale, and let Vn be its conditional variance, as defined in Equation (4.15). Assume
that for all ε > 0,

lim
n→∞P

(∣∣Vn − σ 2
n

∣∣ > ε
) = 0, (4.74)

where σ 2
n = 〈Vn〉, and assume that the Lindeberg condition equation (4.71) holds. Then

the central limit theorem equation (4.68) applies for X̃n = Mn, μn = 0, and σ 2
n given by

the expected value of the conditional variance.
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Note that the martingale central limit theorem also relies on the Lindeberg condition, but now
the expected value 〈Vn〉 of the conditional variance plays the role of σn, instead of the sum of the
variance equation (4.70) as was the case for independent random variables.

Just as is the case for sums of iid random variables, in the continuous-time limit a properly
rescaled martingale process converges to a Wiener process, see Theorem 3 in Ref. [122]. In
addition, martingales obey a law of iterated logarithm, which determines that the absolute value
of the maximum of Mn grows as

√
2σ 2

n log log σ 2
n [121].

4.1.7. Elephant random walks: convergence and central limit theorem

We apply the martingale convergence theorem 8 to the martingale Mn of Equation (2.43), associ-
ated with the elephant random walk Xn defined in (2.36). As shown in Ref. [58], the conditional
variance Vn of the martingale Mn, as defined in Equation (4.15), is bounded from above by

νn =
n∑

k=1

a2
n > Vn. (4.75)

The asymptotic behavior of the sequence νn depends on the memory parameter p, namely,

νn ∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(�(2p))2

3 − 4p
n3−4p, if p ∈ [0, 3/4),

π

4
log n, if p = 3/4,

b, if p ∈ (3/4, 1],

(4.76)

where b is a finite number that can be expressed in terms of a generalized hypergeometric
function [58].

It follows from Equation (4.76) that supn〈Mn〉 is finite, as supn〈Mn〉 ≤ supn

√〈M 2
n 〉 =

supn

√∑n−1
k=0〈(Mk+1 − Mk)2〉 ∼ b, where we have used (4.10) and (4.15). Therefore, Theorem 8

applies and the martingale Mn converges almost surely to a finite random variable M∞ when
p > 3/4. As shown in Ref. [58], M∞ has a sub-Gaussian distribution with a p-dependent kurtosis
K(p) that decreases monotonically as a function of p, such that K(3/4) = 3 and K(1) = 1. Con-
sequently, according to Equations (2.42) and (2.43), the elephant random walk process converges
almost surely to

Xn ∼ n2p−1 M∞
�(2p)

, (4.77)

which is superdiffusive for p > 3/4. Note that for p → 3/4 it approaches the diffusive regime
p ∈ [0, 3/4). We refer the reader to Figure 4.3 where we plot example trajectories of Xn for
p = 0.5, p = 0.7, and p = 0.8.

We discuss the implications of the martingale central limit, Theorem 14, on the elephant ran-
dom walk. The martingale Mn, given by Equation (2.43), satisfies the martingale central limit
theorem when p ≤ 3/4 [58,123,124]. Indeed, as indicated by Equation (4.76), the conditional
variance Vn grows indefinitely for p ≤ 3/4. This argument can be made rigorous, and in [58]
Bercu has shown that the martingale Mn satisfies the martingale central limit if p ≤ 3/4. Using
Equations (2.42) and (2.43), it follows that also Xn obeys a central limit theorem with μn = 0 and
σn = √n/(3 − 4p) or σn = √n log(n) for p ∈ [0, 3/4) or p = 3/4, respectively. For p > 3/4, the
conditional variance Vn converges to a finite limit, and hence the Lindeberg condition is not
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Figure 4.3. Illustration of the implication of the martingale central limit theorem for the trajectories of the
elephant random walk Xn with memory parameter p. Plots show four trajectories of the elephant random
walk for three values of p. Upper left panel: p = 0.5, corresponding to a simple random walk without mem-
ory. The standard central limit theorem applies, and in the asymptotic (or continuum) limit Xn converges
to a standard Brownian motion with 〈XnXm〉 = m for m < n. Upper right panel: p = 0.7, corresponding to
a diffusive random walk with memory. The martingale central limit theorem applies, and in the asymptotic
limit Xn converges to a Brownian motion with a nontrivial memory kernel, such that 〈XnXm〉 = 5n0.6m0.4

for m < n. Lower panel: p = 0.8, corresponding with the superdiffusive regime. The martingale central
limit theorem does not apply, and the asymptotic limit takes the form Xn ∼ Yn0.6 with Y a time-independent
random variable.

satisfied. In this case, the correlations in the process are too strong to generate enough data in
the process, as quantified by Vn. The distinction between the diffusive regime, where the cen-
tral limit theorem applies, and the superdiffusive regime, with strong memory effects, is also
apparent in the continuum limit of the model [123]. For p ∈ [0, 3/4), X nt!/

√
n, with  a! the

floor function, converges for large n to a Wiener process Bt with zero mean and autocovari-
ance 〈BtBs〉 = s(t/s)2p−1/(3 − 4p) for 0 < s ≤ t, while in the superdiffusive regime, X nt!/n2p−1

converges to t2p−1Y with Y a real-valued random variable independent of time.

4.2. Continuous time

4.2.1. Properties of continuous-time martingales that carry over from discrete time

Fundamental properties of martingales, such as Doob’s optional stopping theorems and Doob’s
maximum inequality, carry over to the continuous-time case if we assume that the trajec-
tories of the martingale are right continuous, i.e., the process is continuous with occasional
jumps. Fortunately, according to Doob’s regularity theorem, see Theorem 3.1 in Ref. [66],
(sub)martingales can be considered right-continuous when the mean value 〈St〉 is right continu-
ous, i.e., limε→0+〈St+ε〉 = 〈St〉. Indeed, in this case there exists a process S̃t that is right continuous
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and for which P(S̃t = St) = 1 for all t ≥ 0. So, Doob’s regularity theorem implies that when
working with martingales or submartingales we can assume that we work on its right continuous
modification, and hence Doob’s optional stopping theorems and maximum inequality apply to
this modification.

4.2.2. ♠Local martingales

A notable distinction between martingale theory in continuous time and martingale theory in
discrete time is that in continuous time there exist processes that are not martingales, even though
they are locally driftless. Such processes are called local martingales, and just as martingales they
play an important role in the theory of stochastic processes in continuous time.

The formal definition for a local martingale goes as follows:

We say that a process Lt is a local martingale if there exists a sequence of nondecreas-
ing stopping times Tn with n ∈ N such that [125]

• with probability 1, limn→∞ Tn = ∞;
• the stopped process L(t ∧ Tn) is a uniform integrable martingale for each n.

A martingale is a local martingale, since we can set Tn = n. We speak of a strict local mar-
tingale if a stochastic process is a local martingale but not a martingale [126]. In discrete time,
local martingales are martingales, see Theorem VII.1 in [127], and hence strict local martingales
are a distinct feature of continuous-time processes.

One way to realize the sequence of stopping times Tn is through a random time transformation.
A random time τ(X[0,t]) is a nonnegative and increasing process in t, and it can be used to define
a sequence of stopping times by

Tn = inf
{
t ≥ 0 : τ(X[0,t]) > n

}
. (4.78)

This yields the following alternative characterization of local martingales.

For local martingales Lt, there exists a random-time transformation

t → τ(X[0,t]),

such that Lτ is a martingale.

4.2.2.1. Itô-integrals and random time transformations. The importance of local martingales
follows from the fact that Itô integrals of Equation (2.64), copied here for convenience

It =
∫ t

0
Zs dBs,

are local martingales. Indeed, Itô integrals exist for integrands Ds that obey

P
(∫ t

0
Z2

s ds < ∞
)

= 1, (4.79)
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which is a weaker condition than Equation (2.67), that for convenience we copy here as well,∫ t

0
〈Z2

s 〉 ds < ∞.

While the latter condition implies that It is a martingale, the previous condition (4.79) implies
that It is a local martingale, see Ref. [64]. Indeed, consider a general Itô integral

dIt

dt
= Zt

dBt

dt
, (4.80)

with Zt = Z(I[0,t], t) ≥ 0 and Bt a Brownian motion. Define the random time

dτt

dt
= Z2

t , (4.81)

with time change rate Z2
t . It then holds that [64]

dIζτ

dτ
= dĨτ

dτ
= dBτ

dτ
, (4.82)

with τ ∈ R+ the time parameter, and where

ζτ = inf
{
s ≥ 0 : τs(I[0,s]) ≥ τ

}
(4.83)

is the functional inverse of τt(I[0,t]). Note that according to Equations (4.80)–(4.82) a rescaling
of the form Zt dBt = dBτ requires that dτ = Z2

t dt, which follows from the fundamental property
〈B2

t 〉 = t of the Brownian motion. In physics notation, we drop the tilde, writing Ĩτ = Iτ and
understanding that this is I expressed in the time τ . Hence, according to Equation (4.82), Iτ is a
Brownian motion and thus a martingale, and therefore It is a local martingale.

4.2.2.2. Sufficient conditions for martingality of a local martingale. We discuss here a few
criteria to determine whether a local martingale is a martingale. If the local martingale Lt is
bounded, i.e., 〈sups≤t |Ls|〉 < ∞, then it will be martingale (see Theorem 51 in chapter I page 38
of [70]). Another criterion uses the quadratic variation (Corollary 3 of Theorem 27 in chapter II
of [70]).

Theorem 15 (Condition for a local martingale to be a martingale) A local martin-
gale Lt is a martingale with 〈L2

t 〉 < ∞ for all t ≥ 0 if and only if 〈[L, L]t〉 < ∞ for all
t ≥ 0. Moreover, it holds that

〈L2
t 〉 = 〈[L, L]t〉. (4.84)

The formula (4.84) is called the Itô isometry. Theorem 15 implies that the Itô isometry is
a fundamental property of square integrable martingales. Finally, if M is a nonnegative, local
martingale with 〈M0〉 < ∞, then M is a supermartingale (Lemma 14.3 in section IV.14 of [63]).
This clarifies why in the panel (b) of Figure 4.4 the mean value 〈Xt〉 is a decreasing function.
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Figure 4.4. Illustration of a martingale (left) and a strict local martingale (right). We show three realizations
of the process (4.85) for k = 0.5 (left) and k = 1.5 (right). The dotted green curve is an estimate of the
average 〈It〉 based on an empirical average over 106 realizations of the process. If k = 0.5, then 〈It〉 = 1 and
the process is driftless, whereas for k = 1.5 the mean value 〈It〉 decreases as a function of t.

4.2.2.3. Example of a local martingale. We consider an example of a strict local martin-
gale, i.e., a local martingale that is not a martingale. Consider the Itô unidimensional stochastic
differential equation [128,129]:

İt = Ik
t Ḃt, (4.85)

with I0 = 1, k a real number, and Bt a Brownian motion as before.
The physical picture is as follows: the process It is nonnegative and it has an absorbing state

at It = 0. If k > 1, then the diffusion constant gets small enough for It → 0, such that It gets
trapped near the origin. As a consequence, 〈It〉 decreases as a function of t and the Itô integral
It is not a martingale. On the other hand, when k < 1, then the diffusion constant does not decay
fast enough for Xt → 0 and the process reaches the origin in a finite time. In other words, if
T0 = inf{t > 0 : Xt = 0}, then P(T0 < ∞) = 1. In this case, the process Xt∧T0 is a martingale as
shown in Ref. [128] and illustrated in Figure 4.4.

4.2.3. Doob–Meyer decomposition

Local martingales appear in the decomposition of a process into a martingale and a predictable
process, which extends the Doob decomposition theorem, given by Theorem 6, to processes in
continuous time (Theorem 16 in chapter III on page 116 in [70]). In continuous time, a stochastic
process At is predictable if 〈At|X[0,t− dt]〉 = At + O (dt).

Theorem 16 (Doob–Meyer decomposition) Let Yt be a right-continuous stochastic
process function of the set of trajectories X[0,t] and integrable (i.e., 〈|Yt|〉 < ∞ for all t).
Then it can be uniquely decomposed as

Yt = Y0 + Lt +
∫ t

0
vs ds︸ ︷︷ ︸
At

, (4.86)
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where we have introduced the conditional velocity

vs = lim
h→0+

〈
Ys+h − Ys

h

∣∣∣∣X[0,s]

〉
The predictable process At is called compensator and Lt is a local martingale with respect
to the underlying process Xt.

We now give some remarks about Doob–Meyer decomposition theorem.

• If Yt is a submartingale (supermartingale), then vs ≥ 0 (vs ≤ 0) and then the compensator
At is increasing (decreasing).

• The compensator of the square X 2
t of a stochastic process is denoted by 〈Xt, Xt〉 and called

the predictable quadratic variation or sharp bracket of X [70]. For continuous processes,
the predictable quadratic variation equals the quadratic variation defined in Equation (2.71),
but for processes with jumps these are in general different. Take for example the counting
process Nt of example (2.48). In this case, [Nt, Nt] = Nt, whereas 〈Nt, Nt〉 = λt. On the
other hand, for the Brownian motion, [Bt, Bt] = 〈Bt, Bt〉 = t.

• Theorem 4 directly gives the Doob–Meyer decomposition for a real-valued bounded
function ft(Xt) evaluated on a Markovian process Xt, viz.,

ft(Xt) = f (X0) + Mt +
∫ t

0
ds (∂sfs + Lsfs) (Xs)︸ ︷︷ ︸

At

, (4.87)

where Mt is the Dynkin’s additive martingale, as defined in (3.73), and Ls is the generator
of Xt.

4.2.4. Continuous martingales

We consider the case of continuous martingales, i.e., martingales with trajectories that are contin-
uous functions of time. The main result we discuss here is the martingale representation theorem,
which states that for square integrable, continuous martingales the integrator dMs in the Itô
integral can be assumed to be a Brownian motion.

As discussed before, an Itô integral It =
∫ t

0 Zs dBs, as defined in Equation (2.64), with an
integrand Zt that obeys Equation (2.67), i.e.,

∫ t
0〈Z2

s 〉 ds < ∞, is a martingale. In addition, it is
square integrable. Indeed, from Itô’s formula, see Appendix B.3, it follows that

I2
t = 2

∫ t

0
IsZs dBs +

∫ t

0
Z2

s ds (4.88)

and since 〈∫ t
0 IsZs dBs〉 = 0,

〈I2
t 〉 =

〈∫ t

0
Z2

s ds

〉
, (4.89)

which is finite, as assumed with Equation (2.67).
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Remarkably, the converse is also true, i.e., a square integrable martingale with respect to the
Brownian motion B[0,t] is an Itô integral. This constitutes the martingale representation theorem
(Theorem 4.3.4 in [64]).

Theorem 17 (Martingale representation theorem) Suppose Mt is a martingale relative
to Bt and suppose that 〈M 2

t 〉 < ∞ for all t ≥ 0. Then there exists a unique Zt evaluated on
the trajectories X[0,t] that satisfies

∫ t
0〈Z2

s 〉 ds < ∞ and that satisfies with probability 1,

Mt = 〈M0〉 +
∫ t

0
Zs dBs (4.90)

for all t ≥ 0.

As an illustrative example, consider the martingale B2
t − t, see Equation (2.62), which can be

expressed as an Itô integral as follows:

Mt = B2
t − t = 2

∫ t

0
Bs dBs, (4.91)

where the second equation follows from applying Itô’s lemma, see Equation (2.88).

4.2.5. ♠Stochastic exponential

As we will see in the next chapter, the exponentiated, negative, fluctuating, entropy production of
a nonequilibrium stationary process is a stochastic exponential. For this reason, we discuss here
stochastic exponentials in more detail.

Let Xt ∈ Rd be a possibly multidimensional càdlàg process, i.e., a process with right-
continuous trajectories (Xt+ = Xt) that have left limits everywhere (Xt− exists), and let Yt(X[0,t]) ∈
R be a stochastic process defined on Xt. The stochastic (Dolé ans–Dade) exponential [130]
associated with Y is the solution of the stochastic differential equation [70]

Ėt(Y ) = Et−(Y )Ẏt, (4.92)

where Et− = limε→0+ Et−ε and with E0 = 1.
The stochastic exponential is specified by the process Yt and therefore we denote it by

Et(Y ); sometimes we drop Y because it is clear which process is meant. We remark that the
notation Et(Y ) is done in analogy with exponentials, yet the process Et(Y ) in Equation (4.92)
is a functional of the trajectory Y[0,t]. For the particular case of Yt = Bt we recover, using
Equation (4.92), the stochastic exponential associated with the Wiener process, whose solution is
given in Equation (2.59) with z = 1, i.e.,

Et(B) = exp

(
Bt − t

2

)
. (4.93)

Note that interpreting Equation (4.92) in Stratonovich, we would obtain the solution exp(Yt −
Y0). However, the stochastic exponential use this equation in the Itô interpretation, leading to a
different stochastic process.
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If Yt = Lt, a local martingale, then also E(L) is a local martingale, and hence the stochastic
exponential inherits the local martingale property. In addition, if Et(L) > 0, then it is a pos-
itive supermartingale [70,90]. If Et(L) > 0, then a necessary and sufficient condition for the
martingality of a stochastic exponential is that

〈Et(L)〉 = 1 (4.94)

holds for all t, which is reminiscent of the integral fluctuation relation, see below. Equation (4.94)
follows from the fact that Et(L) is a supermartingale with constant expectation, see the discussion
around Equation (4.4). In the present case, for which Et(L) > 0 and (4.94) holds, we can define
the path probability

Q(X[0,t]) ≡ Et(L)P(X[0,t]) (4.95)

so that

Et(L) = Rt = Q(X[0,t])

P(X[0,t])
. (4.96)

Hence, not all stochastic exponentials are Radon–Nikodym derivative processes, but if Et is a
positive, martingale, then it is.

On the other hand, unlike for the local-martingale property, the stochastic exponential does not
inherit the martingale property. Indeed, if Yt = Mt, a martingale process, then it is not guaranteed
that Et(M ) is a martingale. Instead, one needs to verify some additional conditions that we discuss
below.

Let us consider a few examples of stochastic exponentials:

4.2.5.1. Stochastic exponential of a differentiable function. If It = ft, with ft ∈ R a differen-
tiable function evaluated on t, then we obtain the differential equation

Ėt(f ) = Et(f )ḟt (4.97)

with solution

Et(f ) = exp(ft − f0). (4.98)

Note that this is because Itô and Stratonovich calculus are the same for differentiable functions.

4.2.5.2. Stochastic exponential of a continuous process. Let X be a possibly multidimensional
process, and let Yt(X[0,t]) ∈ R be a continuous càdlàg process. Equation (4.92) then reads

Ėt = EtẎt (4.99)

and is solved by

Et(Y ) = exp

(
Yt − Y0 − 1

2
[Y , Y ]t

)
, (4.100)

where [Y , Y ]t is the quadratic variation defined in Equation (2.71).5
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As an example of stochastic exponential of a continuous process, consider the case of
Equation (2.82), copied here for convenience,

d

dt
exp(−St)︸ ︷︷ ︸
Et(Y )

= − exp(−St)︸ ︷︷ ︸
Et(Y )

√
2DtḂt. (4.101)

In this case, Yt = − ∫ t
0 ds

√
2DsḂs and the quadratic variation

[Y , Y ]t = 2
∫ t

0
Ds ds, (4.102)

so that

Et(Y ) = exp

(
Yt − Y0 −

∫ t

0
Ds ds

)
= exp(−St). (4.103)

We now give some remarks about the martingale structure of the stochastic exponential of
continuous stochastic processes.

• If Yt = Lt is a local martingale, then E(L) is a local martingale, and the converse is also true,
i.e., a strictly positive, continuous, local martingale takes the form of stochastic exponential
Et(L) [90].

• If Yt = Mt is a continuous martingale, then Et(M ) is a martingale when Novikov’s
condition [131], 〈

exp

(
1

2
[M , M ]t

)〉
< ∞, (4.104)

holds for all t ≥ 0. Note that the Novikov condition is a sufficient, and not a necessary
condition for martingality. However, this condition is often not very practical as we will
see in the next chapter on thermodynamics.

• Another necessary condition for martingality is the Kazamaki condition [132], which states
that if exp(Lt/2) is a submartingale, then Et(L) is a martingale. These conditions have been
refined [133,134].

• See Ref. [135] for a generalization of the stochastic exponential Et(Y ) to the case of
processes with jumps.

Chapter 5. Martingales in stochastic thermodynamics I: Introduction

Voudriez-vous bien passer vos jours
A faire le Sardanapale,
Et servir une martingale?
(Would you like to spend your days
To do the Sardanapale,
And serve a martingale?)
Paul Scarron, Le Virgile travesti, Chapter IV (1648).

Since the origins of thermodynamics in the nineteenth century, physicists have been intrigued
by the implications of the second law of thermodynamics at the mesoscopic level. One of
the first references to thermodynamics at the mesoscopic scale appeared in Tait’s Sketch of
Thermodynamics (1878), on which J. C. Maxwell commented
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a finite number of molecules [··· ] are still and every now and then still deviating very considerably
from the theoretical mean of the whole system [they belong to]. [. . . ] Hence the second law of ther-
modynamics is continually being violated, and that to a considerable extent, in any sufficiently small
group of molecules belonging to a real body [136,137].

The pioneering thoughts of Tait and Maxwell illustrate the puzzle of formulating a second
law of thermodynamics for mesoscopic systems. This puzzle has, to a large extent, been resolved
in the past decades with proper definitions of heat and entropy production based on the the-
ory of stochastic processes. According to stochastic thermodynamics, entropy production can be
transiently negative, but is on average positive. Moreover, the fluctuations of negative entropy
production are constrained by fluctuation relations.

Several of the standard results of stochastic thermodynamics can be understood and improved
with martingale theory. In the present chapter, we provide an introduction to martingale the-
ory in stochastic thermodynamics. After briefly reviewing key definitions and results, we show
how martingales naturally appear in the theory of stochastic thermodynamics. In particular, with
two examples of stochastic processes, namely, one-dimensional overdamped Langevin processes
and Markov jump processes, we show that for stationary processes the exponentiated negative
entropy production is a martingale, which is the central result in martingale theory for stochastic
thermodynamics. Through the study of two simple examples, the present chapter sets the stage
for the next three chapters that discuss the theory in a more general setup (see Chapter 6) and
provide a detailed analysis of the implications of martingale theory (see Chapters 7 and 8).

This chapter is structured as follows: in Section 5.1, we introduce the setup of an overdamped,
one-dimensional, isothermal, Langevin process, and subsequently we review the basic thermo-
dynamics results for this setup. In Section 5.2, we show for this setup that if the process is
stationary, then the exponential of the negative entropy production is a martingale. Subsequently,
in Section 5.3, we review thermodynamics for Markov jump processes, and in Section 5.4 we
discuss the thermodynamics of Markov jump processes with martingale theory.

5.1. Introduction: Langevin equation and thermodynamics

Before embarking on a journey through thermodynamics with martingales, we derive the
“standard” first and second laws of thermodynamics for nonequilibrium isothermal processes
described by a one-dimensional, overdamped, isothermal, Langevin equation. Note that since
the focus of this paper is on martingales, and since there exist already several textbooks
and review papers on stochastic thermodynamics, we review here the essentials of stochastic
thermodynamics, referring the interested reader to Refs. [25–27,138] for further details.

5.1.1. System setup

Consider a particle with mass m that moves with homogeneous mobility μ (or equivalently,
friction coefficient γ = 1/μ) in a homogeneous thermal bath in equilibrium and at a constant
temperature T, as illustrated in Figure 5.1. The particle is subject to a potential Vt(x) ≡ V (x, λt)

whose shape is controlled by a time-dependent deterministic protocol λt. Moreover, a non-
conservative force ft(x) (i.e., solenoidal) is exerted on the particle. The dynamics of the particle
is described by the underdamped Langevin equation

{
Ẋt = Pt/m,

Ṗt = −γ

m
Pt − (∂xVt) (Xt) + ft(Xt) +

√
2Tγ Ḃt,

(5.1)
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Figure 5.1. Illustration of the paradigmatic model discussed in Section 5.1. A Brownian particle (gray
circle) confined in a one-dimensional potential that may be time dependent (Vt(X ), red line) is subject to an
external force that may depend on time and space (ft(X ), blue arrows). The position Xt of the particle at time
t evolves according to Equation (5.3). In this model, the particle fluctuates moving along the potential and
under the action of the external force field – the blue arrows illustrate the direction of the external force and
the length of the arrows its magnitude (note that the external force ft(x) is in general different from minus
the instantaneous value of the slope of the potential −∂xVt(x)).

where Bt is a Brownian noise, Pt is the momentum of the particle at time t, and Xt is its position.
The first-order equations (5.1) can be written equivalently as the one-dimensional second-order
equation

mẌt = −γ Ẋt − (∂xVt)(Xt) + ft(Xt) +
√

2Tγ Ḃt. (5.2)

For simplicity, in stochastic thermodynamics it is customary to consider the overdamped limit,
which we introduce in the following.

In the overdamped limit, mμ " 1, the position Xt of the particle is described by the
overdamped, isothermal Langevin equation

Ẋt = −μ(∂xVt)(Xt) + μft(Xt) +
√

2μT Ḃt, (5.3)

where we have used the notation −(∂xVt)(Xt) = −∂xVt(x)|x=Xt for the value of the
conservative force evaluated at Xt.

Notice that Equation (5.3) is the one-dimensional version (d = 1) of Equation (3.65) with
a homogeneous diffusion constant D = μT determined by Einstein’s relation equation (3.69).
Despite its simplicity, the Langevin equation (5.3) contains all the minimal ingredients of stochas-
tic thermodynamics, namely fluctuations (thermal noise), energy (potential), and nonequilibrium
forces (a time-dependent potential and external forces).

5.1.2. First law of stochastic thermodynamics

We follow the conventional route in thermodynamics [136,137]: we first define the work done on
the system, and consequently we obtain the heat from the first law of thermodynamics.
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The work done on the system in the time interval [t, t + dt] consists of two contributions,
namely, the work due to a changing potential (∂tVt)(Xt, t) and the work due to a nonconservative
force ft. Adding the two contributions, we obtain that the power exerted on the system in [t, t +
dt] is [139,140]

Ẇt ≡ (∂tVt)(Xt) + ft(Xt) ◦ Ẋt, (5.4)

where ° denotes the Stratonovich product (see Section 2.2.3 for a reminder on stochastic calculus).

Integrating over time, we find the stochastic work Wt =
∫ t

0 Ẇs ds done on the system
along a stochastic trajectory X[0,t], which using Equation (5.4) reads

Wt =
∫ t

0
[(∂sVs)(Xs) ds + fs(Xs) ◦ dXs] . (5.5)

Note that in Equations (5.4)–(5.5) we have used a Stratonovich integral to define the work
done by a non-conservative force on the system, and not an Itô integral, and this will prove to be
important for developing a thermodynamically consistent picture.

Given the work Wt, we use the first law of thermodynamics to obtain an explicit expression
for the heat.

The first law of stochastic thermodynamics reads [139,140]

Qt + Wt = Vt(Xt) − V0(X0), (5.6)

which we assume to hold along any trajectory X[0,t] traced by a nonequilibrium system
described by the isothermal Langevin equation (5.3).

The first law of thermodynamics, Equation (5.6), defines the heat Qt. In rate form,
Equation (5.6) reads

Q̇t + Ẇt = V̇t = (∂tVt)(Xt) + (∂xVt)(Xt) ◦ Ẋt. (5.7)

Substituting Equation (5.4) in Equation (5.7), we find

Q̇t = −Ft(Xt) ◦ Ẋt, (5.8)

where the total force

Ft(Xt) = −(∂xVt)(Xt) + ft(Xt) (5.9)

contains, in general, conservative (first) and non-conservative (second) terms; this is the one-
dimensional version of the more general expression (3.66). Note that the heat absorbed per unit
of time in [t, t + dt], given by Equation (5.8), can also be expressed by

Q̇t = (−γ Ẋt +
√

2γ TḂt) ◦ Ẋt, (5.10)

which was the original expression for the stochastic heat in overdamped Langevin systems
obtained by Sekimoto [139].



Advances in Physics 91

Integrating Q̇s over the interval s ∈ [0, t], we obtain the stochastic heat Qt =
∫ t

0 Q̇s ds
absorbed by the system along a stochastic trajectory X[0,t] [139,140],

Qt = −
∫ t

0
Fs(Xs) ◦ dXs. (5.11)

Note that the Stratonovich rule implies that for time-homogenous total forces, Fs(x) = F(x),
Qt changes sign under time reversal.

The formalism presented here has been extended to underdamped Langevin systems for which
the kinetic energy change leads to an additional term in the stochastic heat [25,138,141].

5.1.3. Second law of stochastic thermodynamics

Consider the Fokker–Planck equation

∂tρt(x) = −∂xJt,ρ(x) (5.12)

for the instantaneous density ρt(x) = 〈δ(Xt − x)〉, which is the one-dimensional version of
Equation (3.63). According to Equation (3.64), the hydrodynamic current is given by

Jt,ρ(x) = μFt(x)ρt(x) − μT∂xρt(x). (5.13)

Given a state Xt, Shannon’s instantaneous information content is given by [142,143]

Ssys
t ≡ − ln ρt(Xt), (5.14)

which we identify as the nonequilibrium system entropy for the system in state Xt at time
t. The (nonequilibrium) system entropy change associated with X[0,t] is thus given by

�Ssys
t ≡ Ssys

t − Ssys
0 = ln

ρ0(X0)

ρt(Xt)
. (5.15)

Now, we review the notion of stochastic environmental entropy change, as commonly used in
the stochastic thermodynamics of isothermal systems.

Since the environment is in a state of thermal equilibrium at temperature T, the entropy
change of the environment is given by Clausius’ statement

Senv
t = −Qt

T
, (5.16)

where we recall that Qt is the stochastic heat given by Equation (5.11). Equation (5.16) thus
provides the definition for the stochastic environmental entropy change along a trajectory
of an isothermal, overdamped, Langevin equation.
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To obtain a balance equation for entropy, we determine the rate of change of the nonequilib-
rium system entropy. An explicit calculation yields

Ṡsys
t = d (− ln (ρt (Xt)))

dt
(5.17)

= − (∂tρt) (Xt)

ρt (Xt)
− (∂xρt) (Xt)

ρt (Xt)
◦ Ẋt (5.18)

= − (∂tρt) (Xt)

ρt (Xt)
+ Jt,ρ(Xt)

μTρt (Xt)
◦ Ẋt︸ ︷︷ ︸

Ṡtot
t

− Ft(Xt)

T
◦ Ẋt︸ ︷︷ ︸

Ṡenv
t

. (5.19)

The steps we have used in Equations (5.17)–(5.19) are the following: in Equation (5.17), we
have used the definition of stochastic system entropy (5.14). In Equation (5.18), we have
used Stratonovich rules of calculus, which are formally identical to those of standard calcu-
lus. In Equation (5.19) we have used the definition of the probability current (5.13). Lastly,
in Equation (5.19), we have identified the second term as the change of the environmental
entropy Ṡenv

t = −Q̇t/T , taking into account the expression (5.8) for the stochastic heat Q̇t =
−F(Xt, t) ◦ Ẋt.

The first two terms in the right-hand side of Equation (5.19) are changes in the system’s
entropy that do not involve environmental entropy changes, thus we identify them as the
stochastic entropy production rate in [t, t + dt]

Ṡtot
t = − (∂tρt) (Xt)

ρt (Xt)
+ Jt,ρ(Xt)

μTρt (Xt)
◦ Ẋt. (5.20)

Note that the definition (5.20) is consistent with Prigogine’s balance equation [144]

Ṡtot
t ≡ Ṡsys

t + Ṡenv
t , (5.21)

with Ṡsys
t given by Equation (5.14) and Ṡenv

t given by Equation (5.16).

The stochastic entropy production associated with a trajectory X[0,t] of an over-
damped Langevin equation (5.3) equals the sum of the system entropy change plus the
environmental entropy change,

Stot
t = �Ssys

t − Qt

T
. (5.22)

Integrating Equation (5.20) over time, we get the explicit expression [143]

Stot
t =

∫ t

0

[
− (∂sρs) (Xs)

ρs (Xs)
+ Js,ρ(Xs)

μTρs (Xs)
◦ Ẋs

]
ds. (5.23)

Note that the stochastic entropy production Stot
t is a stochastic process that thus fluctuates

in time, and as we show below it can take negative values. On the other hand, a second law is
recovered for the average of Stot

t . Here and in the following, we use the interpretation 〈Żt〉 ≡
(d/dt)〈Zt〉 for all functionals Zt = Z[X[0,t]].
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Indeed, averaging Equation (5.20) over many realizations of the process, we find that
the average rate of entropy production is non-negative

〈Ṡtot
t 〉 = 1

μT

∫
X

(
Jt,ρ(x)

)2
ρt(x)

dx ≥ 0. (5.24)

Thus we call Equation (5.24) the second law of thermodynamics for overdamped
Langevin equations. Integrating over time and using Stot

0 = 0 we obtain

〈Stot
t 〉 ≥ 0. (5.25)

See Section 6.1.5.4 for a detailed derivation of Equation (5.24) in a more general setting
beyond the unidimensional case.

If we call the system together with its environment the universe, then the second law of
thermodynamics states that on average the total entropy of the universe increases.

To derive the second law of thermodynamics, given in Equation (5.24), for overdamped
Langevin equations, we convert the Stratonovich integral in Equation (5.20) into an Itô integral
and use the Langevin equation (5.3) for Ẋt, yielding (see Appendix C.1)

Ṡtot
t = −2

(∂tρ t) (Xt)

ρ t(Xt)
+ 1

μT

(
Jt,ρ(Xt)

ρt(Xt)

)2

︸ ︷︷ ︸
vS

t (Xt)

+
(√

2

μT

Jt,ρ(Xt)

ρt(Xt)

)
︸ ︷︷ ︸√

2vS
t (Xt)

Ḃt, (5.26)

where vS
t is the time-dependent entropic drift [12], which we discuss further in Section 5.2.2.1.

Averaging Equation (5.26) over the noise, the first and third terms in (5.26) vanish. Indeed,
the first term has zero average due to conservation of probability and the third term because
it is a martingale. The average of the second term yields precisely the right-hand side in
Equation (5.24). In Section 6.1.5.4, we generalize Equation (5.26) to the case of d > 1
dimensions.

5.1.4. Stratonovich and Ito formulations: recap

We provide here for readers’ ease a short recap on the formulation of the first and second laws
of thermodynamics in Stratonovich and Ito formulations. To this aim, we collect results from
the previous sections 5.1.2 and 5.1.3 and provide the stochastic rates of heat, work, energy, and
entropy production in [t, t + dt] associated with the overdamped Langevin dynamics (5.3).

Stratonovich formulation. The work and heat exchanges read

Ẇt = (∂tVt)(Xt) + ft(Xt) ◦ Ẋt, (5.27)

Q̇t = (∂xVt)(Xt) ◦ Ẋt − ft(Xt) ◦ Ẋt, (5.28)

which leads to the first law

V̇t = (∂tVt)(Xt) + (∂xVt)(Xt) ◦ Ẋt. (5.29)

Note that Equation (5.29) could be retrieved from standard rules of calculus (chain rule for dif-
ferentiation) that apply in the Stratonovich convention. The rate of stochastic entropy production
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reads

Ṡtot
t = − (∂tρt) (Xt)

ρt (Xt)
+
[

Jt,ρ

μTρt

]
(Xt) ◦ Ẋt, (5.30)

which leads to the second law at the average level 〈Ṡtot
t 〉 ≥ 0.

Ito formulation. The work and heat exchanges can be retrieved by applying to Equa-
tions (5.27) and (5.28) the rules of conversion between Stratonovich and Ito products (Theorem 1)

Ẇt = [∂tVt + μT(∂xft)](Xt) + ft(Xt)Ẋt, (5.31)

Q̇t = μT[∂2
x Vt − (∂xft)](Xt) + [∂xVt − ft](Xt)Ẋt, (5.32)

which leads to the first law

V̇t = (∂tVt)(Xt) + (∂xVt)(Xt)Ẋt + μT(∂2
x Vt)(Xt), (5.33)

which can be retrieved directly applying Ito rules of calculus, i.e. Ito’s lemma (see Equation 2.88).
On the other hand, the rate of stochastic entropy production reads

Ṡtot
t =

[
− (∂tρt)

ρt
+ ∂x

Jt,ρ

ρt

]
(Xt) +

[
Jt,ρ

μTρt

]
(Xt) Ẋt, (5.34)

which follows from applying to Equation (5.30) Theorem 1 for conversion of Stratonovich to Ito
product. Next, replacing Ẋt in Equation (5.34) by the Langevin dynamics (6.39), one finds

Ṡtot
t =

[
−2

(∂tρt)

ρt
+ vS

t

]
(Xt) +

[√
2vS

t

]
(Xt)Ḃt, (5.35)

which reveals the martingale structure of exp(−Stot
t ) in time-homogeneous stationary states, as

we will show in Section 5.2.
Taken together, the results in this section illustrate the fact that Stratonovich convention pro-

vides a more simple mathematical formulation of the first law of thermodynamics, whereas the Ito
convention is more suitable to discuss the second law. Generalizations of Equations (5.27)–(5.35)
to d-dimensional overdamped Langevin dynamics can be found in Ref. [12].

5.2. Martingale theory for stationary 1D isothermal Langevin processes

A central result of martingale theory for stochastic thermodynamics is that in nonequilibrium
stationary processes the exponentiated negative entropy production is a martingale. We first
derive this result, and subsequently, we discuss some interesting implications. Notably, we dis-
cuss here some of the universal fluctuation properties of entropy production that can be derived
from martingale theory. A more extensive overview of the implications of martingale theory for
thermodynamics is presented in Chapters 6–9, which includes the martingale fluctuation relations
and the martingale version of the second law of thermodynamics.

For reasons of clarity, we restrict ourselves to the simplest case of one-dimensional, stationary,
overdamped, Langevin processes. Nevertheless, martingale theory for thermodynamics is general
and applies also to nonstationary, underdamped, or multidimensional Langevin processes, see
Refs. [10,12,14,15,28] or Chapter 6. Therefore, we encourage the reader, based on the deriva-
tions below, to derive the corresponding results for, i.e., the multidimensional, underdamped, or
nonstationary cases (this is fun!).
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5.2.1. Stationary overdamped Langevin processes

A Langevin process is stationary when the initial distribution obeys

ρt(x) = ρst(x), (5.36)

for all t ≥ 0 and x ∈ X , where ρst is the stationary probability distribution solving
Equation (3.40). Analogously, the stationary current is defined as the hydrodynamic current (5.13)
associated with the stationary distribution (5.36), i.e.,

Jt,st(x) ≡ Jt,ρst(x) = μFt(x)ρst(x) − μT∂xρst(x). (5.37)

Note that the stationary distribution solves ∂xJt,st(x) = 0, see Equation (5.12).
We say that the Langevin equation (5.3) is time homogeneous when the conditions

ft = f and Vt = V (5.38)

are satisfied, and this is a necessary condition for stationarity when the mobility matrix is inde-
pendent of time; note that this is not the case with time-dependent mobilities. When (5.38) holds,
then also the total force is time independent,

F(x) = Ft(x) = (∂xV )(x) + f (x). (5.39)

Throughout this section, we assume stationarity and time homogeneity, in other words,
we assume that Xt obeys the Langevin equation (5.3)

Ẋt = −μF(Xt) +
√

2TμḂt, (5.40)

and ρ0(x) = ρst(x). Following Equation (5.37), the stationary current is time independent
and reads

Jst(x) = μF(x)ρst(x) − μT∂xρst(x). (5.41)

5.2.2. Martingality of the exponentiated negative entropy production

We show that for stationary processes Xt, described in Equation (5.3) with the stationarity con-
dition given in Equation (5.36), the exponentiated negative entropy production exp(−Stot

t ) is a
martingale. To this aim, we use three distinct, but equivalent, approaches, namely, we show that
exp(−Stot

t ) is (a) an Itô integral of the form (2.64); (b) a Radon–Nikodym derivative process (or
path-probability ratio) of the form (2.53); and (c) a Dynkin’s martingale of the form (3.73). Note
that the latter approach (Dynkin’s) is new to our knowledge and thus first shown here. While ini-
tially we will not bother too much with the distinction between local martingales and martingales,
we will come back on this point at the end of the section.

5.2.2.1. Itô-integral approach. As discussed in Section 2.2.2, Itô integrals of the form (2.64)
that satisfy Equation (2.67) are martingales. Here, we show that exp(−Stot

t ) is an Itô integral.
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For time-homogeneous stationary processes for which ∂tρt(x) = 0 for all x, the Itô
stochastic differential equation for Stot

t , given in (5.26), simplifies into the compact form

Ṡtot
t = vS(Xt) +

√
2vS(Xt)Ḃt, (5.42)

where vS(Xt) is the so-called entropic drift [12] defined by

vS(Xt) ≡ 1

μT

(
Jst(Xt)

ρst(Xt)

)2

≥ 0, (5.43)

and where the noise Ḃt is the same noise as in the Langevin equation (5.3) for the dynamics
of the particle.

Since vS
t ≥ 0, it follows readily from Equation (5.42) that Stot

t is a submartingale. Note that
according to Equation (5.42) the drift and diffusion coefficients of Stot

t are identical, which are
reminiscent of the Einstein relation (3.69).

The equality of the drift and diffusion coefficients of Stot
t determines the martingality of

exp(−Stot
t ). Indeed, applying Itô’s formula, see Equation (B14) in Appendix B.3.1, to the variable

change Stot
t → exp(−Stot

t ), and using Equation (5.42), we obtain

d exp(−Stot
t )

dt
= −

√
2vS(Xt) exp(−Stot

t )Ḃt, (5.44)

and hence exp(−Stot
t ) is an Itô integral; note the formal analogy between Equations (5.44)

and (4.101). In addition, Equation (5.44) shows that exp(−Stot
t ) is the stochastic exponential

Et(M ) of the martingale

Mt = −
∫ t

0
ds
√

2vS(Xs)Ḃs; (5.45)

the latter process is a martingale according to Equation (2.67) as 〈vS(X )〉 = 〈Ṡtot〉 < ∞.

5.2.2.2. Path-probability-ratio approach. We show that exp(−Stot
t ) takes the form of a path-

probability ratio by identifying a suitable measure Q for which exp(−Stot
t ) can be written as a

Radon–Nikodym derivative process of the form (2.53) [10,11,138,145–147].

To this purpose, we introduce the time-reversal map �t that acts on the trajectories x[0,t]

through [
�t
(
x[0,t]

)]
s ≡ xt−s for s ≤ t. (5.46)

Subsequently, we show one of the central results in stochastic thermodynamics, namely

Stot
t = ln

P
(
X[0,t]

)
(P ◦ �t)

(
X[0,t]

) , (5.47)
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or equivalently,

exp(−Stot
t ) = (P ◦ �t)

(
X[0,t]

)
P
(
X[0,t]

) . (5.48)

For time-homogeneous stationary processes, the measure P ◦ �t appearing in the numera-
tor of Equation (5.48) is independent of t, see Refs. [84,98,148], and hence the measure Q
in Equation (2.53) is in this case P ◦ �t. This can be understood heuristically as follows.
The map �t is a time-reversal map that mirrors trajectories around the reflection point t/2.
Since by assumption P is a stationary measure, the location of the reflection point does not
alter the statistics determined by P . We come back to this point at the end of the derivation.

5.2.2.3. Proof of relation between stochastic entropy production and path-probability ratio.
Let us now prove the relation (5.47). Using the Onsager–Machlup path-integral approach,
see Equations (2.56)–(2.58) and Equations (3.94), we can write explicit expressions for the
conditional path probabilities,6 viz.,

P(X[0,t]|X0) = 1

N exp

(
− 1

4μT

∫ t

0

{[
Ẋs − μF(Xs)

]2 + μ

2
(∂xF)(Xs)

}
ds

)
, (5.49)

and analogously,

P(�t(X[0,t])|Xt) = 1

N exp

(
− 1

4μT

∫ t

0

{[−Ẋs − μF(Xs)
]2 + μ

2
(∂xF)(Xs)

}
ds

)
. (5.50)

Taking the ratio of Equations (5.49) and (5.50), we obtain the so-called local detailed balance
condition,

P(�t(X[0,t])|Xt)

P(X[0,t]|X0)
= exp

(
− 1

T

∫ t

0
F(Xs) ◦ Ẋs ds

)
= exp

(
Qt

T

)
= exp

(−Senv
t

)
(5.51)

that relates the stochastic heat Qt to the path probabilities. Lastly, multiplying Equation (5.51) by
exp(Ssys

0 − Ssys
t ) = ρst(Xt)/ρst(X0) (see (5.14)), we obtain

P(�t(X[0,t]))

P(X[0,t])
= P(�t(X[0,t])|Xt)ρst(Xt)

P(X[0,t]|X0)ρst(X0)
= exp(−Senv

t − �Ssys
t ) = exp(−Stot

t ), (5.52)

which is Equation (5.48) that we were meant to show.
As promised, we now show that P[�t(X[0,t])] = Q[X[0,t]], and hence there is no explicit time

dependence on t. For this, we show that the Lagrangian of P[�t(X[0,t])] contains no explicit time
dependency on t – see Equation (3.97) for the definition of a Lagrangian. Equation (5.50) can be
rewritten as

P
(
�t
(
X[0,t]

)) = ρst (Xt)
1

N exp

(
− 1

4μT

∫ t

0

{(
Ẋs + μF (Xs)

)2 + μ

2
(∂xF) (Xs)

}
ds

)

= ρst (X0)
1

N exp

(
−
∫ t

0

[
1

4μT

{(
Ẋs + μF (Xs)

)2 + μ

2 (∂xF) (Xs)
}

−∂x (ln ρst) (Xs) Ẋs

]
ds

)
.
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Hence, the Lagrangian transforms under reversal as

(�tL)
[
Xs, Ẋs

] = 1

4μT

((
Ẋs + μF (Xs)

)2 + μ

2
(∂xF) (Xs)

)
− ∂x (ln ρst) (Xs) Ẋs. (5.53)

The absence of an explicit t-dependence in the right-hand side of the last relation shows that the
measure P ◦ �t is not explicitly dependent on t, as claimed before. This allows us to conclude
that exp(−Stot

t ) is a martingale.
In Section 6.2.2, we give an alternative proof of the martingality of (P ◦ �t)(X[0,t])/P(X[0,t])

in stationary processes. In addition, in Section 6.1, we extend the path-probability ratio for-
mula (5.48) to the non-stationary and/or time-inhomogeneous set up. In this non-stationary and/or
time-inhomogeneous set up, the explicit time dependency of the measure Q(t) in the numera-
tor prevents us from proving that Q(t)(X[0,t])/P(X[0,t]) is a martingale, as done for discrete time
in (2.19); the latter is developed in Section 6.2.2.

We end this section with a comment on the second law of thermodynamics.

The second law of thermodynamics is recovered when averaging the stochastic entropy
production over the probability P(X[0,t]), as this yields the Kullback–Leibler divergence
between the forward and reverse path probabilities [149]:

〈Stot
t 〉 =

∫
Dx[0,t]P(x[0,t]) ln

P(x[0,t])

P(�t(x[0,t]))
= DKL[P(x[0,t])||P(�t(x[0,t]))] ≥ 0. (5.54)

5.2.2.4. ♠Dynkin’s martingale approach. According to Theorem 4 and Equation (3.87), har-
monic functions of the generator of a Markov process define martingales. We show here that
exp(−s) is a harmonic function of the corresponding generator. This provides a third derivation
of the martingale property of exp(−Stot

t ), which to the best of our knowledge has not appeared
before in the literature.

Consider the two-dimensional joint process Xt = (Stot
t , Xt)

T which according to Equa-
tions (5.3) and (5.42) solves the stochastic differential equations{

Ṡtot
t = vS(Xt) +

√
2vS(Xt)Ḃt,

Ẋt = μF(Xt) +
√

2μTḂt,
(5.55)

with common noise Ḃt. The Markovian generator associated with the two-dimensional diffusion
process Xt given in Equation (5.55) is (see Equation 3.67)

L = vS(x)∂s + μF(x)∂x + vS(x)∂2
s + μT∂2

x + 2
√

TμvS(x)∂x∂s. (5.56)

We readily verify that

L [exp(−s)] (s, x) = 0, (5.57)

and hence exp(−s) is a harmonic function of the generator L, implying, according to Theorem 4
and Equation (3.87), that exp(−Stot

t ) is a martingale. We also find that

L[s](s, x) = vS(x) ≥ 0, (5.58)

and thus s is a subharmonic function of the generator, which implies that Stot
t is a submartin-

gale [77].
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Now, we write the two-dimensional stochastic differential equation (5.55) in the Langevin
form (3.65) associated with the joint process Xt = (Stot

t , Xt)
T,

Ẋt = − (D∇V ) (Xt) + (∇ · D) (Xt) + σ(Xt)Ḃt, (5.59)

where ∇ is in this case the gradient in (x, s)-space with components ∇1 = ∂s and ∇2 = ∂x. In
Equation (5.59), we have also introduced

σ(s, x) =
( √

2vS(x)√
2Tμ

)
, (5.60)

the generalized diffusion matrix

D(s, x) = σ(x, s)σ †(x, s)

2
=
(

vS
√

TμvS(x)√
TμvS(x) Tμ

)
, (5.61)

and the generalized time homogeneous potential

V (s, x) = −s − ln ρst(x). (5.62)

We remark that Equation (5.59) has a mobility matrix equal to the diffusion matrix, which is rem-
iniscent of Einstein’s relation. The form of Equation (5.59) readily implies that the generalized
Boltzmann distribution

ρst(s, x) = exp(−V (s, x)) = ρst(x) exp(s) (5.63)

is the invariant measure. Note that this measure is not normalizable, which follows from the fact
that the generalized potential V (s, x) given by Equation (5.62) is not confining. Physically, the
latter statement means that Stot

t is extensive in time. Note also that the factorization property,
revealed in Equation (5.63), suggests an asymptotic independence between Xt and Stot

t .

5.2.2.5. ♠Martingale or strict local martingale?. Is the exponentiated negative entropy
production a martingale (〈exp(−Stot

t )〉 = 1) or a strict local martingale (〈exp(−Stot
t )〉 < 1)?

Formally, Equation (5.44) implies that exp(−Stot
t ) is a local martingale, and to prove martin-

gality we need to show that Equation (2.67) holds. Alternatively, according to Equation (5.44),
exp(−Stot

t ) is the stochastic exponential

exp(−Stot
t ) = E (Mt) , (5.64)

as defined in Equation (4.92), of the martingale

Mt = −
∫ t

0

√
2vS(Xu)Ḃu du. (5.65)

Hence exp(−Stot
t ) is a martingale when Novikov’s condition equation (4.104) holds, which here

reads 〈
exp

(∫ t

0
vS(Xs) ds

)〉
< ∞ (5.66)

for all t ≥ 0.
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In the Radon–Nikodym derivative approach, we also need Novikov’s condition
equation (5.66) to guarantee that exp(−Stot

t ) is a martingale. Indeed, the Onsager–Machlup path
integral method, widely used in physics [26], assumes that P ◦ �t is absolutely continuous with
respect to P . However, there is no guarantee that this is actually the case, and we need an
additional condition, such as the Novikov condition7 to demonstrate this.

Note that Novikov’s condition is a mathematical requirement for martingality, but currently
we are not aware of physical examples for which exp(−Stot

t ) is a local martingale but not
martingales.

5.2.2.6. On the non-submartingality of the environmental entropy change. In general, the
stochastic heat and environmental entropy change are not martingales. In particular, for time-
homogeneous stationary states, we obtain from Equations (5.16), (5.8), (5.3), and (5.37) the
following stochastic differential equation for the environmental entropy change:

Ṡenv
t = vE(Xt) +

√
2vE(Xt) ◦ Ḃt, where vE(Xt) ≡ μF2(Xt)

T
≥ 0. (5.67)

Note that in Equation (5.67), Bt is the same noise that enters in the Langevin equation for Xt (5.3),
and that the equation should be interpreted in the Stratonovich sense. On the other hand, using
Itô’s convention, we get

Ṡenv
t = μ (∂xF) (Xt) + vE(Xt) +

√
2vE(Xt)Ḃt. (5.68)

This implies that for a generic F it does not hold, in general, that Senv
t has positive drift, even

though vE is non-negative. Nevertheless, if ∂xF(x) + F2(x)/T ≥ 0 holds for all x, then Ṡenv
t is a

submartingale. This is the case, among others, when ∂xF(x) = 0, such that F(x) is homogeneous
and independent of x (see, e.g., the example in Chapter 1.6). In such a case, vE(Xt) = vE is inde-
pendent of Xt and Equation (5.68) is equivalent to Ṡenv

t = vE + √
2vEḂt, similar to Equation (5.70)

for Stot
t in time-homogeneous stationary processes.

5.2.2.7. Non-stationary processes. We consider the dynamics of Stot
t for non-stationary and/or

non time-homogeneous processes X. The Itô stochastic differential equation for Stot
t (5.26) reads

then

Ṡtot
t = −2 (∂t ln ρt) (Xt) + vS

t (Xt) +
√

2vS
t (Xt)Ḃt, (5.69)

which is the Doob–Meyer decomposition of Stot
t (see Theorem 16). We recall readers the

definition of time-dependent entropic drift vS
t (Xt) given in Equation (5.26). Since for nonsta-

tionary processes ∂tρt �= 0, the first term in Equation (5.69) does not vanish and can be negative,
which implies that the predictable process in the Doob–Meyer decomposition is not increasing,
and as a consequence Stot

t is not a submartingale. In addition, the drift and diffusion constants
in Equation (5.69) are not equal as in Equation (5.70) for stationary processes, and as a con-
sequence the statistical properties (i.e., global infimum) described above are not universal for
non-stationary overdamped Langevin processes. In Chapter 6, we elaborate further on stochas-
tic thermodynamics in nonstationary processes, and in particular we discuss thermodynamic
martingale processes for this case.

Note that the fact that a process is not stationary does not preclude other thermodynamic
quantities whose negative exponential is an Itô integral. Indeed, Refs. [28,39] showed that the
so-called housekeeping entropy production obeys an equation analogous to Equation (5.44) (and
is thus an Itô integral) for any Markovian process that may be non-stationary. We refer the readers
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to Equation (6.68) and Refs. [150–152] for further details on the concept of housekeeping (also
called adiabatic [152]) entropy production.

5.2.3. Universal properties for the fluctuations of the stochastic entropy production

The (local) martingale property of exp(−Stot
t ) together with the continuity of the process Stot

t as a
function of time implies that several fluctuation properties of Stot

t are universal. Here, following
Ref. [12], we derive the universal properties of Stot

t directly from the evolution equation (5.42) for
entropy production, while in the next chapter we use Doob’s theorems, as reviewed in Chapter 4,
to derive these results.

5.2.3.1. Entropic random-time change. Our starting point is the Itô stochastic differential
equation for Stot

t in time-homogeneous stationary states, see Equations (5.42)–(5.43) and copied
here for convenience (Figure 5.2),

Ṡtot
t = vS(Xt) +

√
2vS(Xt)Ḃt, with vS(Xt) ≡ 1

μT

(
Jst(Xt)

ρst(Xt)

)2

. (5.70)

Now, consider the following time reparametrization:

dt → dτt(Xt) ≡ vS(Xt) dt, (5.71)

such that dτt quantifies the expected entropy production in [t, t + dt] given that the system was at
state Xt at time t. This is an example of a random-time transformation (see Section 4.2.2 and also
Section 8.5 in [64]) of a stochastic process, in which a “clock” ticks faster (slower) whenever the
system passes by a state of large (small) local entropy production. Following a single realization

Figure 5.2. Illustration of the Doob–Meyer decomposition of entropy production (Equation 5.73). In
time-homogeneous nonequilibrium stationary states, the stochastic entropy production Stot

t (orange line)
can be decomposed as the sum of the entropic time τt (blue line) plus a martingale Mt (green line). The
white clock in the x-axis illustrates the regular passage of time t whereas the blue Dalinean clock illustrates
the irregular passage of entropic time τ which depends on the states visited by the system. Figure adapted
from Ref. [12].
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of duration t its associated entropic random time is given by

τt =
∫ t

0
dτs(Xs) =

∫ t

0
vS(Xs) ds, (5.72)

which highlights the fact that τt is a functional of the trajectory X[0,t]. Because 〈Ṡtot
s |X[0,t]〉 =

vS(Xt), see Equation (5.70), the entropic time can be interpreted as the expected entropy produc-
tion given that the system has traced a specific trajectory X[0,t]. Integrating Equation (5.70) over
time, we get

Stot
t = τt + Mt, (5.73)

where Mt =
∫ t

0

√
2vS(Xs)Ḃsds is a martingale and τt ≥ 0 is a monotonously nondecreasing pro-

cess, as vS(x) ≥ 0 for all t and x. In martingale theory, this decomposition of entropy production
(a submartingale) in the sum of the entropic time (a predictable process) and a noise process (mar-
tingale) is known as the Doob–Meyer decomposition, see Theorem 16 in Chapter 4. Applying the
entropic random-time change given in Equations (5.71)–(5.73), we get

Ṡtot
τ = 1 +

√
2 ḂS

τ , (5.74)

where ḂS
τ is a Gaussian white noise with 〈ḂS

τ 〉 = 0 and 〈ḂS
τ ḂS

τ ′ 〉 = δ(τ − τ ′); note that here the
dot stands for the derivative with respect to τ .

5.2.3.2. Universal properties in stationary states. Equation (5.74) reveals that, for any
Langevin model described by Equation (5.3), Stot obeys a drift-diffusion equation with both drift
and diffusion coefficient equal to 1 when measuring time in units of τ . This means that any sta-
tistical property of Stot that is independent of τ is universal in this class of models. For example,
even though the distribution of ρStot

t
(s) at a fixed time t is model dependent, the distribution of Stot

τ

evaluated at entropic times is universal and given by

ρStot
τ
(s) = exp

(−(s − τ)2/4τ
)

√
4πτ

. (5.75)

The universality of entropy production revealed here extends to multidimensional overdamped
Langevin systems, for which Stot

t also obeys an Itô stochastic differential equation of the
form (5.42) with an entropic drift that is generalized to d > 1 dimensions – see Equations (6.56)
and (6.57). We illustrate this universality principle in Figure 5.3 where we plot the distributions
of stochastic entropy production for a driven colloidal particle (d = 1-dimensional Langevin
equation), a 2D diffusion in a space-dependent velocity field (d = 2), and an active Brownian
chiral swimmer (d = 3).

Furthermore, Equation (5.74) reveals that any statistical property of Stot
t that is inde-

pendent of time contractions and dilations falls in the universality class of the standard
one-dimensional drift diffusion process with unit drift and diffusion constant. For exam-
ple, the global infimum of entropy production, defined as the minimum value that Stot can
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Figure 5.3. Universality of entropy production at entropic times. Distributions of stochastic entropy produc-
tion obtained from numerical simulations at fixed time t = 1 (a) and at fixed entropic time τ = 1 (b). The
three different symbols are obtained from numerical simulations of the three models sketched in the caption
in (a), see Figure 3.2 for further details and Ref. [12] for details and parameter values of the simulations.

take at any time, i.e.,

Sinf = inf
t≥0

Stot
t (5.76)

is a universal property for overdamped Langevin systems. This is because the value of Sinf

associated with a given trajectory is independent of when it occurs, and thus on the value
of τ . As a result, its probability distribution can be found from that of the minimum of the
1D drift diffusion process,

ρSinf(s) = exp(s), with s ∈ R−, (5.77)

i.e., it is an exponential distribution with mean 〈Sinf〉 = −1. One may also consider the
finite-time entropy-production infimum

Sinf
t = inf

0≤t′≤t
Stot

t , (5.78)

that is, the minimum value that entropy production takes over a finite time interval [0, t].
The random variable Sinf

t ≤ 0 is always larger than its long-time limit Sinf
t ≥ Sinf, which

together with (5.77) implies for Langevin systems the so-called infimum law

〈Sinf
t 〉 ≥ −1. (5.79)

As shown below in Section 7.4.2, the infimum law (5.79) extends for a broader class of
nonequilibrium stationary processes.

Other universal properties that can be identified from the entropy-production random-time
change are as follows (see Figure 3 in [12]):

• The maximum value that entropy production attains before reaching its global infimum
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Figure 5.4. Universal properties of entropy production at entropic times in time-homogeneous station-
ary states. Distributions of minus the infimum −Sinf (a) and supremum before the infimum Ssup<inf (b)
associated with the stochastic entropy production Stot

t obtained for the model examples sketched in Figure
5.3(a). The different symbols correspond to results from numerical simulations done for each model: par-
ticle in a periodic potential (blue squares), particle in a 2D force field (red circles), active Brownian chiral
swimmer (green diamonds). The orange lines are given by the analytical distributions obtained from the
drift-diffusion process with unit drift and diffusivity Ẋt = 1 +√

2Ḃt: ρSinf(s) = exp(s), with s ∈ R− (a),
and ρSsup<inf(s) = 2 exp(s)acoth(2 exp(s) − 1) − 1, with s ∈ R+ (b). See Ref. [12] for further details.

• The number of crossings that entropy production crosses from −s0 to s0 with s0 > 0 a
positive real number

• The number of “record breaking” events before reaching the global supremum/infimum.

Notably, one can identify an infinite number of universal properties from the random-time
stochastic differential equation for entropy production. Moreover, the distribution of such univer-
sal quantities can be retrieved from the one-dimensional drift-diffusion process with both drift
velocity and diffusion coefficient equal to 1, such as the distribution of the global infimum given
in Equation (5.77). See Figure 5.4 for two examples of such universal properties. On the other
hand, statistical properties that depend on the measurement of time, i.e., the first-passage time to
reach a positive threshold, are not necessarily universal, and thus their distribution depends, in
principle, on the model details.

5.3. Thermodynamics of isothermal Markov jump processes

As a second example, we revisit the thermodynamics of isothermal Markov jump processes
Xt ∈ X , as defined in Section 3.2.2, for which X is a discrete phase space. We assume that the
transition rates satisfy the local detailed balance condition given in Equation (3.58), copied here
for convenience

ωt(x, y)

ωt(y, x)
= exp

(−(Vt(y) − Vt(x)) + ft r(x, y) +∑m
a=1 μ(a) na(x, y)

T

)
. (5.80)

First, we derive the first and second laws of thermodynamics within this setup, see Refs. [25–27]
for more details, and then we revise martingale theory for the thermodynamics of Markov jump
processes.
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5.3.1. First law of stochastic thermodynamics

We define work at the level of a single trajectory, X[0,t], and subsequently use the first law of
thermodynamics to obtain an expression for the heat.

Recall that for Markov jump processes, trajectories are piecewise constant functions of the
form (3.49). The work done by an external agent on the system is

Wt =
∫ t

0
ds (∂sVs) (Xs) +

Nt∑
j=1

fTj r(XT −
j

, XT +
j

), (5.81)

where the first term represents the energy change of the system due to a protocol that changes
the shape of the potential Vt and the second term represents the work done on the system by the
nonconservative force ft. For example, ft could be an external mechanical force and r(x, y) the
distance travelled by the system in the jump from x to y.

The first law of thermodynamics reads

Qt + Wt = Vt(Xt) − V0(X0), (5.82)

which holds at the level of individual trajectories X[0,t].
Using Equation (5.81) in Equation (5.82), we obtain the heat

Qt =
Nt∑

j=1

(
VTj(XT +

j
) − VTj(XT −

j
)
)
−

Nt∑
j=1

fTj r(XT −
j

, XT +
j

). (5.83)

Note that the heat can be expressed in terms of the individual contributions

�QTj(XTj , XTj+1) = VTj(XT +
j

) − VTj(XT −
j

) − fTj r(XT −
j

, XT +
j+1

) (5.84)

for each jump in the trajectory X[0,t].

5.3.2. Second law of stochastic thermodynamics

The derivation is analogous to the one presented for Langevin processes in Section 5.14, and
hence we will follow it closely here.

We define the system entropy as in Equation (5.14), viz.,

Ssys
t − Ssys

0 = − ln

(
ρt (Xt)

ρ0 (X0)

)
(5.85)

= −
∫ t

0
ds (∂s (ln ρs)) (Xs) −

Nt∑
i=1

ln

(
ρTi(XT +

i
)

ρTi(XT −
i

)

)
. (5.86)

Subsequently, we use the fact that the environment consists of a thermal reservoir at temperature
T plus n particle reservoirs with chemical potentials μ(a), and hence the environment entropy
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change according to standard thermodynamics is [153]

Senv
t =

−Qt +
∑Nj

j=1

∑n
a=1 μ(a)na(XT −

j
, XT +

j
)

T
. (5.87)

Substituting the heat, given by Equation (5.83), in the above equation, we obtain

Senv
t =

Nt∑
j=1

−
(

VTj(XT +
j

) − VTj(XT −
j

)
)
− fTj r(XT −

j
, XT +

j
) +∑n

a=1 μ(a)na(XT −
j

, XT +
j

)

T

=
Nt∑

j=1

ln

(
ωTj(XT −

j
, XT +

j
)

ωTj(XT +
j

, XT −
j

)

)
, (5.88)

where the last line follows from the local detailed balance formula (5.80). Lastly, adding
Equations (5.86) and (5.88), and using the balance equation (5.21), we find

Stot
t = −

∫ t

0
ds(∂s ln ρs)(Xs) −

Nt∑
j=1

ln

(
ρTj(XT +

j
)ωTj(XT +

j
, XT −

j
)

ρTj(XT −
j

)ωTj(XT −
j

, XT +
j

)

)
. (5.89)

Taking the ensemble average of the above equation, we obtain

〈Ṡtot
t 〉 =

∑
(x,y)∈X 2

ρt(x)ωt(x, y) ln

(
ρt(x)ωt(x, y)

ρt(y)ωt(y, x)

)
≥ 0, (5.90)

which is the second law of thermodynamics for Markov jump processes. To pass from
Equation (5.89) to Equation (5.90), we proceeded as follows. The average of the first term in
Equation (5.89) vanishes because of the conservation of probability〈∫ t

0
ds (∂s ln ρs) (Xs)

〉
=
∫ t

0
ds
∫
X

dxρs(x) (∂s ln ρs) (x)

=
∫ t

0
ds
∫
X

dx (∂sρs) (x)

=
∫ t

0
ds∂s

∫
X

dxρs (x) = 0. (5.91)

On the other hand, using the definition of transition rates one gets that the average of the second
term in the right-hand side of Equation (5.89) yields the right-hand side of Equation (5.90). More-
over, we derive the inequality in Equation (5.90) in Appendix C.2. We have used the convention
ln 0/0 = 0. For stationary processes, the average rate of entropy production and the second law
simplify into

〈Ṡtot
t 〉 =

∑
(x,y)∈X 2

ρst(x)ω(x, y) ln

(
ρst(x)ω(x, y)

ρst(y)ω(y, x)

)
≥ 0. (5.92)
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5.4. Martingale theory for stationary Markov jump processes

We show that exp(−Stot
t ) is a martingale within the context of stationary Markov jump pro-

cesses. However, we show that universal properties that apply to Langevin processes do not
necessarily apply to the Markov jump processes, as the latter are not continuous. In this section,
we assume that the dynamics is time-homogeneous (ωt(x, y) = ω(x, y) for all t) and stationary
(ρ0(x) = ρst(x) and ∂tρt(x) = 0). For stationary Markov jump processes,∑

x∈X
ρst(x)ω(x, y) =

∑
y∈X

ρst(y)ω(y, x). (5.93)

5.4.1. The martingality of the exponentiated negative entropy production

We show, using three approaches, that the exponentiated negative entropy production is a
martingale.

5.4.1.1. ♠Dynkin’s martingale approach. We show that exp(−s) is a harmonic function of
the generator of the join process X (t) = (Stot(t), X (t))T, and hence, and according to Theorem 4
exp(−Stot

t ) is a martingale. Moreover, we show that s is a subharmonic function of this generator,
and thus a submartingale.

From Equations (5.89) and (3.53), we find the following expression for the generator of the
joint process that acts on functions φ(x, s) as

L [φ] (s, x) =
∫

R

ds̃
∑
y∈X

ω(x, y) (φ(s̃, y) − φ(s, x)) δ

(
s̃ − s − ln

(
ρst(x)ω(x, y)

ρst(y)ω(y, x)

))
, (5.94)

where δ is the Dirac delta distribution.
The generator acting on exp(−s) gives

L [exp(−s)] = exp(−s)
∑
y∈X

ω(x, y)

(
ρst(y)ω(y, x)

ρst(x)ω(x, y)
− 1

)

= exp(−s)

ρst(x)

∑
y∈X

(ρst(y)ω(y, x) − ρst(x)ω(x, y)) = 0, (5.95)

where in the last step we have used the stationarity condition (5.93). Equation (5.95) states that
for stationary Markov jump processes exp(−s) is a harmonic function of the generator L, and
hence exp(−Stot

t ) is a martingale. Also,

L [s] =
∑
y∈X

ω(x, y) ln

(
ρst(x)ω(x, y)

ρst(y)ω(y, x)

)
≥ 0, (5.96)

where the last inequality follows from the stationarity condition (5.93) and s is thus a
subharmonic function. Indeed, the positivity comes from writing

L [s] = 1

ρst(x)

∑
y∈X

ρst(x)ω(x, y) ln

(
ρst(x)ω(x, y)

ρst(y)ω(y, x)

)
(5.97)

and the elementary convexity relation a ln(a/b) − a + b ≥ 0 for all a �= b ≥ 0. Indeed, we can
identify a(x, y) = ρst(x)ω(x, y) and b(x, y) = ρst(y)ω(y, x), and the stationarity condition (5.93)
implies

∑
y∈X (a(x, y) − b(x, y)) = 0.



108 É. Roldán et al.

5.4.1.2. Path-probability-ratio approach. We use the path-probability-ratio approach to show
that exp(−Stot

t ) is a martingale. The rationale goes as follows: (i) we demonstrate that
Equation (5.48) also holds for Markov jump processes; (ii) we show that P ◦ �t ≡ Q does not
depend explicitly on t; (iii) the martingality of exp(−Stot

t ) is concluded following the derivation
(2.19) that holds for all ratios of the form (2.53).

First, we show that Equation (5.48) also holds for Markov jump processes. To this aim, we use
the Onsager–Machlup approach. Assuming that P and P ◦ � are mutually absolutely continuous,
we can use the action A(X[0,t]) given in Equation (3.92). The corresponding action of the time-
reversed process is

A[�t(X[0,t])] = − ln (ρst(Xt)) −
Nt∑

i=1

ln
(
ω(XT +

i
, XT −

i
)
)
+
∫ t

0
dsλ(Xs). (5.98)

Taking the ratio

(P ◦ �t)[X[0,t]]

P[X[0,t]]
= exp

(−A[�(X[0,t])] +A[X[0,t]]
)

= exp

(
ln

(
ρst(Xt)

ρst(X0)

)
+

Nt∑
i=1

ln

(
ω(XT +

i
, XT −

i
)

ω(XT −
i

, XT +
i

)

))
= exp(−Stot

t ). (5.99)

Second, in Appendix C.3 we show that P ◦ �t is not t explicitly dependant.
Finally, the martingality of exp(−Stot

t ) is concluded from the derivation in Equation (2.19).
In Section 6.2.2, we give an alternative proof that (P ◦ �t)(X[0,t])/P(X[0,t]) is a martingale in

the stationary setup.

5.4.1.3. ♠Itô’s integral approach. The exponentiated negative entropy production, exp(−Stot
t ),

is a stochastic exponential Et(M ) of a martingale M, just as was the case for Langevin processes,
see Section 5.2.2.1. Indeed, as we show in Appendix C.4 that the stochastic exponential solves
Equation (4.92), i.e.,

d exp(−Stot
t )

dt
= exp(−Stot

t−)Ṁt (5.100)

with Mt the martingale

Mt =
∑

x,y∈X 2

(
ρst(y)ω(y, x)

ρst(x)ω(x, y)
− 1

)
(Nt(x, y) − τt(x)ω(x, y)), (5.101)

and where we have used Nt(x, y) for the total number of times X has jumped from x to y in the
interval [0, t], and τt(x) for the total amount of time the process X has spent in the state x in the
interval [0, t], see Equations (3.50) and (3.51) for definitions. Note that Mt is a martingale as it is
the sum of martingales of the form (2.48), which can be derived with Dynkin’s martingales, see
Equation (3.80).

5.4.1.4. ♠Novikov’s condition for Markov jump processes. Just as was the case for
Section 5.2.2, the three approaches presented above demonstrate that exp(−Stot

t ) is a local mar-
tingale, and to confirm martingality we need to consider Novikov’s condition. Using Novikov’s



Advances in Physics 109

condition for the stochastic exponential of a jump process, we derive in Appendix C.5 the
condition 〈

exp

⎛⎝∑
x,y∈X

(
ρst(y)ω(y, x)

ρst(x)ω(x, y)
− 1

)2

ω(x, y)τt(x)

⎞⎠〉 < ∞, ∀t ≥ 0. (5.102)

Three shades of martingality
We conclude that there are three (equivalent) ways of representing the martingality of

exp(−Stot
t ) in time-homogeneous nonequilibrium stationary processes:

• The exponentiated negative entropy production is the stochastic exponential of a
martingale Mt,

d exp
(−Stot

t

)
dt

= exp
(−Stot

t−
)

Ṁt. (5.103)

• The function exp(−s) is a harmonic function of the generator L of the joint process
(Stot

t , Xt),

L[exp(−s)] = 0. (5.104)

• The exponentiated negative entropy production is a path-probability ratio

exp
(−Stot

t

) = (P ◦ �t)[X[0,t]]

P(X[0,t])
, (5.105)

where P ◦ �t has no explicit dependency on time t.

5.4.2. Non-universal properties for the fluctuations of the stochastic entropy production

Unlike for Langevin processes where we showed in Section 5.2.3 that a random-time change ren-
ders the fluctuations of Stot

t universal, such property is not inherited by Markov-jump processes,
even when their continuum limit is a Langevin process. However, as we show in Chapter 7,
for processes with jumps there exist universal bounds on the fluctuation properties of entropy
production, i.e., bounds that are valid for all time-homogeneous stationary processes. Here, we
anticipate and illustrate some of these results on a paradigmatic model of a discrete process,
namely, a biased random walk, and in Chapter 7 we review results in a generic setup.

Let us consider a biased random walk given by a continuous-time Markov jump process in one
dimension, with periodic boundary conditions. We also assume a homogeneous bias, i.e., transi-
tions from site x to x + 1 occurring at a space-independent rate ω(x, x + 1) = ω+, and transitions
in the opposite direction to at a space-independent rate ω(x, x + 1) = ω−. Following Section 1.5,
we introduce an “affinity” bias parameter A through the local detailed balance condition

ω+
ω−

= exp(A), (5.106)

and a kinetic rate ν = √
ω+ω−, such that ω± = ν exp(±A/2), see also Ref. [154]. For the case

of molecular motors, A can be related to the hydrolysis free energy of ATP hydrolyzation, the
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work done by an external force, and the temperature of the environment, see Equation (1.24)
in Section 1.5. The homogeneous bias together with the periodic boundary conditions induces a
homogeneous stationary density, which implies that �Ssys

t = − ln[ρst(Xt)/ρst(X0)] = 0, and thus

Stot
t = Senv

t = ln

((
ω+
ω−

)Xt−X0
)

. (5.107)

In Equation (5.107), we have used Equation (5.88) for the environmental entropy change of a
Markov-jump process and the fact that Xt − X0 equals to the net number of jumps in the positive
direction up to time t. Using Equations (5.106) and (5.107) yields the martingale

exp(−Stot
t ) = exp[−A(Xt − X0)]. (5.108)

The martingality of exp(−Stot
t ) implies integral fluctuation relations at stopping times. Let us

consider the stopping time

T = inf{t ≥ 0 | (Xt − X0) /∈ (−x−, x+)}, (5.109)

i.e., the first escape time of the position (relative to its initial value) from the interval (−x−, x+)

with x− and x+ two finite positive integers. For the stopping time (5.109), we have that
〈| exp(−Stot

T )|〉 < exp[−A min(x−, x+)] < ∞ and P(T < ∞) < 1 (T is finite), and we can thus
readily apply Doob’s optional stopping Theorem 4.51

〈exp(−Stot
T )〉 = 〈exp(−Stot

0 )〉 = 1, (5.110)

which follows from Stot
0 = 0. Furthermore, we can unfold the average at the stopping time (5.109)

as

〈exp(−Stot
T )〉 = P+(x+, x−) exp(−Ax+) + P−(x+, x−) exp(Ax−), (5.111)

where P+(x+, x−) and P−(x+, x−) denote the absorption probabilities at x+ and −x−, respectively.
Using P+(x+, x−) + P−(x+, x−) = 1 together with Equations (5.110)–(5.111), we find

P−(x+, x−) = 1 − exp(−Ax+)

exp(Ax−) − exp(−Ax+)
. (5.112)

For x+ → ∞, we have the absorption probability at position −x < 0

P−(x) = exp(−Ax), (5.113)

which gives the probability that the relative position with respect to the initial value Xt − X0 ever
reaches the value −x. When ω+ > ω−, A > 0 and thus P−(x) < 1, i.e., if the drift is positive,
the probability to ever reach a negative threshold is smaller or equal than 1. Similarly, for x− →
∞ and absorption at position x > 0, we have P+(x) = 1 for A > 0, i.e. the walker reaches with
probability 1 a single absorbing positive boundary when the drift is positive.

In what follows, we assume ω+ > ω−, i.e., A > 0 (positive average velocity) without loss of
generality. The analytical expression (5.113) for the absorption probability in a negative boundary
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can be used to obtain the statistics of extremal values of position

�X min
t ≡ min

s∈[0,t]
(Xs − X0), (5.114)

�X max
t ≡ max

s∈[0,t]
(Xs − X0), (5.115)

as well as of entropy production Smin
t = A�X min

t and Smax
t = A�X max

t . We first consider the long-
time limit �X min ≡ limt→∞ �X min

t . The probability that the global minimum is at −x < 0 is

ρ�X min(−x) = P−(x) − P−(x + 1), (5.116)

and therefore

ρ�X min(−x) = ρSmin(−Ax) = exp(−Ax)(1 − exp(−A)). (5.117)

The averages of minima of position and entropy production are then given by

〈Smin〉 = −A

exp A − 1
(5.118)

and

〈Xmin〉 = −1

exp A − 1
. (5.119)

The global minimum of entropy production (5.118) therefore satisfies the infimum law 〈Smin〉 ≥
−1. Note, however, that in the case of continuous processes the infimum law at infinite time
imposes precisely 〈Smin〉 = −1, which is, as we have derived here, not obeyed for the biased
random walk. Instead for the model discussed here, the average global infimum of entropy
production is not universal as it depends on the model parameter A, see Equation (5.118).

The limit of a continuous process is reached when taking the diffusion limit where the
Peclet number Pe = v/D = 2 tanh(A) is small, Pe " 1, where v = (ω+ − ω−) = 2ν sinh(A/2)

and D = (ω+ + ω−)/2 is the effective diffusion coefficient. This diffusion limit therefore corre-
sponds to the regime of small A. In this limit, Equation (5.118) approaches indeed the infimum
law of entropy production for continuous stochastic processes 〈Smin〉 = −1. Interestingly, in this
limit the velocity v is small and the motor close to stall. However the fluctuations become large
for small A which is reflected in a divergence of the average minimum 〈Xmin〉 according to
Equation (5.119). Numerical and analytical illustrations of the non-universal feature of the global
infimum of entropy production are provided in Figure 5.5 [41].

Lastly, we would like to point to an interesting symmetry between the extrema of entropy pro-
duction Smin

t and Smax
t during the time interval [0, t] during which the entropy production changes

from Stot
0 = 0 to Stot

t . Indeed, the reduction of entropy Stot
0 − Smin

t ≥ 0 between start and mini-
mum obeys the same statistics as the reduction of entropy Smax

t − Stot
t ≥ 0. This follows from

considering the time reversed process with trajectories X̃[0,t] = {Xt−u}t
u=0 with path distribution

Q(�tX[0,t]) = P(X[0,t]). This statistics of X̃ is generated by the same hopping process but with
rates ω+ and ω− exchanged or equivalently with A → −A. The entropy production of the time
reversed process therefore is S̃tot

u = A(Xt − X̃u), where X̃u = Xt−u. Note that extrema of Xt and
its time reverse are the same, X̃ max

t = X max
t and X̃ min

t = X min
t . The extrema of entropy production

of the time reversed process are therefore S̃min
t = Stot

t − Smax
t and S̃max

t = Stot
t − Smin

t . Because
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Figure 5.5. (a) Illustration of the minimal stochastic model of molecular motor motion, given by a continu-
ous-time biased random walk in a discrete lattice with periodic boundary conditions. The transition rates are
given by ω+ = ω(x, x + 1) = ν exp(A/2) and ω− = ω(x, x − 1) = ν exp(−A/2), for forward (clockwise)
and backward (counterclockwise) steppings respectively. (b) Net number of clockwise jumps as a function
of time in an example trajectory of the model (Xt − X0, black line), together with the average value over
many realizations 〈�Xt〉 (thick black line). The finite-time maximum �X max

t = maxs∈[0,t](Xs − X0) and
minimum of the trajectory �X min

t = mins∈[0,t](Xs − X0) are displayed with red and blue lines, respectively.
(c) Averages of the finite-time minimum 〈Smin

t 〉 (blue symbols) and 〈Smax
t 〉 − 〈Stot

t 〉 with Smax
t the finite-time

maximum of entropy production (red symbols) as a function of time t. Different symbols are obtained for
different degrees of nonequilibrium: A = 1, ν = 0.5 (squares), A = 2, ν = 2 (circles), and A = 1, ν = 100
(diamonds). The horizontal lines are set to ±1. In (c), symbols are obtained from numerical simulations and
the lines are obtained from analytical calculations, see [41] for further details.

Q(X̃[0,t]) = P(X[0,t]), the statistics of {X̃u − Xt}t
u=0 and {Xu − X0}t

u=0 are the same. Therefore the
statistics of S̃tot

s and Stot
s are also the same as well as those of minima S̃min

t , Smin
t and those of max-

ima S̃max
t , Smax

t . As a consequence, the distributions of minima and maxima of entropy production
obey the symmetry relation

ρStot
0 −Smin

t
(s) = ρSmax

t −Stot
t
(s), (5.120)

i.e., the reduction of entropy from time t = 0 until the minimum value Smin
t has the same statistics

as the reduction of entropy from the maximum value Smax
t until it reaches Stot

t at time t. A special
case of the general statement (5.120) is that the averages are the same

〈Smax
t − 〈Stot

t 〉〉 = −〈Smin
7 7t〉. (5.121)

The definitions of S̃tot
t and Stot

t further imply that exp(−S̃tot
t ) and exp(Stot

t ) are both martingales
with respect to the distribution Q, while exp(S̃tot

t ) and exp(−Stot
t ) are both martingales with

respect to P .

Chapter 6. Martingales in stochastic thermodynamics II: Formal foundations

As far as I see, all a priori statement in Physics have their origin in symmetry.
Herman Weyl (1952).
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After the works of the founding fathers of thermodynamics, among others, Clausius, Maxwell,
and Boltzmann, the concept of entropy has become the cornerstone of the second law of thermo-
dynamics. Entropy is a source of continuous discussion with a common theme: there does not
exist a unique fully satisfactory notion of entropy and the different definitions of entropy intro-
duced in the literature are interesting for different applications/perspectives [146,155–160]. In
the present chapter, we review different notions of entropy as they have been used in stochastic
thermodynamics and discuss their relation with martingale theory.

The present chapter builds further on Chapter 5, where we have developed martingale the-
ory for stationary processes in two simple examples, namely, the one-dimensional overdamped
Langevin process and Markov jump processes. The aim of the present chapter is to extend martin-
gale theory in thermodynamics for general processes that may be nonstationary. To this aim, we
use path-probability ratios, which provide a versatile tool to construct martingales in stochastic
thermodynamics, and which will correspond to different notions of entropy.

This chapter is organized into three sections. In the first Section 6.1, we introduce the entropic
functionals, which are a generic classes of functionals defined through path-probability ratios.
Furthermore, we provide examples of entropic functionals that play a central role in stochastic
thermodynamics, such as the entropy production, work, heat, and we illustrate these on spe-
cific models, such as Langevin processes and jump processes. In the second Section 6.2, we
derive rigorously the martingale structure for the functionals introduced in Section 6.1. In the
last Section 6.3, we introduce the generalized entropic functionals and discuss their relevance for
stochastic thermodynamics and martingale theory.

To develop formal foundations in this chapter, unless specified otherwise, the physical process
Xt with associated path probability P is a generic stochastic process, which can be both in discrete
or continuous time, and is not necessarily stationary and/or Markovian.

6.1. Stochastic entropic functionals and fluctuation relations

6.1.1. Notations and preliminaries

We review the notation that we use for the path probability of a trajectory x[0,t] of a process Xt for
discrete time and space, even though we apply it throughout this section in continuous time and
space. We denote the path probability to observe a trajectory x[0,t] in the observation time window
[0, t] by

P(x[0,t]) ≡ P(X0 = x0, X1 = x1, . . . , Xt−1 = xt−1, Xt = xt), (6.1)

where t ∈ N are natural numbers and xs ∈ X for all values of s ∈ [0, t]. An analogous definition
can be formulated for continuous time and/or space, which is nota bene the typical setup for
physics.

Since P denotes the path probability of the physical process X of interest, we often use the
simplified notation

〈·〉 ≡ 〈·〉P (6.2)

for averages over the physical path probability P . In this chapter, an important quantity is the
path probability P evaluated on the stochastic process X[0,t], which we denote by P(X[0,t]). We
emphasize that P(X[0,t]) is itself a stochastic process.

We often consider a second stochastic process Q(X[0,t]), which is the path probability Q
evaluated on the same stochastic trajectory X[0,t]. The path probability Q may correspond to
another physical process, called the auxiliary process. Note that in general P(X[0,t]) �= Q(X[0,t]).
Throughout this chapter, we assume that the path probabilities P and Q are mutually absolutely
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continuous, which in the discrete case means that for all trajectories x[0,t] for which Q(x[0,t]) = 0,
also P(x[0,t]) = 0, and vice versa. We also assume the microreversibility, i.e., P and Q are
mutually absolutely continuous when Q is evaluated on a time-reversed trajectory.

The time-reversed trajectory denoted by �t(x[0,t]) is the time-reversed path of x[0,t] whose
value at time s ≤ t is given by [

�t
(
x[0,t]

)]
s ≡ xt−s. (6.3)

In general, the time-reversed trajectory could also include spatial involution of X , i.e.,[
�t
(
x[0,t]

)]
s ≡ x�

t−s, (6.4)

where the involution x� has the property (x�)� = x. In particular, for general Kramers–Einstein–
Smoluchowski equation (5.2) Xt may contain both position and momenta variables, and the time
reversal operation involves a change of sign of all the momentum degrees of freedom. However,
for simplicity, we do not consider momentum-like degrees of freedom in this chapter, and we
refer the reader to Refs. [98,138] for further analyses.

We also consider families of path probabilities denoted by

P (u)(x[0,t]) ≡ P (u) (X0 = x0, X1 = x1, . . . , Xt−1 = xt−1, Xt = xt) , (6.5)

where u, t ≥ 0, and analogously for Q(u).
Lastly, let us discuss an important choice of Q(t) that appears in the Markovian context. In the

Markovian context, when P is the path probability of a process X with Markovian generator Lt,
the most important choice for Q(t) corresponds with the time-reversed protocol, which we denote
by P̃ (t) (see Figure 6.1 for an illustration). In this case, for each fixed t the auxiliary process is
the Markov process with time-reversed Markovian generator

L̃(t)
s ≡ Lt−s, (6.6)

for all 0 ≤ s ≤ t, and with a given arbitrary initial density

ρ̃
(t)
0 ≡ ρP̃ (t)

0 . (6.7)

Analogously, we denote the instantaneous density of X associated with P̃ (t) by

ρ̃(t)
s ≡ ρP̃ (t)

s , (6.8)

for all 0 ≤ s ≤ t. Note that this is not the time-reversal process that appears often in probabilistic
literature [84,98,148] in which, differently to as in Figure 6.1, the instantaneous density is the
time reversal of the original.

Meet the entropic functionals. As shown in Chapter 5, key quantities in stochastic thermo-
dynamics are expressed as functionals that take a specific value when evaluated over stochastic
trajectories X[0,t]. These entropic functionals (i.e., stochastic entropy production, stochastic envi-
ronmental entropy change, etc.) take the form of path-probability ratios. In this chapter, we
present some of the most relevant entropic functionals in stochastic thermodynamics and dis-
cuss their martingale properties from both mathematical and physical viewpoints. To guide the
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Figure 6.1. Panel (a): Illustration of a physical process through the evolution of a control parameter λ as a
function of time (blue line) and of the backward, time-reversed protocol associated with the forward physical
process (red line). We highlight the value of the forward (blue filled circle) and backward (red open circle)
protocols at a time s smaller than the time t with respect which the time reversal is applied. Note that for
s ≤ t, the reversed protocol is defined as λ̃s = λt−s, i.e., in general λ̃s �= λs. Panel (b) Left: Illustration of
the time evolution of an initial probability density in the forward process. Right: Illustration of the evolution
of an arbitrary probability density in the backward process.

reader in this journey through the almanac of probability ratios, we provide here a quick summary
of the entropic functionals that we define later in this chapter:

• The �-stochastic entropic functionals involve the statistics of the physical process P(X[0,t])

and that of an arbitrary auxiliary process Q(t)(X[0,t]), both evaluated over the trajectories of
X. A physical example of a �-stochastic entropic functional is the housekeeping entropy
production Shk

t .
• The �-stochastic entropic functionals involve the statistics of the physical process P(X[0,t])

evaluated over X[0,t], and that of an arbitrary auxiliary process Q(t)(�t(X[0,t])) evaluated
over the time-reversal �t(X[0,t]) of X[0,t]. Two physical examples of �-stochastic entropic
functionals are the �tot-stochastic entropic functional, which is a stochastic process pro-
portional to the fluctuating work dissipated in an isothermal system, and the Q-stochastic
entropy production, which we discuss in the next bullet point.

• The Q-stochastic entropy production is a �-stochastic entropic functional for which the
initial distribution of auxiliary process Q(t) equals the instantaneous density ρt of the pro-
cess X[0,t]. Physical examples of the Q-stochastic entropy production are the total stochastic
entropy production Stot

t and the excess stochastic entropy production Sex
t .

• The generalized �-stochastic entropic functionals have an analogous structure to the �-
stochastic entropic functionals, except that they involve probability ratios over arbitrary
intervals [r, s] ⊆ [0, t]. As we show in Chapter 9, the generalized �-stochastic entropic
functionals yield a plethora of different formulations of the second law, some of which are
well known, and Others that we derive in this treatise for the first time.

6.1.2. Definitions of �- and �-stochastic entropic functionals

Key quantities in stochastic thermodynamic quantities, such as work, heat, entropy, and
energy, are formally functionals of stochastic trajectories. Here we introduce the �-stochastic
and �-stochastic entropic functionals as two classes of functionals that involve two (differ-
ent) path probabilities, generalizing the formulae (5.51), (5.52), and (5.99) of the previous
chapter.
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We define the �-stochastic entropic functionals and the �-stochastic entropic
functionals, both associated with a generic stochastic process Xt, by

�
P ,Q
t ≡ �

P ,Q
t

(
X[0,t]

) ≡ ln

[
P
(
X[0,t]

)
Q(t)

(
�t
(
X[0,t]

))] (6.9)

and

�
P ,Q
t ≡ �P ,Q (X[0,t]

) ≡ ln

[
P
(
X[0,t]

)
Q(t)

(
X[0,t]

)] , (6.10)

where P is the path probability describing the statistics of the physical process of inter-
est, Xt, and Q(t) is a sequence of path probabilities describing the statistics of auxiliary
processes.

Now, we discuss a few key properties related to �-stochastic entropic and �-stochastic
entropic functionals:

• The �-stochastic entropic functional is also known as the action functional [145,161].
• The role of the time index t in the superscript of Q(t) is different from the one that appears in

the subscript of X[0,t]. Indeed, the t in the subindex [0, t] of X[0,t] determines the time window
over which the path probability Q is evaluated; Q(X[0,t]) is obtained through marginaliza-
tion of Q(X[0,∞)). On the other hand, the superindex (t) in Q(t) indicates a supplementary
dependency on time that represents a sequence of path probabilities. Note that the supple-
mentary dependency on t is not related to nonstationarity or time-inhomogeneity of the
process X, as both P and Q(t) for fixed t can represent time-inhomogeneous processes.
In stochastic thermodynamics, the supplementary dependence on t in Q(t) originates from
reversing the direction of time relative to time t. For example, in Markov processes Q(t)

represents often a time-reversed Markov process determined by a reversed protocol (6.6)
L̃(t)

s = Lt−s, which depends on the time-reversal reflection point t. For a first reading of this
chapter, we advice to focus on the particular case of Q(t) = Q. Note that it is unnatural to
consider the analogous case P (t), because P is the path probability of the physical process
X, and hence there is no reason to have an additional dependency on t.

• The mathematical properties of �
P ,Q
t and �

P ,Q
t are similar (see below). Moreover, �

P ,Q
t

functionals can be written as �
P ,Q′
t functionals (and reciprocally) by using a suitable choice

for the path probability Q′, which is called time reversal of Q in the probability theory
literature [84,98,148].

Therefore, it is natural to ask why there is a need to introduce the two entropic func-
tionals � and �? The answer is blowin’ in the wind of martingales: as we show in
Section 6.2, exp(−�

P ,Q
t ) can be a martingale with respect to P even if Q is nonstationary,

whereas exp(−�
P ,Q
t ) requires in general a stationary Q to be a martingale. An intuitive

idea behind this result is that the sequence Q′(t) that satisfies �
P ,Q
t = �

P ,Q′(t)
t depends in

general explicitly on t, even when Q is a nonstationary path probability without explicit
t-dependence.
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• Let us illustrate the difference between the two t-dependencies in Q(t)(X[0,t]) on the exam-
ple of a Langevin process.8 For a sequence of path probabilities Q(t), the corresponding
sequence L (t)

s of Lagrangians reads, see Equation (3.94)

L (t)
s (Xs, Ẋs) ≡ 1

4

(
Ẋs − μ(t)

s (Xs)F
(t)
s (Xs)

) (
D(t)

s

)−1 (
Ẋs − μ(t)

s (Xs)F
(t)
s (Xs)

)
+ 1

2
∇ · (μ(t)

s F(t)
s

)
(Xs). (6.11)

We recall readers Equation (3.96) for the definition of Lagrangian L in this context. The
corresponding actions defining Q(t) are, see Equations (2.56)–(2.57)

A(t)(X[0,t]) = − ln(ρ0(X0)) +
∫ t

0
dsL(t)

s (Xs, Ẋs). (6.12)

Note that the explicit t-dependency of Q(t), denoted by the superscript in Q(t), is due to the
second t-dependency in the mobility matrix μ(t)

s , diffusion matrix D(t)
s , and total force F(t)

s .
Nevertheless, for each fixed value of t, the Lagrangian L (t)

s describes time-inhomogeneous
Langevin processes, as μ(t)

s , D(t)
s , and F(t)

s depend explicitly on s.
• A key feature of �-stochastic entropic functionals (6.9) (resp., �-stochastic entropic

functionals) is the duality relations

�
P ,Q
t

(
�t(X[0,t])

) = −�
Q,P
t (X[0,t]) (6.13)

and

�P ,Q (X[0,t]
) = −�Q,P(X[0,t]). (6.14)

In words, � changes sign under the simultaneous reversal of time and the exchange of the
measures P ↔ Q, whereas � changes sign under exchange of the measures P ↔ Q.

• Unlike the entropy production of the macroscopic second law of thermodynamics, see
Refs. [144,162], both the �-stochastic entropic functional �

P ,Q
t and the �-stochastic

entropic functional �
P ,Q
t can take negative values. However, average values of entropic

functionals are positive (see below).
• The existence of �

P ,Q
t and �

P ,Q
t requires that P is absolutely continuous with respect

to Q(t)�t and Q(t), respectively (see Chapter 2 for a discussion of the continuous case).
For example, in discrete space �

P ,Q
t and �

P ,Q
t are well defined if for all trajectories X[0,t]

for which Q(t)(�t(X[0,t])) = 0 or Q(t)(X[0,t]) = 0 it holds that also P[0,t](X[0,t]) = 0. These
conditions ensure that the �-stochastic entropic and �-stochastic entropic functionals,
respectively, do not diverge when evaluated along a stochastic trajectory.

• In Section 6.3, we will introduce the generalized �-stochastic entropic functionals, which
will provide martingales that lead to refinements of the second law of thermodynamics in
Chapter 9.
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The average values with respect to P of both the �-stochastic entropic and �-stochastic
entropic functionals are Kullback–Leibler divergences, viz.,〈

�
P ,Q
t

〉
= DKL

[
P
(
X[0,t]

) ||Q(t)
(
�t
(
X[0,t]

))]
(6.15)

and 〈
�

P ,Q
t

〉
= DKL

[
P
(
X[0,t]

) ||Q(t)
(
X[0,t]

)]
. (6.16)

As P , Q, and Q(t)�t are normalized path probabilities, the Kullback–Leibler divergences
in the right-hand side of Equations (6.15)–(6.16) are greater or equal than zero, which
imply the “second laws” 〈

�
P ,Q
t

〉
≥ 0 and

〈
�

P ,Q
t

〉
≥ 0. (6.17)

6.1.3. Fluctuation relations for stochastic entropic functionals

Fluctuation relations follow readily from the definitions (6.9) and (6.10), as can be seen from the
following central equations:

The “mother” fluctuation relations for an arbitrary functional Z(X[0,t]) read [138]〈
Z
(
�t
(
X[0,t]

))〉
Q(t) =

〈
exp
(
−�

P ,Q
t

)
Z
(
X[0,t]

)〉
(6.18)

and 〈
Z
(
X[0,t]

)〉
Q(t) =

〈
exp
(
−�

P ,Q
t

)
Z
(
X[0,t]

)〉
. (6.19)

Notably, Equations (6.18)–(6.19) hold for any functional Z and any pair P and Q(t) of
absolutely continuous path probabilities.

Setting Z(X[0,t]) = δ(�
P ,Q
t − σ) and Z(X[0,t]) = δ(�

P ,Q
t − λ) in the first and second lines

of Equations (6.19), respectively, and using the duality relations (6.13)–(6.14), we obtain the
following generalized Crooks fluctuation relations [163]:〈

δ(�
Q,P
t + σ)

〉
Q(t)

= exp(−σ)
〈
δ(�

P ,Q
t − σ)

〉
(6.20)

and 〈
δ(�

P ,Q
t − λ)

〉
Q(t)

= exp(−λ)
〈
δ(�

P ,Q
t − λ)

〉
. (6.21)

Using Equation (6.14), one can rewrite Equation (6.21) as〈
δ(�

Q,P
t + λ)

〉
Q(t)

= exp(−λ)
〈
δ(�

P ,Q
t − λ)

〉
. (6.22)
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Equations (6.20) and (6.22) can also be written as

ρP
�

P ,Q
t

(σ )

ρQ(t)

�
Q,P
t

(−σ)
= exp(σ ), and

ρP
�

P ,Q
t

(λ)

ρQ(t)

�
Q,P
t

(−λ)
= exp(λ). (6.23)

In the first relation of Equation (6.23), the numerator (denominator) denotes the probability den-
sity of �

P ,Q
t (�Q,P

t ) under the probability law P (Q(t)), and analogously for the �-stochastic
entropic functional in the second equation. For the choice Z(X[0,t]) = 1, Equation (6.19) become
the generalized integral fluctuation relations given by〈

exp
(
−�

P ,Q
t

)〉
= 1 and

〈
exp
(
−�

P ,Q
t

)〉
= 1. (6.24)

Note that the generalized integral fluctuation relations hold for any (normalized) path probability
Q(t) that is absolutely continuous with respect to P .

In the following, by considering specific choices for the path probability Q(t) of the auxil-
iary process, we discuss examples of �-stochastic entropic functionals and �-stochastic entropic
functionals that are relevant for physics.

6.1.4. Q-stochastic entropy production

We review the Q-stochastic entropy production, which is a �-stochastic entropic functional for a
specific choice of Q(t) that is widely used in stochastic thermodynamics [26,138,145,164,165].
In particular, we assume that

ρQ(t)

0 (x) ≡ 〈δ(X0 − x)〉Q(t) = 〈δ(Xt − x)〉 ≡ ρt(x), (6.25)

where ρt(x) is the probability density of Xt under its native dynamics, determined by P .

When specializing the �-stochastic entropic functional (6.9) to Q(t) that satisfy
Equation (6.25), we obtain the so-called Q-stochastic entropy production, which we
denote by SP ,Q

t [26,138,145,164,165]

SP ,Q
t ≡ �

P ,Q
t = ln

(
P
(
X[0,t]

)
Q(t)

(
�t
(
X[0,t]

))) , t ∈ R+. (6.26)

Using Bayes’ law, the Q-stochastic entropy production (6.26) can be split into two parts,
namely, a system entropy change �Ssys

t and an environmental Q-stochastic entropy change
Senv,P ,Q

t , viz.,

SP ,Q
t = ln

(
ρ0(X0)

ρt(Xt)

)
︸ ︷︷ ︸

�Ssys
t

+ ln

(
P
(
X[0,t] |X0

)
Q(t)

(
�t
(
X[0,t]

) |Xt
))︸ ︷︷ ︸

≡Senv,P ,Q
t

, (6.27)

where for consistency with Equation (5.51), we have omitted the superscript P in the system
entropy ρP

t , and where the conditioning in the numerator and the denominator of the environment
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entropy change is on the respective initial state. More generally, we have for a �-stochastic
entropic functional

�
Q,P
t = ln

(
ρ0(X0)

ρQ(t)

0 (Xt)

)
+ ln

(
P
(
X[0,t] |X0

)
Q(t)

(
�t
(
X[0,t]

) |Xt
))︸ ︷︷ ︸

≡Senv,P ,Q
t

, (6.28)

where the conditioning in the numerator and the denominator is again initial conditioning.
The decomposition (6.27) is one of the cornerstones of stochastic thermodynamics; it is the

fluctuating version of the second law for open systems

〈SP ,Q
t 〉 = 〈�Ssys

t 〉 + 〈Senv,P ,Q
t 〉 ≥ 0, (6.29)

which was introduced for a specific choice of Q by Prigogine et al. in the 1950s [166,167]. Of
course, we should keep in mind that the appropriate choice of Q(t) leading to an environment
entropy change Senv,P ,Q

t with physical content depends on the physical context.
The choice of the initial density ρQ(t)

0 = ρt in (6.26) is not arbitrary. In particular, this choice of

ρQ(t)

0 minimizes the average value of �
P ,Q
t . Indeed, taking the average of the difference between

Equations (6.28) and (6.9) we obtain

〈�P ,Q
t 〉 − 〈SP ,Q

t 〉 =
∫

dxρt(x) ln
ρt(x)

ρQ(t)

0 (x)
= DKL[ρt(x)||ρQ(t)

0 (x)] ≥ 0. (6.30)

This result justifies the name “Q-entropy production”, as the �-entropic functional contains an
additional cost resulting from the initial density of the auxiliary process, while for the Q-entropy
production the cost from the initial state vanishes on average, and hence the average “Q-entropy
production” is determined by the dynamics described by Q.

In the following, we show that for specific choices of Q, the �-entropic functional �
P ,Q
[0,t] , the

Q-entropy production SP ,Q
t , and the environmental Q-stochastic entropy change Senv,P ,Q

t identify
with usual quantities which are commonly introduced in stochastic thermodynamics. We refer to
Refs. [10,91,96,138,168] for other interesting choices of Q, such as those leading to universal
fluctuations relations for phase-space contraction and/or multiplicative fluctuation relations for
the finite-time Lyapunov exponents.

6.1.5. Total �-stochastic entropic functionals and stochastic entropy production for
Markovian processes

We define the total �-stochastic entropic functional �tot
t as the �-stochastic entropic functional,

given in (6.9), specialized to the following choices of P and Q:

• The statistics P of the physical process X are generated by a generic, Markovian, non-
equilibrium process with Markov generator L.

• The statistics Q(t) of the auxiliary process are determined by the time-reversed Markov
process defined in (6.6).
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The total �-stochastic entropic functional (6.9) is defined by

�tot
t ≡ �

P ,P̃ (t)

t = ln

(
P(X[0,t])

P̃ (t)(�t(X[0,t]))

)
. (6.31)

Following analogous steps as in Section 6.1.4, we can split �tot
t into a system and an

environment entropy changes during the time interval [0, t], see also Equation (6.28),

�tot
t = ln

(
ρ0(X0)

ρ̃
(t)
0 (Xt)

)
+ ln

(
P
(
X[0,t] |X0

)
P̃ (t)

(
�t
(
X[0,t]

) |Xt
))︸ ︷︷ ︸

≡Senv
t

. (6.32)

The second term in the right-hand side of (6.32) is the so-called stochastic environmental entropy
flow, which has a similar structure as the environmental entropy change Senv

t given in (5.51). The
first term in (6.32) is a generalized system entropy change, which involves the initial density
of the physical process and the probability density ρ̃

(t)
0 (Xt), which is the initial density of the

auxiliary process evaluated at final state of the trajectory X[0,t].

If ρ̃
(t)
0 = ρt in Equation (6.32), then �tot

t is also called the stochastic entropy
production, denoted by Stot

t , i.e.,

Stot
t ≡ ln

(
ρ0(X0)

ρt(Xt)

)
︸ ︷︷ ︸

�Ssys
t

+ ln

(
P
(
X[0,t] |X0

)
P̃ (t)

(
�t
(
X[0,t]

) |Xt
))︸ ︷︷ ︸

Senv
t

. (6.33)

In Chapter 5, we have studied Stot for one-dimensional Langevin processes and Markov
jump processes. In Sections 6.1.5.1 and 6.1.5.2, we provide for illustrative purposes explicit
expressions of �tot

t and Stot
t for Markov jump processes and diffusion processes in arbitrary

dimensions.

6.1.5.1. Markov-jump processes. For a Markov jump process defined by time-dependent,
transition rates ωt(x, y) for all x, y ∈ X (see Section 3.2.2), the total �-stochastic entropic
functional (6.32) is given by

�tot
t = ln

(
ρ0(X0)

ρ̃
(t)
0 (Xt)

)
+

Nt∑
j=1

ln

[
ωTj(XT −

j
, XT +

j
)

ωTj(XT +
j

, XT −
j

)

]
, (6.34)

where Tj in the right-hand side are the times when X jumps between different states, with 0 ≤
T1 ≤ T2 ≤ · · · TNt ≤ t, and Nt is the total number of jumps in the trajectory X[0,t]. Note that it is
also possible to write analogous explicit expressions for the general Markovian Q in �-stochastic
entropic functionals, given in (6.9), and the �-stochastic entropic functionals, given in (6.10),
associated to such pure jump processes.
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Note that �tot
t in (6.34) exists if the so-called microreversibilty condition holds, viz., for

all x, y ∈ X , ωt(x, y) > 0 implies ωt(y, x) > 0; these conditions are equivalent to the assumed
absolute continuity between P and P̃�t.

For a microreversible Markov jump process, the total stochastic entropy production Stot
t (6.33)

is given by

Stot
t = ln

(
ρ0(X0)

ρt(Xt)

)
︸ ︷︷ ︸

�Ssys
t

+
Nt∑

j=1

ln

[
ωTj(XT −

j
, XT +

j
)

ωTj(XT +
j

, XT −
j

)

]
︸ ︷︷ ︸

Senv
t

, (6.35)

where we decomposed Stot
t in terms of system entropy change �Ssys

t and the environment entropy
change Senv

t . Rewriting the first term in Equation (6.35), Stot
t can be expressed in its alternative

form (5.89)

Stot
t = −

∫ t

0
ds(∂s ln ρs)(Xs) +

Nt∑
j=1

ln

[
ρTj(XT −

j
)ωTj(XT −

j
, XT +

j
)

ρTj(Xτ+
j
)ωTj(XT +

j
, XT −

j
)

]
, (6.36)

For a system in equilibrium, Stot
t = 0, as ρs = ρst is independent of time and the detailed balance

relation ρst(x)ωs(x, y) = ρst(y)ωs(y, x) holds for all x, y ∈ X and s ≥ 0. On the other hand, for
a nonequilibrium system the average total entropy production reads (see also Equations 5.90
and 5.91)

〈Stot
t 〉 =

∫ t

0
ds
∫
X

dx
∫
X

dyρs(x)ωs(x, y) ln

[
ρs(x)ωs(x, y)

ρs(y)ωs(y, x)

]
(6.37)

= 1

2

∫ t

0
ds
∫
X

dx
∫
X

dyJs,ρ(x, y) ln

[
ρs(x)ωs(x, y)

ρs(y)ωs(y, x)

]
, (6.38)

where in the second equality we have used the definition of the instantaneous probability cur-
rent Js,ρ(x, y) = ρs(x)ωs(x, y) − ρs(y)ωs(y, x), with s ∈ [0, t]. Equation (6.38) is the celebrated
Schnakenberg formula for the entropy production of Markovian systems [83], which was derived
two decades before the origins of stochastic thermodynamics.

6.1.5.2. Multidimensional overdamped Langevin processes. We consider a multidimensional
Langevin process described in Equation (3.65), and which we rewrite here for convenience,

Ẋt = (μtFt)(Xt) + (∇Dt) (Xt) +
√

2Dt(Xt)Ḃt. (6.39)

Recall that Ft(x) = −∇Vt(x) + ft(x) is a generic force which has a conservative part −∇Vt(x)
and a non-conservative ft(x) part, and both contributions can depend explicitly on time, see
Equation (3.66).

The total �-stochastic entropic functionals associated with trajectories generated by the
overdamped Langevin equation (6.39) are given by [138,161]

�tot
t = ln

(
ρ0(X0)

ρ̃
(t)
0 (Xt)

)
+
∫ t

0

((
μsFs

)
D−1

s

)
(Xs) ◦ Ẋs ds︸ ︷︷ ︸

Senv
t

. (6.40)

Here, Dt needs to be invertible, which implies that this result does not hold for underdamped
Langevin equations. Note that it is possible to write analogous explicit expressions for the gen-
eral �-stochastic entropic functional (6.9) associated to Markovian Q and �-stochastic entropic
functional (6.10) associated to multidimensional Langevin equations [138].
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The total stochastic entropy production of a multidimensional Langevin process is given by

Stot
t = ln

(
ρ0(X0)

ρt(Xt)

)
︸ ︷︷ ︸

�Ssys
t

+
∫ t

0

((
μsFs

)
D−1

s

)
(Xs) ◦ Ẋs ds︸ ︷︷ ︸

Senv
t

. (6.41)

Using the definition of the probability current equation (3.64)

Jt,ρ(x) ≡ ((μtFt
)
ρt
)
(x) − (Dt∇ρt) (x), (6.42)

and using the Stratonovich (i.e., standard) rules of calculus, we can rewrite Equation (6.41) as

Stot
t = −

∫ t

0
(∂s ln ρs) (Xs) ds +

∫ t

0
(Js,ρ (ρsDs)

−1)(Xs) ◦ Ẋs ds, (6.43)

which generalizes Equation (5.20) to the multidimensional case. To pass from Equations (6.41)
– (6.43) we used the relation

ln

(
ρ0 (X0)

ρt (Xt)

)
= −

∫ t

0
d (ln (ρs (Xs))) = −

∫ t

0

(
(∂s ln ρs) (Xs) ds + (∇ ln ρs) (Xs) ◦ Ẋs ds

)
.

(6.44)

For equilibrium processes, the total stochastic entropy production vanishes, even at the stochastic
level. This is because equilibrium dynamics satisfy ρt = ρst and the “detailed balance” condition
Js,ρst = 0, and hence the two terms in (6.43) vanish. On the other hand, for nonequilibrium pro-
cesses Stot

t can take any value (positive or negative), yet its average is positive. Indeed, the average
total stochastic entropy production is a quadratic form of the probability current, viz.,

〈Stot
t 〉 =

∫ t

0
ds
∫
X

dx
(
Js,ρ (ρsDs)

−1 Js,ρ
)
(x) ≥ 0, (6.45)

and the positivity follows from (Js,ρ(ρsDs)
−1Js,ρ))(x) ≥ 0 for all values of x ∈ X ; we refer to

Section 6.1.5.4 for a derivation of Equation (6.45).

6.1.5.3. Overdamped isothermal Langevin equation. Consider now the Langevin dynamics
described in Equation (6.39) with the Einstein relation (3.69) fulfilled, i.e., Dt(x) = Tμt(x),
with μt(x) a symmetric mobility matrix. We call this the overdamped isothermal Langevin
equation. For overdamped isothermal Langevin processes, the stochastic environmental entropy
change (6.41) is given by

Senv
t = 1

T

∫ t

0
Fs(Xs) ◦ Ẋs ds = −Qt

T
, (6.46)

where in the second equality we have used the relation (5.11) for the stochastic heat absorbed
by the system. Equation (6.46) shows that the Clausius relation between environmental entropy
change and heat also holds for isothermal multidimensional Langevin system.

Now, we explicit �tot
t in an important physical example. Suppose that the potential V is deter-

mined by a deterministic protocol λs (s ∈ [0, t]), and that the system is initially described by an
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equilibrium ensemble with initial density

ρ0(x) = exp

(
− (V0(x) − Geq

0 )

T

)
, (6.47)

where

Geq
t ≡ −T ln

(∫
X

dx exp

(
−Vt(x)

T

))
, (6.48)

is the equilibrium free energy at time t ≥ 0. Note that if an external force is present, ρ0(x) is not
a steady state, even if the potential is constant. Consider now as auxiliary reference process with
initial density equal to

ρQ
0 (x) = exp

(
− (Vt(x) − Geq

t )

T

)
, (6.49)

which coincides with the stationary equilibrium distribution that the system may have if the
driving is stopped at time t (i.e., for s ≥ t we have fs = 0 and Vs = Vt). Moreover, we assume that
the driving of the auxiliary process is the “time-reversal” λQ

s = λt−s for s ∈ [0, t]. The associated
�tot-entropic functional given in Equation (6.40) reads

�tot
t = Vt(Xt) − V0(X0) + Geq

0 − Geq
t + ∫ t

0 Fs (Xs) ◦ Ẋs ds

T
,

= Geq
0 − Geq

t + ∫ t
0

(
fs (Xs) ◦ Ẋs ds + (∂sVs) (Xs) ds

)
T

, (6.50)

where in the second equality we used the Stratonovich (i.e., standard) rules of calculus and
Equation (3.66) for the total force Fs(Xs) = −∂xVs(Xs) + fs(Xs) for this particular dynamics. As
shown below, Equation (6.50) together with the martingale properties of �tot

t allows us to derive
the celebrated Jarzynski’s equality [169] and Crooks’ fluctuation relation [163] involving the
fluctuating work done and the equilibrium free energy changes in driven overdamped isothermal
systems.

For isothermal overdamped Langevin systems that are driven away by a time-dependent
deterministic protocol from an initial, thermal state (6.47), Equation (6.50) relates �tot

t to
the fluctuating work done on the system and to the equilibrium free energy change in the
interval [0, t], viz.,

�tot
t = Wt − (Geq

t − Geq
0 )

T
. (6.51)

Equation (6.51) follows from identifying the integral in the right-hand side of
Equation (6.50) as the stochastic work exerted on the system, see Equation (5.5) for the
expression of the stochastic work Wt for the one-dimensional case. Here, we have also used
that Geq

t is the equilibrium free energy defined in (6.48). Specializing the integral fluctua-
tion relation for �-entropic functionals (6.120) to the choice (6.51), we obtain Jarzynki’s
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equality [169] 〈
exp

(
−Wt

T

)〉
= exp

(
− (Geq

t − Geq
0 )

T

)
. (6.52)

We remark that the average in the left-hand side in Equation (6.52) is done over all
trajectories starting from the initial canonical distribution given in Equation (6.47).

We note that the relation (6.51) can also be derived from the expression (6.34) for �tot

associated with isothermal Markov-jump processes (3.58). Moreover, for general underdamped
isothermal Langevin systems (5.2), the stochastic work exerted on the system on the time interval
[0, t] can still be related to a �-entropic functional, see relations (7.16 )–(7.17) in [138].

6.1.5.4. Martingale structure of the stochastic entropy production for Langevin processes.
Now, we study in more detail the martingale structure of exp(−Stot

t ) for multidimensional
Langevin equations.

The explicit expression for Stot
t , given in Equation (6.43) in the Stratonovich form, can be

rewritten as follows in the Itô form,

Stot
t = −

∫ t

0
ds (∂s ln ρs) (Xs) +

∫ t

0
(Js,ρ (ρsDs)

−1)(Xs)Ẋs ds

+
∫ t

0
ds
[
Ds∇

(
Js,ρ (ρsDs)

−1
)]

(Xs). (6.53)

The conversion of Stot from Stratonovich (Equation 6.43) to Itô (Equation 6.53) follows from
Equation (3.72), copied here for convenience

∫ t

0
gs(Xs) ◦ Ẋs ds =

∫ t

0
gs(Xs)Ẋs ds +

∫ t

0
Ds(Xs) [(∇gs) (Xs)] ds,

which is valid for any function gt(x) that is smooth on t and x. Plugging the Langevin
equation (6.39) in Equation (6.53), we obtain

Stot
t =

∫ t

0

[− (∂s ln ρs) + Ds∇
(
Js,ρ (ρsDs)

−1
)+ Js,ρ (ρsDs)

−1 μsFs
]
(Xs) ds

+
∫ t

0

[
Js,ρ (ρsDs)

−1 (∇Ds)
]
(Xs) ds +

∫ t

0

[
Js,ρ (ρsDs)

−1
√

2Ds

]
(Xs)Ḃs ds.

Expanding the second term of the first line, and simplifying some terms, we find

Stot
t =

∫ t

0

[(
− (∂s ln ρs) + ∇Js,ρ

ρs
− Js,ρ∇ρs

ρ2
s

+ Js,ρ (ρsDs)
−1 μsFs

)
(Xs)

]
ds

+
∫ t

0

[
(Js,ρ (ρsDs)

−1
√

2Ds)(Xs)Ḃs

]
ds. (6.54)



126 É. Roldán et al.

Lastly, using the Fokker–Planck equation (3.63), and the definition of the probability cur-
rent (3.68), we get

Stot
t =

∫ t

0

[(
−2 (∂s (ln ρs)) + Js,ρD−1

s Js,ρ

(ρs)
2

)
(Xs) + Js,ρ (Xs) (ρsDs)

−1 (Xs)
√

2Ds (Xs)Ḃs

]
ds.

(6.55)

Taking the average of Equation (6.55) over the Brownian noise yields the second law
equation (6.45). In addition, Equation (6.55) together with the rules of Itô calculus allows us
to uncover the martingale structure of exp(−Stot

t ).

Itô stochastic differential equation for stochastic entropy production in multidi-
mensional Langevin processes and martingality. Deriving Equation (6.55) with respect
to time we get

Ṡtot
t =

[
−2∂t ln ρ t + Jt,ρD−1

t Jt,ρ

(ρ t)
2

]
(Xt) +

(√
2

Jt,ρ

ρt
D−1/2

t

)
(Xt) Ḃt. (6.56)

We can define a new scalar white noise ḂS
t , with zero mean 〈ḂS

t 〉 = 0 and autocorrelation
〈ḂS

t ḂS
s 〉 = δ(t − s), such that Equation (6.56) takes the form

Ṡtot
t = −2 (∂t ln ρ t) (Xt) +

(
Jt,ρD−1

t Jt,ρ

(ρ t)
2

)
(Xt)︸ ︷︷ ︸

≡vS
t (Xt)

+
√√√√(2

Jt,ρD−1
t Jt,ρ

(ρ t)
2

)
(Xt)︸ ︷︷ ︸

≡
√

2vS
t (Xt)

ḂS
t . (6.57)

Averaging over many realizations, we get

d

dt
〈Stot

t 〉 =
∫
X

dx
(
Js,ρ (ρsDs)

−1 Js,ρ
)
(x) ≥ 0, (6.58)

which is equivalent to Equation (6.45).

Equation (6.57) has an analogous structure to the unidimensional case (5.42), but with an
entropic drift

vS
t (x) =

(
Jt,ρD−1

t Jt,ρ

ρ2
t

)
(x). (6.59)

Applying the multidimensional Itô formula, see Appendix (B.3.2), to the change of variable
Stot

t → exp(−Stot
t ), we obtain from (6.56) the stochastic differential equation

d exp(−Stot
t )

dt
= −2 exp(−Stot

t ) (∂t ln ρ t) (Xt) − exp(−Stot
t )

(√
2

Jt,ρ

ρt
D−1/2

t

)
(Xt) Ḃt. (6.60)
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Note that this is not a closed set of stochastic differential equations because it is not
autonomous in exp(−Stot

t ), but the joint process (Xt, exp(−Stot
t )) admits a closed set of stochas-

tic differential equations. Equations (6.57) and (6.60) extend Equations (5.42) and (5.44) to the
multidimensional context and with space–time inhomogeneous mobility.

Because of the presence of a non-vanishing drift in Equation (6.60), exp(−Stot
t ) is not a

martingale in general. Instead, exp(−Stot
t ) is a martingale if and only if ∂tρt = 0, i.e., in a

stationary state (which can be an equilibrium state or nonequilibrium steady state). Thus for
time-homogeneous nonequilibrium stationary processes, the exponentiated, negative, total
entropy production is an exponential martingale and the martingale fluctuation relation

〈exp(−Stot
t ) |X[0,s]〉 = exp(−Stot

s ) (6.61)

holds, which implies a conditional second law (submartingale property) for the total
entropy production in steady state

〈Stot
t |X[0,s]〉 ≥ Stot

s , (6.62)

for any 0 ≤ s ≤ t.

In Section 6.2, we will come back to this martingale properties in more fundamental way, and
for a more generic setup that includes also other entropic functionals and jump processes.

6.1.6. ♠Excess and housekeeping entropy production for Markovian processes

Now, we review the notions of excess and housekeeping entropy production as introduced by
Oono and Paniconi [150] and further explored in Refs. [138,151,152,164,170,171] in the context
of fluctuation relations within stochastic thermodynamics. We choose here to keep the original
terminology used by Oono and Paniconi [150] for isothermal Markovian processes despite the
setup that we consider is more general. We also note that a popular alternative terminology was
introduced by Esposito and Van den Broeck [152,171], where they substitute the word “excess”
by “non-adiabatic” and the word “housekeeping” by “adiabatic” in the context of non-isothermal
environments.

For a nonequilibrium Markovian stochastic process Xt with arbitrary Markovian gen-
erator Lt, the fluctuating total entropy production Stot

t given in Equation (6.33) can be
decomposed as the sum of two terms:

Stot
t = Sex

t + Shk
t , (6.63)

where Sex
t and Shk

t are respectively the so-called excess stochastic entropy production and
housekeeping stochastic entropy production which are defined below.
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The excess stochastic entropy production Sex
t is a Q-stochastic entropy production of

the form (6.26) specialized to the choice Q(t) = Pex,(t) (see Ref. [98] for details),

Sex
t ≡ SP ,Pex,(t)

t = ln

(
P
(
X[0,t]

)
Pex,(t)

(
�t
(
X[0,t]

)))

= − ln

(
ρt

πt
(Xt)

)
+ ln

(
ρ0

π0
(X0)

)
−
∫ t

0
ds(∂s ln πs)(Xs). (6.64)

Here, the path probability Pex,(t) is associated with the dynamics generated by “dual” time-
reversed generator [98] given for all 0 ≤ s ≤ t by

Lex,(t)
s ≡ π−1

t−s ◦ L†
t−s ◦ πt−s, (6.65)

where ° denotes here the composition operator, and πt is the so-called accompanying
density [6] which obeys

L†
t πt = 0, (6.66)

for all values of time t ≥ 0.

Note that πt would be the stationary density of the process if the external parameters are
constant and equal to those at time t. We give below further remarks and clarifications about the
accompanying density, which is not equal to the instantaneous density of the process generating
Xt. To further clarify the notation in (6.65), we note that Lex,(t)

s acts on a function f (x) as follows:

(Lex,(t)
s f )(x) = (L†

t−s(πt−sf ))(x)

πt−s(x)
. (6.67)

From (6.63), the housekeeping stochastic entropy production Shk
t = Stot

t − Sex
t is

defined as the difference between the total and excess stochastic entropy production, which,
after some cumbersome algebra given in Section 10.5.2 in [98], can be written for generic
Markov processes in the form of a �-entropic functional

Shk
t = �

P ,Phk

t = ln

(
P
(
X[0,t]

)
Phk

(
X[0,t]

)) . (6.68)

Here, Phk is the path probability associated with the same initial density ρ0 and with the
“dual” Markovian generator given for all s ≥ 0 by

Lhk
s ≡ π−1

s ◦ L†
s ◦ πs. (6.69)

Let us now give some important remarks concerning the definition of housekeeping and
excess entropy production.
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• The fact that, Stot
t − Sex

t , a difference of two �-stochastic entropic functionals can be
expressed as Shk

t , a �-entropic functional, is a special property that does not hold in general
for arbitrary �-stochastic functionals.

• A key insight often overlooked in the literature is that the accompanying density πt given
by the solution of Equation (6.66) is not in general a solution of the Fokker–Planck
equation (3.38) associated with the dynamics of the process Xt, i.e., in general

∂tπt �= L†
t πt. (6.70)

On the other hand, πt satisfies L†
t πt = 0 at all times t, i.e., it coincides with the stationary

density of a process on which Markov generator would be frozen for at its value at time t.
In other words, πt is the instantaneous density of the process if and only if the dynamics is
either stationary or quasistatic at all times.

• The average value of the excess entropy production (6.64) reads

〈Sex
t 〉 = DKL [ρ0||π0] − DKL [ρt||πt] −

∫ t

0
ds
∫
X

dxρs(x)(∂s ln πs)(x). (6.71)

Choosing ρ0 = π0, the positivity of 〈Sex
t 〉 given in (6.17) allows one to derive the result by

Vaikuntanathan and Jarzynski [172] − ∫ t
0 ds

∫
X dxρs(x)(∂s ln πs)(x) ≥ DKL[ρt||πt].

Moreover, the formulae (6.71) can also be written as [98]

〈Sex
t 〉 =

∫ t

0
ds
∫
X

dx (∂sρs(x))

(
ln

πs

ρs

)
(x). (6.72)

Equation (6.72) implies that 〈Sex
t 〉 is close to zero for adiabatic processes, i.e., when ρs $

πs.
• Physical interpretation of housekeeping and excess entropy production. Note that if instan-

taneous detailed balance holds, i.e., πs ◦ Ls ≡ L†
s ◦ πs, then Lhk

s = Ls and Shk
t = 0, see

Equation (6.68), yielding Stot
t = Sex

t . This clarifies the adjective “housekeeping” from the
fact that it corresponds to the entropy production that results from the violation of instan-
taneous detailed balance, even if the process is stationary. On the other hand, the excess
entropy production vanishes on average (see Equation 6.72) for stationary processes and
otherwise it is non-zero, even when instantaneous detailed balance holds.

Two important paradigmatic examples are as follows: (i) a nonequilibrium stationary
state (ρ0 = ρt = ρst) with time-independent driving, one has πt = ρst, which implies Stot

t =
Shk

t ; (ii) a nonstationary relaxation with instantaneous detailed balance with respect to π ,
i.e., πs ◦ Ls ≡ L†

s ◦ πs, of a system from an arbitrary initial distribution to a final state, for
which one gets Stot

t = Sex
t . For most nonequilibrium process, however, Shk

t and Sex
t may

both be nonzero fluctuating quantities.
• The expression (6.64) for Sex

t and (6.68) for Shk
t are generic for Markovian processes, with-

out the need to restrict to pure Jump or diffusion processes, i.e., it holds also for Markovian
stochastic equation with Gaussian and Poissonian white noise. We provide in Appendix D
alternative explicit expressions for the excess (6.64) and housekeeping (6.68) stochastic
entropy production when process is restricted to Markov-jump and to multidimensional
Langevin processes.

• Because Sex
t and Shk

t are examples of �-stochastic entropic and �-stochastic entropic
functionals respectively, they obey mother fluctuation theorems (6.19), which imply
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Crooks-like (6.23) and Jarzynski-like (6.120) fluctuation relations for both quantities. The
latter are given by

〈exp
(−Sex

t

)〉 = 1, 〈exp
(−Shk

t

)〉 = 1, (6.73)

where the first equality is often known as the Hatano–Sasa relation [151] (see
also [173,174] for previous derivations of similar results) and the second equality as the
integral fluctuation relation for the housekeeping entropy production, which for the case
of one-dimensional Langevin equations with additive noise is known as the Speck–Seifert
relation [170]. A corollary of these fluctuation relations is the second laws

〈Sex
t 〉 ≥ 0, 〈Shk

t 〉 ≥ 0, (6.74)

which hold for arbitrary nonequilibrium processes. The inequality 〈Sex
t 〉 ≥ 0 has been found

to be crucial to define the efficiency of active-matter heat engines [175]. Finally, the rela-
tion (6.74) together with the Oono–Paniconi decomposition (6.63) implies the “refinement”
of the second law for Stot

t :

〈Stot
t 〉 ≥ sup

(〈Sex
t 〉, 〈Shk

t 〉) ≥ 0, (6.75)

which is the main result of this theory. Note that other approaches to the Oono–Paniconi
decompositions are available even for quantum systems, where the positivity of the
adiabatic entropy is not guaranteed at discrete times [176].

6.2. Martingale structure of entropic functionals

In this section, we identify martingales with respect to a physical stochastic process Xt that play an
important role in stochastic thermodynamics. The martingales that we identify are exponentials of
specific examples of �-stochastic entropic and �-stochastic entropic functionals, as introduced
in Section 6.1, multiplied by minus one.

For simplicity, we consider in the proofs of this section that time is discrete, so that t ∈ N.
In this case, P(X[0,t]) and Q(t)(X[0,t]) are normalized path probabilities. Nevertheless, the results
obtained below are also valid for the continuous-time setup, which is the usual setup of stochastic
thermodynamics.

6.2.1. When are exponentiated, negative �-stochastic entropic functionals exponential
martingales?

Assume that the path probability Q has no supplemental t dependence, i.e., Q(t) = Q.
It holds then that the �-stochastic entropic functional

�
P ,Q
t = ln[P

(
X[0,t]

)
/Q
(
X[0,t]

)
] (6.76)

is a submartingale and the process exp(−�
P ,Q
t ) is a martingale, both with respect to

X[0,t]. In particular, for all t ≥ s ≥ 0 it holds that〈
exp
(
−�

P ,Q
t

)∣∣∣X[0,s]

〉
= exp

(−�P ,Q
s

)
(6.77)
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and

〈�P ,Q
t |X[0,s]〉 ≥ �P ,Q

s . (6.78)

Hence, all �-stochastic entropic functionals of the form (6.10) with the additional condition
Q(t) = Q increase conditionally with respect to time.

For Q(t) = Q, the martingale property in (6.77) follows from a derivation similar to the one
presented in Equation (2.19) of Chapter 2, viz.,〈

exp
(
−�

P ,Q
t

)∣∣∣X[0,s]

〉
=
∫

Dx[s+1,t]
Q(X[0,s], x[s+1,t])

P(X[0,s], x[s+1,t])
P(x[s+1,t] |X[0,s]) (6.79)

=
∫

Dx[s+1,t]
Q(X[0,s], x[s+1,t])

P(X[0,s], x[s+1,t])

P(X[0,s], x[s+1,t])

P(X[0,s])
(6.80)

=
∫
Dx[s+1,t]Q(X[0,s], x[s+1,t])

P(X[0,s])
(6.81)

= Q(X[0,s])

P(X[0,s])
= exp

(−�P ,Q
s

)
. (6.82)

In Equation (6.79), we have used the definition (6.10) of the �-entropic functional; in
Equation (6.80) we have used Bayes’ theorem; in Equation (6.81) we have used the fact that
P(X[0,s]) is independent of X[s+1,t]; and in Equation (6.82) we have marginalized Q. The marginal-
ization step from Equation (6.81) to Equation (6.82) is crucial for the proof of martingality, which
in this case follows immediately from the fact that Q is a path probability, i.e.,∫

Dx[s+1,t]Q(X[0,s], x[s+1,t]) =
∫

dxs+1 · · ·
∫

dxtQ(X0, . . . , Xs, xs+1, . . . , xt)

= Q(X0, . . . , Xs) = Q(X[0,s]). (6.83)

For path probabilities with supplementary t-dependence, denoted by Q(t), martingality requires
the marginalization property (see last step of previous proof):∫

Dx[s+1,t]Q(t)(x[0,t]) = Q(s)(x[0,s]). (6.84)

Relevant examples of (sequences) of path probabilities Q(t) that contain a supplementary t-
dependence are: Q = Pex,(t) with Pex,(t) the Markovian path probability associated with the
generator (6.65) and Q = P̃ (t) with P̃ (t) the Markovian path probability associated with the gen-
erator (6.6). Moreover, as we show in the next paragraph, when the path probability Q involves
time-reversal maps �t, then Q has a supplementary t-dependence.

Moreover, for any functional �t that obeys the following two conditions it holds
that exp(−�t) is a martingale: (i) the �t functional is additive in time, i.e., �t =
�s + �[s,t] for any 0 ≤ s ≤ t and (ii) the �t functional obeys the Jarzynski-like
equality 〈exp(−�[s,t]) |X[0,s]〉 = 1 for any t ≥ s ≥ 0.9 These two conditions imply that
〈exp(−�t) |X[0,s]〉 = exp(−�s)〈exp(−�[s,t]) |X[0,s]〉 = exp(−�s), and hence exp(−�t) is a mar-
tingale. Note that the additive structure �t = �s + �[s,t] is not a generic property for �-stochastic
entropic functionals. However, the additive structure is fulfilled by �-stochastic functionals of
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Equation (6.10) for which both P and Q are by path probabilities of Markovian processes. As
shown below, conditions (i) and (ii) are sufficient but not necessary conditions for exp(−�t) to
be an exponential martingale.

6.2.1.1. Example: Housekeeping entropy production of a Markovian process. The housekeep-
ing entropy production Shk

t , as defined in Equation (6.68), is an example of a �-stochastic entropy
functional that results from the choice Q = Phk, where Phk the Markovian path probability
associated with the “dual” t-independent generator, defined in Equation (6.69).

Therefore, Equation (6.77) implies that exp(−Shk
t ) is a martingale, i.e.,

〈exp(−Shk
t ) |X[0,s]〉 = exp(−Shk

s ), (6.85)

which holds for any t ≥ s ≥ 0 and any X[0,s].

Applying Jensen’s inequality to Equation (6.85), we obtain a conditional second law
for the housekeeping entropy production, viz.,

〈Shk
t |X[0,s]〉 ≥ Shk

s , (6.86)

for any t ≥ s ≥ 0. In other words, Shk
t is a submartingale, and the housekeeping entropy

production is conditionally increasing with time.

Specializing Equation (6.85) to s = 0 and taking the average over the initial state, we obtain
as a corollary the integral fluctuation relation

〈exp(−Shk
t )〉 =

∫
X

dx0ρ0(x0)〈exp(−Shk
t ) |X0 = x0〉

=
∫
X

dx0ρ0(x0)
〈
exp(−Shk

0 )
〉

= 1. (6.87)

The second equality in Equation (6.87) comes from the martingale condition (6.85), and the third
equality comes from Equation (6.85) for t = 0 and Shk

0 = 0. Similarly, using the submartingale
condition (6.86), the second-law like inequality 〈Shk

t 〉 ≥ 0 follows, which in fact holds for any
initial density ρ0. Further details about the martingale structure of the exponentiated negative
housekeeping entropy production can be found in Refs. [28,39].

6.2.2. ♠When are exponentiated, negative, �-stochastic entropic functionals exponential
martingales?

Contrarily to �-stochastic functionals, it holds that exp(−�
P ,Q
t ) is in general not a martingale

even when the path probability Q has no supplemental t dependence. Indeed, following sim-
ilar steps as for the �-stochastic entropic functional in the previous section, we find that the
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martingale condition is, in general, not fulfilled:

〈
exp
(
−�

P ,Q
t

)∣∣∣X[0,s]

〉
=
∫

Dx[s+1,t]

Q(t)
[0,t](�t(X[0,s], x[s+1,t]))

P[0,t](X[0,s], x[s+1,t])
P(x[s+1,t] |X[0,s]) (6.88)

=
∫

Dx[s+1,t]

Q(t)
[0,t](�t(X[0,s], x[s+1,t]))

P[0,t](X[0,s], x[s+1,t])

P[0,t](X[0,s], x[s+1,t])

P[0,s](X[0,s])
(6.89)

=
∫
Dx[s+1,t]Q(t)

[0,t](�t(X[0,s], x[s+1,t]))

P[0,s](X[0,s])
(6.90)

�= Q(s)
[0,s](�sX[0,s])

P[0,s](X[0,s])
= exp

(
−�P ,Q(s)

s

)
. (6.91)

Here, the key step is the inequality (6.91), which can be written more explicitly as∫
Dx[s+1,t]Q(t)

[0,t](�t(X[0,s], x[s+1,t])) =
∫

dxs+1 · · ·
∫

dxtQ(t)
[0,t](xt, . . . , xs+1, Xs, . . . , X0)

= Q(t)
[t−s,t](Xs, . . . , X0) (6.92)

= Q(t)
[t−s,t](�sX[0,s]) �= Q(s)

[0,s](�sX[0,s]). (6.93)

Note that for bookkeeping purposes, we have used the subindices [0, t], [0, s], and [t − s, t]
to denote marginalized path probabilities of P and Q(t). For example, P[0,t](x(0,t)) denotes the
marginal of P(x[0,∞]) for which all variables x[t,∞] have been integrated out. Analogously,
Q(t)

[0,s](x[0,s]) denote the marginal of Q(t)(x[0,∞]) for which all variables x[s,∞] have been integrated
out, and so forth.

Hence, Equations (6.88)–(6.91) imply that for general driven nonequilibrium processes

〈
exp
(
−�

P ,Q
t

)∣∣∣X[0,s]

〉
= exp

(−�P ,Q
s

) Q(t)
[t−s,t](�sX[0,s])

Q(s)
[0,s](�sX[0,s])

, (6.94)

any 0 ≤ s ≤ t.

Consequently, in general, exp(−�
P ,Q
t ) are not martingales, i.e.,〈

exp
(
−�

P ,Q
t

)∣∣∣X[0,s]

〉
�= exp

(−�P ,Q
s

)
. (6.95)

In special cases, the equality

Q(t)
[t−s,t](�sX[0,s]) = Q(s)

[0,s](�sX[0,s]) (6.96)

required for the martingality of exp(−�
P ,Q
t ) holds. In particular, Equation (6.96) holds when the

following conditions are met: (i) Q(t) is independent of (t), i.e., Q(t) = Q; (ii) Q is a stationary
measure; and (iii) Q is time homogeneous, i.e., Q(t) = Qst. If conditions (i) –(iii) hold, then
exp(−�

P ,Q
t ) is a martingale. A notable example is the process exp(−Stot

t ), where Stot
t is the
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entropy production of a time-homogeneous, stationary process X, as discussed in Section 6.1.5.4
(see also below for details).

Hence, exp(−�P ,Q) is a martingale when Q(t) = Qst is a t-independent , stationary,
and time homogeneous path probability. In this case, Q(t)

[t−s,t] = Qst
[0,s], and the martingale

property of exp(−�P ,Q)) is restored, viz.,

〈exp(−�
P ,Qst

t ) |X[0,s]〉 = exp(−�P ,Qst

s ), (6.97)

for all 0 ≤ s ≤ t.

Using Jensen’s inequality on Equation (6.97), we find that

〈�P ,Qst

t |X[0,s]〉 ≥ �P ,Qst

s , (6.98)

and hence for t-independent , stationary, and time homogeneous path probabilities Q(t) =
Qst, the process �

P ,Qst

t is a submartingale.

Note that the martingale property (6.97) does not require that P is stationary and/or
Markovian.

If P and/or Q are nonnormalized, then Equation (6.97) does not hold due to breaking of
marginalization property. A notable example is the environmental Q-stochastic entropy change
Senv,P ,Q

t , as defined in Equation (6.28), for which exp(−Senv,P ,Q
t ) is not a martingale (see also

Section 5.2.2.5). This in spite of the fact that, according to the decomposition (6.27), Senv,P ,Q
t is

a �-stochastic entropic functional when ρ0(x) = ρQ
0 (x) = 1. However, in this case, P and Q are

not normalized, and therefore exp(−Senv,P ,Q
t ) is not a martingale.

We further discuss two examples of �-stochastic entropic functionals that are important for
stochastic thermodynamics:

• For Markovian processes, the condition Q(t) = Qst is equivalent to the three conditions:
(1) The family Q(t) has no supplementary dependence on the final time t, i.e., Q(t) = Q for

a certain path probability Q.
(2) In addition to Condition 1, the Markovian generator of Q is time homogeneous.
(3) In addition to Condition 1, the initial density of Q is the associated stationary density,

i.e., ρQ
0 = ρQ

st = ρQ
t for all t ≥ 0.

In one side, conditions (1), (2), and (3) together are sufficient conditions for the martin-
gale property (6.97). But from another side, in Section 6.1.5.4, we have shown that for
stationary, multidimensional Langevin processes exp(−Stot

t ) is a martingale, even when
condition (2) does not hold.10 Hence, Conditions (1)–(3) are sufficient but not necessary.
An another interesting example is the excess entropy Sex

t , as defined in (6.64), which is also
a �-stochastic entropic functional. In this case, exp(−Sex

t ) is not a martingale, and Sex
t does

not satisfy any of the conditions 1, 2, and 3, except in the trivial case where Sex
t = 0 for all

t.
• In the case where the path measure Q satisfies Conditions 1 and 2 of the previous item, and

not Condition 3, i.e., when Q represents a time-homogeneous system that relaxes to its sta-
tionary state, then the bulk term in the ratio Q(t)

[t−s,t]/Q
(s)
[0,s] cancels out, and Equation (6.94)
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takes the form 〈
exp
(
−�

P ,Q
t

)∣∣∣X[0,s]

〉
= exp

(−�P ,Q
s

) ρQ
t−s

ρQ
0

(Xs). (6.99)

In this case, it is possible to “martingalize” Equation (6.99) by eliminating the border term
as follows:

〈exp(−�
P ,Q
t − α

Q,(t)
t ) |X[0,s]〉 = exp(−�P ,Q

s − αQ,(t)
s ), (6.100)

for all 0 ≤ s ≤ t, and where

αQ,(t)
s = ln

(
ρQ

0 (Xs)

ρQ
t−s(Xs)

)
. (6.101)

6.2.2.1. Example of total entropy production for Markovian processes. As shown in
Section 6.1.5.4, for stationary processes Xt the exponential exp(−Stot

t ) of the total stochastic
entropy production Stot

t is a martingale. Otherwise, if Xt (and thus P) is a non-stationary process,
then Equation (6.94) for Q(t) = P̃ (t), where P̃ (t) is the path probability associated with a protocol
that has been reversed at time t, yields

〈
exp
(−Stot

t

)∣∣X[0,s]
〉 = exp

(−Stot
s

) P̃ (t)
[t−s,t](�sX[0,s])

P̃ (s)
[0,s](�sX[0,s])

. (6.102)

Simplifying the ratio P̃ (t)
[t−s,t]/P̃

(s)
[0,s] in Equation (6.102), we obtain the relation

〈
exp
(−Stot

t

)∣∣X[0,s]
〉 = exp

(−Stot
s

) ρP̃ (t)

t−s (Xs)

ρs(Xs)
, (6.103)

where ρP̃ (t)

t−s = ρ̃
(t)
t−s is the instantaneous density at time t− s resulting from the evolution of the

initial density ρP̃ (t)

0 = ρ̃
(t)
0 = ρt by the dynamics with the protocol that has been time-reversed

at time t. This comes from the fact that in this case the initial density of P̃ (t)
[t−s,t] in (6.102) is

ρP̃ (t)

t−s = ρ̃
(t)
t−s and the initial density of P̃ (s)

[0,s] in (6.102) is ρP̃ (s)

0 = ρ̃
(s)
0 = ρs, see Figure 6.2 for an

illustration.
Equation (6.103) implies that we can “martingalize” exp(−Stot

t ) in generic nonequilibrium
Markovian processes, as we discuss now.

Indeed, for all 0 ≤ s ≤ t it holds that

〈exp(−Stot
t − δ

(t)
t ) |X[0,s]〉 = exp(−Stot

s − δ(t)
s ), (6.104)

with

δ(t)
s = ln

(
ρs(Xs)

ρ̃
(t)
t−s(Xs)

)
; (6.105)

note that δ
(t)
t = 0.
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Figure 6.2. Distributions ρ(x) (blue lines) of the position of a particle x in a time-dependent harmonic
potential U(X ) (red lines), obtained from samples at different times s = 0, t (see legends) during forward
(a→b) and backward (d→c) processes, with the latter initialized with the final distribution of the forward
process. The results are obtained for a system described by the Langevin equation Ẋs = −μκtXs +

√
2DḂs,

with κs = κ0 + rs in the forward process, and κ̃s = κt−s in the backward process. The gray bars are obtained
from numerical simulations and the blue line from analytical calculations. Values of the parameters: μ = 10,
κ0 = 1, r = 9/t, t = 0.05, D = 1, simulation time step 5 × 10−5, 104 realizations. Figure courtesy of Tarek
Tohme.

The relations (6.103)–(6.105) are extension in general set-up of the martingale integral fluctu-
ation relation (6.61). The term δ(t)

s is the so-called stochastic distinguishability between conjugate
times in the forward and backward processes, and δ(t)

s vanishes for (possibly nonequilibrium) sta-
tionary states – for which ρs and ρ̃ t

s are independent on time – where one recovers the martingale
condition (6.61). For non-stationary states, one has in general ρs(x) �= ρ̃

(t)
t−s(x) (see Figure 6.2

a,d), and δ(t)
s fluctuates in time s. See also Ref. [10] for the appearance of the stochastic dis-

tinguishability, but for the generalized �-stochastic entropic functional introduced in the next
section.

Note that by the tower property of condition expectations (see Equations 2.3) and (6.103)
implies for all 0 ≤ u ≤ s ≤ t that

〈exp(−Stot
s − δ(t)

s ) |X[0,u]〉 = 〈〈exp(−Stot
t − δ

(t)
t ) |X[0,s]〉 |X[0,u]〉

= 〈exp(−Stot
t − δ

(t)
t ) |X[0,u]〉

= exp(−Stot
u − δ(t)

u ). (6.106)

Thus we conclude that exp(−Stot
s − δ(t)

s ) are Martingales.
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Applying Doob’s optional stopping theorem (Theorem 12) to a stopping time T with T ≤ t,
we obtain (6.104) (see Ref. [15] for the original proof)

〈exp(−Stot
T − δ

(t)
T )〉 = 〈exp(−Stot

0 − δ
(t)
0 )〉 =

∫
dxρ0(x)

[
ρ̃

(t)
t (x)

ρ0(x)

]
=
∫

dxρ̃(t)
t (x) = 1. (6.107)

The third equality uses that Stot
0 = 0. The last equality is the normalization of ρ̃

(t)
t (x).

6.3. ♠ Generalized �-stochastic entropic functional

As shown in the previous section, a �
P ,Q
t functional may obey an integral fluctuation rela-

tion 〈exp(−�
P ,Q
t )〉 = 1, even though exp(−�

P ,Q
t ) is not a martingale. This follows from the

“mother” fluctuation relation (6.120); a notable example is when �
P ,Q
t = Sex

t , the excess entropy
production. To rationalize this fact, and find the lost martingale behind this integral fluctuation
relation, we introduce in this section the generalized �-stochastic entropic functionals intro-
duced in Ref. [10]. With these functionals, we can disentangle the connection between integral
fluctuation relation and the martingality of a stochastic process.

6.3.1. Definition of generalized �-stochastic entropic functionals

Just as was the case for �-stochastic entropic functionals, generalized �-stochastic entropic
functionals involve two path probabilities, viz., the path probability P evaluated on the trajectory
X[0,t], and a second Q evaluated on the time-reversed trajectory �t(X[0,t]). The difference between
�-stochastic entropic functionals and generalized �-stochastic functionals lies in the fact that
generalized �-stochastic entropic functionals are evaluated over subset intervals [r, s] ⊆ [0, t],
as described below.

The generalized �-stochastic entropic functionals are functions defined on the paths
X[r,s] associated with subsets [r, s] ⊆ [0, t] of the time interval [0, t], which is the time inter-
val to which the time reversal operation �t applies. The generalized �-stochastic entropic
functionals are defined by

�
P ,Q
[r,s];t ≡ �

P ,Q
[r,s];t

(
X[r,s]

) ≡ ln

[
P[r,s](X[0,t])

Q(t)
[t−s,t−r]

(
�tX[0,t]

)] , (6.108)

with 0 ≤ r ≤ s ≤ t, and where P[r,s](X[0,t]) is the marginal of P[0,t](X[0,t]) defined on the
time window [r, s], and hence P[r,s](X[0,t]) depends only on X[r,s]; for discrete time and
space, we can write

P[r,s](x[0,t]) ≡ P(Xr = xr, Xr+1 = xr+1, . . . , Xs−1 = xs−1, Xs = xs). (6.109)

Analogously, Q(t)
[t−s,t−r](�tX[0,t]) is the marginal of Q(t)

[0,t](�tX[0,t]) on the time window [t −
s, t − r], and also only depends on X[r,s]; for discrete time and space,

Q(t)
[t−s,t−r](�tx[0,t]) ≡ Q(t)(Xt−s = xs, Xt−s+1 = xs−1, . . . , Xt−r−1 = xr−1, Xt−r = xr).

(6.110)
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Note that the �-stochastic entropic functional, given in Equation (6.10), is a generalized �-
stochastic entropic functional of Equation (6.108) for the choice r = 0 and s = t :

�
P ,Q
[0,t];t = �

P ,Q
t . (6.111)

Also, when Q(t) = Qst is t-independent and stationary, then (see p.168 in [98])

�
P ,Qst
[0,s];t = �P ,Qst

s . (6.112)

for all 0 ≤ s ≤ t.
The choice of the time window [t − s, t − r] for Q(t) leads to path probabilities in the

numerator and denominator of the generalized �-stochastic entropic functional, as given in Equa-
tions (6.109) and (6.110), respectively, that are evaluated on the same part of the trajectory x[0,t].
Indeed, if instead we would have used

Q(t)
[r,s](�tx[0,t]) = Q(t)(Xr = xt−r+1, Xr+1 = xt−r, . . . , Xs−1 = xt−s, Xs = xt−s+1), (6.113)

then the denominator would not be compatible with Equation (6.109).
Similar to the case of �-stochastic entropic functionals in Chapter 6.1, it holds that:

• The generalized �-stochastic entropic functionals verify the duality relation [10]

�
P ,Q
[r,s];t

(
�t(X[0,t])

) = −�
Q,P
[t−s,t−r];t(X[0,t]), (6.114)

for all 0 ≤ r ≤ s ≤ t.
• The average values with respect to P of generalized �-stochastic entropic functionals are

Kullback–Leibler divergences [10], viz.,〈
�

P ,Q
[r,s];t

〉
= DKL

[
P[r,s](X[0,t])||Q(t)

[t−s,t−r]

(
�tX[0,t]

)]
. (6.115)

As both P and Q are normalized path probabilities, the Kullback–Leibler divergence in
the right-hand side of Equations (6.115) is greater or equal than zero, which implies the
“second laws” [10] 〈

�
P ,Q
[r,s];t

〉
≥ 0, (6.116)

for all 0 ≤ r ≤ s ≤ t.

6.3.2. Fluctuation relation for generalized �-stochastic entropic functionals

Following similar steps as in Chapter 6.1 for �-stochastic entropic functionals, we derive
fluctuation relations for the generalized �-stochastic entropic functionals, as defined in
Equation (6.108).

The “mother” fluctuation relation [10] for arbitrary functionals Z[X[r,s]] reads〈
Z[�t

(
X[r,s]

)
]
〉
Q(t) =

〈
exp
(
−�

P ,Q
[r,s];t

)
Z
[
X[r,s]

]〉
, (6.117)

for all 0 ≤ r ≤ s ≤ t.
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Setting Z[X[r,s]] = δ(�
P ,Q
[r,s];t − σ) and using the duality relations (6.114), we obtain the

generalized Crooks fluctuation relation [10]

〈
δ(�

Q,P
[t−s,t−r];t + σ)

〉
Q(t)

= exp(−σ)
〈
δ(�

P ,Q
[r,s];t − σ)

〉
, (6.118)

for all 0 ≤ r ≤ s ≤ t. This can also be expressed as

ρP
�

P ,Q
[r,s];t

(σ )

ρQ(t)

�
Q,P
[t−s,t−r];t

(−σ)
= exp(σ ), (6.119)

for all 0 ≤ r ≤ s ≤ t.
With the choice Z[X[r,s]] = 1, Equation (6.117) becomes the generalized integral fluctuation

theorems given in

〈
exp
(
−�

P ,Q
[r,s];t

)〉
= 1, (6.120)

for all 0 ≤ r ≤ s ≤ t. Note that the generalized integral fluctuation relation holds for any (
normalized) path probability Q(t) that is absolutely continuous with respect to P .

6.3.3. Exponentiated, negative, generalized �-stochastic entropic functional are martingales

Exponentiated, negative, generalized �-stochastic entropic functionals exp(−�
P ,Q
[r,s];t)

with [r, s] ⊆ [0, t] are martingales with respect to the final time s when r and t are fixed.
Indeed, it holds that 〈

exp
(
−�

P ,Q
[r,s′];t

)∣∣∣X[r,s]

〉
= exp

(
−�

P ,Q
[r,s];t

)
, (6.121)

for all 0 ≤ r ≤ s ≤ s′ ≤ t. Applying Jensen’s inequality to Equation (6.121) we get that
�

P ,Q
[r,s];t are submartingales with respect to the final time s when r and t are fixed. More

precisely,

〈�P ,Q
[r,s′];t |X[r,s]〉 ≥ �

P ,Q
[r,s];t, (6.122)

for all 0 ≤ r ≤ s ≤ s′ ≤ t.

Now, we derive Equation (6.121). For all 0 ≤ r ≤ s ≤ s′ ≤ t, it holds that

〈
exp
(
−�

P ,Q
[r,s′];t

)∣∣∣X[r,s]

〉
=
∫

Dx[s+1,s′]
Q(t)

[t−s′,t−r](�t
(
X[0,s], x[s+1,s′], X[s′,t]

)
)

P[r,s′](X[0,s], x[s+1,s′], X[s′,t])
P[r,s′](x[s+1,s′] |X[r,s]) (6.123)
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=
∫

Dx[s+1,s′]
Q(t)

[t−s′,t−r](�t
(
X[0,s], x[s+1,s′], X[s′,t]

)
)

P[r,s′](X[0,s], x[s+1,s′], X[s′,t])

P[r,s′](X[0,s], x[s+1,s′], X[s′,t]))

P[r,s′](X[r,s])
(6.124)

=
∫
Dx[s+1,s′]Q

(t)
[t−s′,t−r](�t

(
X[0,s], x[s+1,s′], X[s′,t]

)
)

P[r,s](X[0,t])
(6.125)

= Q(t)
[t−s,t−r](�tX[0,t])

P[r,s](X[0,t])
= exp

(
−�

P ,Q
[r,s];t

)
. (6.126)

The relation (6.123) follows from the fact that the left-hand side of Equations (6.109) and (6.110)
is independent of x[0,r−1] and x[s+1,t]. We also use this property to obtain the denominator of
the last term of Equation (6.124). Then, to obtain Equation (6.125), we use the marginalization
P[r,s′](X[r,s]) = P[r,s](X[r,s]) for all 0 ≤ s ≤ s′, and the previous independence property to obtain
P[r,s′](X[r,s]) = P[r,s](X[r,s]) = P[r,s](X[0,t]). Finally, the first equality in (6.126) follows from the
integration of (6.110) which yields∫

Dx[s+1,s′]Q
(t)
[t−s′,t−r](�tx[0,t]) = Q(t)(Xt−s = xs, Xt−s+1 = xs−1, . . . , Xt−r = xr)

≡ Q(t)
[t−s,t−r](�tx[0,t]). (6.127)

It may appear surprising that the quantity exp(−�
P ,Q(t)

[r,s];t ), which is a martingale with respect to
the final time s, contains as a particular case (6.111) the exponentials of �-stochastic entropic
functionals exp(−�

P ,Q(t)

t ), that are not martingales. This comes from the fact that by choosing
r = 0, s′ = t the forward martingale property (6.121) becomes, for all 0 ≤ s ≤ t,〈

exp
(
−�

P ,Q
t

)∣∣∣X[0,s]

〉
= exp

(
−�

P ,Q
[0,s];t

)
�= exp

(−�P ,Q
s

)
, (6.128)

except for t independent and stationary Q, when we have the relation (6.112).
Moreover, in [10,98], it is shown that the generalized �-stochastic entropic functionals �

P ,Q
[r,s];t

do not only have an exponential martingale structure as a function of the final time s when con-
ditioning over the past, but they also have a backward martingale structure as a function of the
initial time r when conditioning on the future.

The exponentiated, negative, generalized �-stochastic entropic functionals
exp(−�

P ,Q
[r,s];t) with [r, s] ⊆ [0, t] are backward martingales with respect to the initial time

r when s and t are fixed. Indeed, it holds that [98]〈
exp
(
−�

P ,Q
[r,s];t

)∣∣∣X[r′,s]

〉
= exp

(
−�

P ,Q
[r′,s];t

)
, (6.129)

for all 0 ≤ r ≤ r′ ≤ s ≤ t. Applying Jensen’s inequality to Equation (6.129), we find that
�

P ,Q
[r,s];t are backward submartingales with respect to the initial time r when s and t are

fixed. In particular,

〈�P ,Q
[r,s];t |X[r′,s]〉 ≥ �

P ,Q
[r′,s];t, (6.130)

for all 0 ≤ r ≤ r′ ≤ s ≤ t.
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Note that in Equations (6.129)–(6.130), the conditional expectation is done over trajectories
which have a future constraint, as [r′, s] comes after [r, r′]. In other words, the generalized �-
stochastic entropic functionals conditionally increase backwards in time when looking at the
initial time of the scanned interval [r, s]. As we will show below in Section 9.1.4, the backward
martingale structure of exp(−�

P ,Q
[r,s];t) is instrumental to recover some traditional formulations of

the second law of thermodynamics and derive also new universal principles.
Taken all together, we conclude that the generalized �-entropic functionals on [r, s] ⊆ [0, t]

have a “two-faced” martingale structure. They are forward submartingales with respect to the
final time s and backward submartingales with respect to the initial time r. In other words, �

P ,Q
[r,s]

conditionally increases with respect to s and conditionally decreases with respect to r.

6.3.4. Generalized �-stochastic entropic functional for Markovian processes

We discuss generalized �-stochastic entropic functionals for Markovian processes. The Markov
property implies:

• First, a decomposition of the generalized �-stochastic entropic functional in terms of the
environmental Q-stochastic entropy change, as defined in (6.27), and a boundary term:

�
P ,Q
[0,s],t = ln

(
ρ0 (X0)

ρ
Q(t)

t−s (Xs)

)
+ Senv,P ,Q̂(t,s)

s , (6.131)

for all 0 ≤ s ≤ t. In this relation, the environment entropy change Senv,P ,Q̂(t,s)

s is (6.27)

Senv,P ,Q̂(t,s)

s = ln

(
P[0,s]

(
X[0,s]

∣∣X0
)[

Q̂(t,s)
]

[0,s]

(
�sX[0,s]

∣∣Xs
)) , (6.132)

with the path probability Q̂(t,s) is defined by iterating the reversed protocol, see
Equation (6.6), twice, viz.,

Q̂(t,s) ≡ ˜̃Q(t)
(t)

(s)

, (6.133)

where we recall that in Section 6.1, we defined the measure Q̃(t) as time-reversed protocol
of the path measure Q with respect to the reference time t. This apparently-complicated
object Q̂(t,s) is in fact the path probability of a Markovian process with generator(

LQ̂(t,s)
)

u
=
(
L(Q̃(t))

)
s−u

= Lt−s+u, (6.134)

for all 0 ≤ u ≤ s ≤ t. In other words, the iteration of two reversed protocols is just a time
translation.

The relation (6.131) follows from the equality

Q(t)
[t−s,t]

(
�tX[0,t]

) = ρ
Q(t)

t−s (Xs)
[
Q̂(t,s)

]
[0,s]

(
�sX[0,s]

∣∣Xs
)

, (6.135)

which holds for all 0 ≤ r ≤ s ≤ t. We advice readers to prove the relation (6.135) for
Langevin systems with additive noise by using the Lagrangian given by Equation (3.97).
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• Second, the factorization of the path probability resulting from Markov property permits
to obtain for all 0 ≤ r ≤ s ≤ t the decomposition formulae of generalized �-stochastic
entropic functional 11:

�
P ,Q
[r,s],t = ln

(
ρr (Xr)

ρ
Q(t)

t−r (Xr)

)
+ �

P ,Q
[0,s],t − �

P ,Q
[0,r],t. (6.138)

Combining Equations (6.131) and (6.138), we obtain the general formulae

�
P ,Q
[r,s],t = ln

(
ρr (Xr)

ρQ(t)

t−s (Xs)

)
+ Senv,P ,Q̂(t,s)

s − Senv,P ,Q̂(t,r)

r . (6.139)

Moreover, using the decomposition (6.27) of the Q-stochastic entropy production, the
relation (6.139) can also be written as a Q-stochastic entropy production

�
P ,Q
[r,s],t = ln

(
ρs (Xs)

ρQ(t)

t−s (Xs)

)
+ SP ,Q̂(t,s)

s − SP ,Q̂(t,r)

r . (6.140)

Equations (6.139) and (6.140) provide an interpretation of the generalized �-stochastic
entropic functional for Markovian processes. Moreover, the forward and backward mar-
tingale properties of �

P ,Q
[r,s],t proven in this chapter imply that the right-hand side of (6.139)

and (6.140) have the same martingale structure.
Specializing the relation (6.55) to the particular case Q(t) = P̃ (t) gives that Q̂(t,s) = P̃ (s)

and Q̂(t,r) = P̃ (r), and then Equation (6.139) yields

�
P ,P̃ (t)

[r,s],t = ln

(
ρr (Xr)

ρ̃
(t)
t−s (Xs)

)
︸ ︷︷ ︸

≡α
(t)
r,s

+Senv
s − Senv

r , (6.141)

for all 0 ≤ r ≤ s ≤ t, where Senv
s is the environment entropy change defined in

Equation (6.32), and where

α(t)
r,s ≡ ln

(
ρr (Xr)

ρ̃
(t)
t−s (Xs)

)
. (6.142)

The martingale property of exp(−�
P ,P̃ (t)

[r,s],t ) allows us to retrieve the theory of Ref. [14] (see
Chapter 8.2) within the general context of generalized �-stochastic entropic functionals.
The generalized integral fluctuation relations (6.120) read here〈

exp
(−Senv

s + Senv
r − α(t)

s,r

)〉 = 1, (6.143)

for all 0 ≤ r ≤ s ≤ t.
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Lastly, by using the decomposition (6.33) of total entropy production, the relation
(6.141) can also be written for all 0 ≤ r ≤ s ≤ t.

�
P ,P̃ (t)

[r,s];t = ln

(
ρs(Xs)

ρ̃
(t)
t−s(Xs)

)
︸ ︷︷ ︸

δ
(t)
s

+Stot
s − Stot

r , (6.144)

where the stochastic distinguishability δ(t)
s was defined in relation (6.105). This time, the

induced martingality property of the right-hand side allows to retrieve the results (6.104)
and (6.105) (see also Ref. [15]). Moreover, the generalized integral fluctuation theo-
rems (6.120) become here 〈

exp
(−Stot

s + Stot
r − δ(t)

s

)〉 = 1, (6.145)

for all 0 ≤ r ≤ s ≤ t.

To give examples, the relation (6.141) for the case of multidimensional Langevin process
described by Equation (3.65) reads

�
P ,P̃ (t)

[r,s],t = ln

(
ρr (Xr)

ρ̃
(t)
t−s (Xs)

)
︸ ︷︷ ︸

α
(t)
r,s

+
∫ s

r

((
μuFu

)
D−1

u

)
(Xu) ◦ Ẋu du︸ ︷︷ ︸

Senv
s −Senv

r

. (6.146)

In Section 8.2, we will give another proof of the martingale property of exp(−�
P ,P̃ (t)

[r,s],t ) in this
setup. For general jump processes, the relation (6.141) becomes

�
P ,P̃ (t)

[r,s];t = ln

(
ρr (Xr)

ρ̃
(t)
t−s(Xs)

)
︸ ︷︷ ︸

α
(t)
r,s

+
∑

j|r≤Tj≤s

ln

(
ωTj(XT −

j
, XT +

j
)

ωTj(XT +
j

, XT −
j

)

)
︸ ︷︷ ︸

Senv
s −Senv

r

. (6.147)

Chapter 7. Martingales in stochastic thermodynamics III: Stationary states

As far as we know today, there is no automatic, permanently effective perpetual motion
machine, in spite of the molecular fluctuations, but such a device might, perhaps, function

regularly if it were appropriately operated by intelligent beings..
Smoluchowski, Vorträge über die kinetische Theorie der Materie u. Elektrizitat, (1914, p.89).

In this chapter, we show how several classical results of stochastic thermodynamics can be
significantly improved with martingale theory. In particular, we derive more general versions
of the second law of thermodynamics and fluctuation relations. Moreover, using the powerful
technology of martingales, as discussed in Chapters 2, 3, and 4, we exactly describe certain
fluctuation properties of entropy production, notably, for their infima, first-passage times, and
splitting probabilities. Lastly, we discuss how these results can be used to (apparently) overcome
classical thermodynamic limits by cleverly exploiting the fluctuations in a stochastic process.
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7.1. Setup: nonequilibrium stationary states

Throughout this chapter, we focus on time-homogeneous, stationary processes. Figure 7.1 depicts
two paradigmatic examples of such processes. Figure 7.1(a) shows a Brownian particle that
moves in a periodic potential under the action of a constant, non-conservative force. The non-
conservative force induces a net current along the ring, which results in a net dissipation of heat
to the environment. Since the process is stationary, we assume that the initial distribution of the
system is given by its nonequilibrium, stationary distribution.

Further examples of physical systems belonging to this class are, e.g., systems described by
multidimensional Langevin equations and stationary Markov-jump processes. See Figure 7.1(b)
for a many-particle example relevant in the study of active matter systems [175] and the inset in
Figure 5.3(a) for sketches of some other multidimensional overdamped Langevin models.

The general philosophy of the chapter goes as follows: we assume from the get-go that X is
a stationary, stochastic process for which the exponentiated, negative, total entropy production
during [0, t] takes the form (6.33)

exp(−Stot
t ) = (P ◦ �t)(X[0,t])

P(X[0,t])
. (7.1)

Consequently, as shown in Chapters 5 and 6, exp(−Stot
t ) is a martingale (because of stationarity),

which is a fundamental fact in nonequilibrium thermodynamics. Subsequently, we derive various
results based on the martingality of exp(−Stot

t ).
Note that Equation (7.1) could also describe the thermodynamics of active matter systems, as

long as X describes the trajectories of all degrees of freedom that are driven out of equilibrium
(in the example of Panel(b) in Figure 7.1, this involves the dynamics of both the gray and white
spheres).

Figure 7.1. Panel (a): Illustration of a paradigmatic, single-particle model for a nonequilibrium, time-homo-
geneous, stationary process. A Brownian particle (gray sphere) moves on top of a “rollercoaster” potential
under the action of an external, constant, force f. Figure adapted from Ref. [11]. For the special case of a
flat potential, this model is equivalent to a driven particle on a ring, as illustrated in Figure 1.6. Panel (b):
Illustration of a many-particle model for a nonequilibrium, time-homogeneous, stationary process. An over-
damped Brownian particle (gray sphere) immersed in a fluid with periodic boundary conditions is trapped
within a potential (red). The particle interacts with an ensemble of N > 1 overdamped “active” Brownian
particles (white circles) that are self-propelled in randomly-varying directions (red arrows); see Ref. [175]
for a study of thermodynamics in active matter systems.



Advances in Physics 145

We start this chapter with Section 7.2 that summarizes results in conventional stochastic ther-
modynamics, and which forms a useful point of reference for the more general results that follow
from martingale theory and are derived in the later sections of this chapter. Subsequently, in
Section 7.3, following Refs. [10,11,13,28,98], we review some of the central results from mar-
tingale theory for thermodynamics, namely, the martingale versions of the fluctuation relations
and the ensuing versions of the second law of thermodynamics. In Section 7.4, we review results
on splitting probabilities, and the statistics of first-passage times, and extreme values of entropy
production, taken mainly from Refs. [11,13]. Next we review thermodynamic bounds on first-
passage times of dissipative currents, taken from Refs. [32,34,35,177,178]. Section 7.5 discusses
an application, namely how to overcome classical limits on thermodynamic processes by stopping
a stochastic process at a cleverly chosen moment [13].

7.2. Conventional fluctuation relations

Fluctuation relations are mathematical relations that constrain the statistics of stochastic ther-
modynamic quantities. These results were introduced in the 1990s and are also referred to
as fluctuation theorems, see Refs. [26,27,139,141,152,161,168] for some classical references.
Here we review some celebrated fluctuation relations that are generic for time-homogeneous,
nonequilibrium, stationary states.

The detailed fluctuation relation,

ρStot
t
(s)

ρStot
t
(−s)

= exp(s), (7.2)

states that in a stationary process the probability density of the stochastic entropy produc-
tion evaluated at Stot

t = s > 0 is exponentially larger than the probability density evaluated at
Stot = −s < 0; note that this is a special case of Equation (6.23) valid for the total, stochastic,
entropy production of a nonequilibrium stationary state. The mathematical derivation of fluctu-
ation relations can be found in Chapter 6 of this treatise, see Equation (6.23) with (6.31) and
(6.33).

From Equation (7.2) follows the integral fluctuation relation

〈exp(−Stot
t )〉 =

∫ ∞

−∞
dsρStot

t
(s) exp(−s) =

∫ ∞

−∞
ds ρStot

t
(−s) = 1. (7.3)

Applying Jensen’s inequality

〈exp(−X )〉 ≥ exp(−〈X 〉) (7.4)

to X = Stot
t , we obtain the second law of stochastic thermodynamics

〈Stot
t 〉 ≥ 0, (7.5)

which is illustrated in Figure 7.2. For stationary systems, the stronger version

〈Ṡtot
t 〉 ≥ 0, (7.6)

of the second law holds, because 〈Ṡtot
t 〉 = 〈Ṡtot

0 〉 = 〈Stot
t 〉/t ≥ 0.

Another interesting consequence of the integral fluctuation relation is that negative fluc-
tuations of entropy must exist in nonequilibrium processes. Applying Markov’s inequality
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Figure 7.2. Illustration of the (classic) second law of thermodynamics 〈Stot
t 〉 ≥ 0 and the (classic) integral

fluctuation relation 〈exp(−Stot
t )〉 = 1. We sketch a single trajectory of the stochastic entropy production Stot

t
(left, thin lines) and of its negative exponential exp(−Stot

t ) (right, thin line) in nonequilibrium stationary
states. The thick lines in both panels illustrate the values of Stot

t (left panel) and exp(−Stot
t ) (right panel)

averaged over many different realizations.

equation (4.17) to A = exp(−Stot
t ) and using the integral fluctuation relation, we obtain the

constraint [26]

P
(
Stot

t ≤ −s
) ≤ exp(−s), for s ≥ 0, (7.7)

on negative fluctuations of entropy production.
In what follows, we use martingales to significantly extend these classical results from

stochastic thermodynamics, i.e., the second law of thermodynamics (7.5), the integral fluctuation
relation (7.3), and the bound on negative fluctuations of entropy (7.7).

7.3. Martingale fluctuation relations and martingale versions of the second law

7.3.1. Martingale integral fluctuation relations

We derive extensions for the integral fluctuation relation (7.3) that follow from martingale
theory [13].

As the exponentiated, negative, entropy production is a martingale, the relation (6.61)
implies that [10,11]

〈 exp(−Stot
t ) |X[0,s] 〉 = exp(−Stot

s ), (7.8)

which is known as the martingale integral fluctuation relation.

We provide an illustration of the martingale integral fluctuation relation (7.8) in Figure 7.3.
According to Theorem 13, the martingale integral fluctuation relation (7.8) is equivalent to

the following integral fluctuation relation at stopping times.
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Figure 7.3. Sketch of the martingale integral fluctuation relation given in Equation (7.8). Left: An observer
tracks the evolution of a process up to time s, recording a stochastic trajectory X[0,s] (black line). The
evolution of the process at later times, given X[0,s], is stochastic and can have different outcomes (gray
lines). Right: Given X[0,s], the value of the exponentiated negative entropy production is known up to time
s. The martingale condition (7.8) implies that future average values of exp(−Stot

t ) for t ≥ s, given X[0,s],
remain constant and equal to the value exp(−Stot

s ) (black thick horizontal line).

Applying Doob’s optional stopping theorems (see Section 4.1.5) to exp(−Stot
t ), we

obtain the integral fluctuation relations at stopping times

〈 exp(−Stot
T )〉 = 1, (7.9)

which holds when either the stopping time T is bounded or T is with probability 1 finite
and Stot

t is bounded for all t < T .

The integral fluctuation relations at stopping times reveal a new level of universality, as they
hold for stopping times satisfying one of the following two conditions:

• T ∈ [0, t0] for a fixed time t0 ∈ R+;
• P(T < ∞) = 1 and |Stot

t | < c for all t ∈ [0, T ].

Later in this chapter, we determine the statistics of extreme values of entropy production and
the splitting probabilities of entropy production by specializing the integral fluctuation rela-
tion at stopping times (7.9) to specific classes of stopping times. But, first we use in the next
section the martingale fluctuation relations to derive martingale versions of the second law of
thermodynamics.

7.3.2. Martingale versions of the second law of thermodynamics

Although the second law of thermodynamics (7.6) implies that on average the entropy of the
universe increases, this result is not entirely satisfactory. Indeed, since for mesoscopic systems
negative fluctuations of entropy production exist, as implied in Equation (7.3), it is not excluded
that an intelligent being, say a demon, can anticipate when entropy decreases, and this question
has puzzled physicists [179,180]. However, the following two martingale versions of the second
law of thermodynamics state that negative fluctuations of entropy cannot be anticipated.



148 É. Roldán et al.

Since Stot
t is a submartingale, the relation (6.62) implies the conditional strong second

law of thermodynamics, i.e.,

〈 Stot
t |X[0,s]〉 ≥ Stot

s . (7.10)

Taking the average over X[0,s] in Equation (7.10), we readily obtain the “classical” second law
of stochastic thermodynamics given in Equation (7.5).

Applying Jensen’s inequality (7.4) for X = Stot
T to Equation (7.9), we obtain the second

law of thermodynamics at stopping times, viz.,

〈Stot
T 〉 ≥ 0. (7.11)

Note that the martingale version of the second law, Equation (7.10), implies the second law
(7.5) and is a significantly stronger result. Even though in stochastic processes negative fluctu-
ations of entropy production exist, according to the martingale second law, Equation (7.10), an
observer cannot anticipate those so-called transient “violations” of the second law based on the
past history X[0,s] of the process! Hence, Equation (7.10) is a stochastic version of the second
law of thermodynamics, in the same way that (5.6) is a stochastic version of the first law of
thermodynamics.

The second law of thermodynamics at stopping times provides a different, but equivalent,
perspective: an observer cannot reduce entropy by stopping the processes at a cleverly chosen
moment.

We illustrate the second law at stopping times (7.11) in Figure 7.4 for the example of non-
interacting colloidal particles moving in a two-dimensional fluid under the influence of a force
field. In this example, the stopping time is the first exit time of a particle from a circle centered at
the initial position of the particles and with a fixed positive radius.

7.4. Statistics of stopping times and extreme values

We review several results on stopping times and extreme values in stationary processes.

7.4.1. Splitting probabilities for entropy production

In the present section, the stopping time T determines the stopping problem

T ≡ {t ≥ 0 : Stot
t /∈ (−s−, s+)

}
, (7.12)

where s−, s+ ≥ 0, and we denote the corresponding splitting probabilities by

P+(s+, s−) ≡ P
(
Stot
T ≥ s+

)
and P−(s+, s−) ≡ P

(
Stot
T ≤ −s−

)
. (7.13)

The stopping problem equation (7.12) is illustrated in Figure 7.5. Following [11,13], we derive
now explicit expressions for P+ and P−.
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Figure 7.4. Illustration of the implications of the second law of thermodynamics at fixed times and stopping
times. Top left: Illustration of three stochastic trajectories drawn from a nonequilibrium stationary state
(force field in black arrows). Top right: Stochastic entropy production associated with the three trajectories.
Their value at a fixed time (clock) is, according to the second law 〈Stot

t 〉 ≥ 0, on average positive. Bottom
left: Illustration of three trajectories that are “stopped” when they cross a circle of a given radius centered at
their initial position (rings). Bottom right: The stochastic entropy production along the stopped trajectories.
We highlight in filled circles the values that Stot

T takes when the particles cross the circle. Their average over
many trajectories obeys the second law at stopping times 〈Stot

T 〉 ≥ 0.

For nonequilibrium stationary states, Stot
t grows indefinitely, and hence

P+(s+, s−) + P−(s+, s−) = 1. (7.14)

Moreover, using the integral fluctuation relation at stopping times, Equation (7.9), on the stopping
time (7.12) we obtain

P+(s+, s−)〈exp(−Stot
T )〉+ + P−(s+, s−)〈exp(−Stot

T )〉− = 1. (7.15)
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Figure 7.5. Illustration of two trajectories of stochastic entropy production escaping from the interval
(−s−, s+) through the positive threshold (black line) and through the negative threshold (gray line).

Here, we have introduced the conditional averages

〈·〉+ = 〈·|Stot
T ≥ s+〉, and 〈·〉− = 〈·|Stot

T ≤ −s−〉. (7.16)

Solving the set of Equations (7.14)–(7.15), we obtain the solution

P+(s+, s−) = 〈exp(−Stot
T )〉− − 1

〈exp(−Stot
T )〉− − 〈exp(−Stot

T )〉+ (7.17)

and

P−(s+, s−) = 1 − 〈exp(−Stot
T )〉+

〈exp(−Stot
T )〉− − 〈exp(−Stot

T )〉+ . (7.18)

For time-homogeneous, stationary states with Stot
T ∈ {−s−, s+}, which includes dif-

fusion processes for which Stot
t is continuous in t, we obtain the following universal

expressions for the splitting probabilities of entropy production,

P+(s+, s−) = exp(s−) − 1

exp(s−) − exp(−s+)
(7.19)

and

P−(s+, s−) = 1 − exp(−s+)

exp(s−) − exp(−s+)
. (7.20)
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Remarkably, the splitting probabilities are independent of the finite-time moments of entropy
production, such as the rate of entropy production; the universality of splitting probabilities can
also be understood with the random time transformation discussed in Section 5.2.3.

Note that the splitting-probability fluctuation relation

P−(s+, s−)

P+(s−, s+)
= exp(−s−) (7.21)

holds, which is reminiscent of the detailed fluctuation relation (7.2). However, contrarily to the
detailed fluctuation relation, the splitting probability fluctuation relation compares the splitting
probabilities P− and P+ in two different stopping problems, except when s− = s+ = s in which
case we obtain

P−(s, s)

P+(s, s)
= exp(−s). (7.22)

For processes with jumps, we do not obtain universal expressions for P− and P+, in correspon-
dence with the results in Section 5.4.2. Nevertheless, we can derive universal bounds on P− and
P+.

Using that 〈exp(−Stot
T )〉+ ≤ exp(−s+) and 〈exp(−Stot

T )〉− ≥ exp(s−), we obtain from
Equations (7.17) and (7.18) the following universal bounds on splitting probabilities:

P+(s+, s−) ≥ 1 − 1

exp(s−) − exp(−s+)
(7.23)

and

P−(s+, s−) ≤ 1

exp(s−) − exp(−s+)
, (7.24)

which hold for time-homogeneous, stationary states.

Another interesting quantity is the survival probability Psurv(τ ) for Stot to stay below a positive
threshold s+ > 0 in a finite time τ ≥ 0. This survival probability can be tackled by specializing
the integral fluctuation theorem at stopping times for Tsurv = T ∧ τ = min(T , τ), with T the
first-passage time to reach the threshold s+ with s− � 1. Following analogous steps as for T , we
get

Psurv(τ ) = 〈exp(−Stot
T )〉 − 1

〈exp(−Stot
T )〉 − 〈exp(−Stot

τ )〉surv
, (7.25)

where 〈·〉surv denotes an average over all the trajectories that did not cross the threshold in the
finite-time interval of duration τ .

7.4.2. Extreme-value statistics of entropy production

The results obtained in Section 7.4.1 for the splitting probabilities can be used to determine the
extreme-value statistics of entropy production.
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The global infimum of entropy production, defined by

Sinf ≡ inf
t≥0

Stot
t , (7.26)

is the largest lower bound of entropy production along a trajectory. Because Stot
0 = 0, Sinf can

only take nonpositive values, i.e., Sinf ≤ 0. We use martingale theory to determine the statistical
properties of the global infimum of entropy production.

First we tackle the cumulative distribution of Sinf. The probability P(Sinf ≤ −s) that the infi-
mum Sinf is smaller or equal than −s, with s > 0, equals the probability that entropy production
crosses at any time t ≥ 0 an absorbing boundary located at −s.

Taking the limit s− → s and s+ → ∞ in the right-hand side of Equation (7.24), gives
the universal bound

P(Sinf ≤ −s) ≤ exp(−s), for s ≥ 0, (7.27)

on extreme negative fluctuations of entropy production.

The bound equation (7.27) from martingale theory should be compared with the weaker
bound equation (7.7) from “classical” stochastic thermodynamics [26]. In this regard, note that
Equation (7.27) is a stronger result as Sinf ≤ St for all values of t. Moreover, for stationary diffu-
sion processes the equality in the bound equation (7.27) is attained, and the bound is thus as good
as it gets. Indeed, taking the limit s− → s and s+ → ∞ of the right-hand side in Equation (7.20),
we obtain

P(Sinf ≤ −s) = exp(−s). (7.28)

Equation (7.28) implies that the entropy-production global infimum in a continuous stochastic
process follows an exponential distribution with mean equal to −1, i.e.,

ρSinf(s) = exp(s), ∀s ≤ 0. (7.29)

From the bound equation (7.27), we obtain a second-law-like relation on the infimum of entropy
production that was coined the infimum law in Ref. [11].

The inequality equation (7.27) implies the infimum law

〈Sinf〉 ≥ −1, (7.30)

where the equality is attained for driven diffusion processes (i.e., when Xt is a continuous
process in t).

The bound equations (7.27) on extreme negative fluctuations of entropy production and
the infimum law (7.30) are illustrated in Figure 7.6 for the one-dimensional Langevin process
of Equation (5.3) with periodic boundary conditions, potential V (x) = T ln(cos(x) + 2), and
constant external force ft = f .
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Figure 7.6. Illustration of the universal bounds on the statistics of extreme values of entropy production in
the one-dimensional Langevin process described in Equation (5.3) with periodic boundary conditions, con-
stant external force f, and potential V (x) = T ln(cos(x) + 2). Panel (a): Graphical illustration of the model.
Panel (b): Example trajectory of the stochastic entropy production Stot

t associated with a stochastic trajectory
of the particle position (blue thin line). The finite time infimum Sinf

t of entropy production associated with
the stochastic trajectory of Stot

t is shown in thick cyan line. Panel (c): Cumulative distribution of the entropy
production finite-time infimum Sinf

t for different values of t (in units of the rate of entropy production 〈Ṡtot〉)
obtained from simulations, see legend. The dashed lines are obtained from numerical simulations of the
model shown in (a) and compared with the right-hand side of the universal bound from the infimum law
(black thick line), Equation (7.32). Panel (d): Entropy production finite-time infimum Sinf

t averaged over
many simulations, as a function of time t. See Ref. [11] for further details.

The universal bounds for the statistics of the global infimum of Stot
t serve to tackle the

statistics of the finite-time infimum of entropy production (also called running minimum in
the random-walk literature [181]), defined as

Sinf
t ≡ inf

s∈[0,t]
Stot

s , (7.31)
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and illustrated in Figure 7.7. Because the finite-time infimum is greater or equal than the
global infimum Sinf

t ≥= limt→∞ Sinf
t ≡ Sinf, Equations (7.27) and (7.30) imply respectively

the universal bounds

P(Sinf
t ≤ −s) ≤ exp(−s), for s ≥ 0, (7.32)

and

〈Sinf
t 〉 ≥ −1. (7.33)

Figure 7.7. Illustration of a trajectory of stochastic entropy production Stot
t (black line) and its

finite-time infimum given in Equation (7.31).

Experimental tests of Equation (7.32) and the infimum law (7.33) have been reported in elec-
tronic double dots [33] and in a Brownian motor immersed in a granular gas [29]. In recent
papers [32,182], the present arguments for the extreme values of entropy production have been
extended to the case of arbitrary edge currents in a Markov jump process, and it was proven that
the statistics of extreme values of a generic edge current are described by a geometric distribution
characterized by an effective affinity. Moreover in Ref. [42], bounds tighter than the infimum law
have been derived using Doob’s Lp inequalities [45], and applied to bound the survival statistics
of the work in steady-state heat engines.

7.4.2.1. Negative fluctuations of entropy production on a ring. With an illustrative example,
we show that infima of entropy production are more effective in probing negative fluctuations
of entropy production and testing fluctuation relations than classical results based on fixed
time observables. For this, let us consider the unidimensional drift-diffusion process on a ring
introduced in Equation (1.35), i.e.,

Ẋt = μf +
√

2μTḂt (7.34)
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This is in fact a particular example of Equation (5.3) for a conservative force that is homogeneous
in time and space, i.e., ft(x) = f . The entropy production solves Equation (5.42), i.e.,

Ṡtot
t = vS +

√
2vSḂt, (7.35)

with the homogeneous entropic drift given by

vS = μf 2

T
. (7.36)

Thus for this example, Stot
t is a drift-diffusion process with the distribution

ρStot
t
(s) = 1√

4πvS
exp

(
− (s − vSt)2

4vS

)
(7.37)

and with the cumulative distribution

P
(
Stot

t ≤ −s
) = 1

2

(
1 + erf

(
s − vSt

2
√

vS

))
, (7.38)

where erf(x) = (2/
√

π)
∫ x

0 exp(−y2)dy is the error function. On the other hand, the cumulative
distribution of the entropy-production infimum is given by

P
(
Sinf

t ≤ −s
) = 1

2

(
1 + erf

(
s − vSt

2
√

vSt

))
+ exp(s)

2

(
1 − erf

(−s − vSt

2
√

vSt

))
, (7.39)

which follows from the exact expression for the infimum distribution of a 1D drift diffusion
process [11].

Figure 7.8 shows the two cumulative distributions P(Stot
t ≤ −s) and P(Sinf

t ≤ −s) and com-
pares them with the exponential bounds (7.7) and (7.32), respectively. From Figure 7.8, it is
apparent that Equation (7.7) is a loose bound for all values of t, while Equation (7.32) is tight in
the limit of large t, as predicted by martingale theory. Also, note that the quality of the bound (7.7)
worsens as a function of t.

7.4.3. First-passage-time fluctuation relation for Langevin processes

We review the first-passage-time fluctuation relations for entropy production in stationary
Langevin processes [11]. This fluctuation relation considers the statistics of the first-passage-time
equation (7.12) for symmetric thresholds s+ = s− = s.

To state the first-passage-time fluctuation relation, we define the following stopping times for
entropy production (see Figure 7.9 for an illustration)

• T+ is the first time when Stot
t reaches the positive threshold s > 0, given that Stot

t did not pass
below −s− = −s at earlier times t′ < t; if Stot

t escapes first through the negative threshold,
then we set T+ = ∞.

• T− is the first time when Stot
t reaches the negative −s < 0, given that Stot

t did not go above
s > 0 at earlier times t′ < t; if Stot

t first escapes through the positive threshold, then T− = ∞.

Remarkably, the cumulative probabilities for T+ and T− obey the relation

P(T+ ≤ t)

P(T− ≤ t)
= exp(s), (7.40)

which holds for all t ≥ 0 and for all s ≥ 0.
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We sketch a proof of Equation (7.40):

P(T+ ≤ t) = 〈 θ(t − T+) 〉 (7.41)

=
∫

Dx[0,t]P(x[0,t])θ(t − T+[x[0,t]]) (7.42)

Figure 7.8. Comparison between the upper bounds on negative fluctuations of entropy production from
classical stochastic thermodynamics (7.7) (left) and from martingale stochastic thermodynamics (7.27)
(right) on the example of the drift-diffusion process on a ring described by Equation (7.34). Left: Plot
of P(Stot

t ≤ −s) from Equation (7.38) as a function of −s < 0 for vS = 1 and given values of t, and com-
parison with the upper bound exp(−s). Right: Plot of P(Sinf

t ≤ −s) from Equation (7.39) as a function of
−s < 0 for the same values of vS and t as in the left panel, and comparison with the upper bound exp(−s)
from thermodynamics with martingales, see Equation (7.32).

Figure 7.9. Illustration of the stopping times T+ and T− for entropy production to first escape the interval
(−s, s) from its positive and negative boundaries, respectively.
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=
∫

Dx[0,t] exp(Stot(x[0,t]))P(�tx[0,t])θ(t − T+(x[0,t])) (7.43)

=
∫

Dx[0,t] exp(−Stot(�tx[0,t]))P(�tx[0,t])θ(t − T−(�tx[0,t])) (7.44)

=
∫

Dx[0,t] exp(−Stot(x[0,t]))P(x[0,t])θ(t − T−(x[0,t])) (7.45)

= 〈exp(−Stot
t )|T− ≤ t〉P(T− ≤ t) (7.46)

= 〈exp(−Stot
T−)〉P(T− ≤ t) (7.47)

= exp(s)P(T− ≤ t). (7.48)

We provide details on the most involved steps in the derivation shown above. In
Equation (7.44), we have used that Stot(x[0,t]) = −Stot(�t(x[0,t])) and T+(x[0,t]) = T−(�t(x[0,t])).
In Equation (7.44), we have used the fact that the Jacobian of the transformation x[0,t] → �tx[0,t]

is one. In Equation (7.46), we have used the martingality of exp(−Stot
t ) and Equation (4.46)

of Doob’s optional stopping Theorem 11 for T1 = T−, T2 = t, and for the uniformly integrable
martingales exp(−Stot

t′∧t) that are defined at fixed values of t ≥ 0 and for t′ ∈ [0, t]. Lastly, in
Equation (7.47) we have used the fact that Xt is a diffusion process. We have also used here θ for
the Heaviside theta function, not to be confused with the time-reversal operator �t.

Equation (7.40) implies that the first-passage densities obey the first-passage-time
fluctuation relation for the stochastic entropy production in nonequilibrium stationary
processes [11,183], viz.,

ρT+(t)

ρT−(t)
= exp(s). (7.49)

Note that the s-dependency on the left-hand side of Equation (7.49) is hidden in the
boundary conditions of the stopping times T±.

Note that ρT+(t)dt and ρT−(t)dt are defined by ρT±(t) ≡ P(T± ∈ [t, t + dt])/dt, but we remark
that these are unnormalized densities because the splitting probabilities obey P(T± ≤ ∞) =
P±(s, s) < 1. This motivates us to define the conditional (normalized) densities

ρ̂T±(t) ≡ P(T± ∈ [t, t + dt]|T± < ∞)

dt
= ρT±(t)

P±(s, s)
. (7.50)

From Equation (7.49), and the fluctuation relation for the splitting probabili-
ties P+(s, s)/P−(s, s) = exp(s) (see Equation (7.22)), we find the first-passage-time
symmetry

ρ̂T+(t) = ρ̂T−(t). (7.51)

In words, Equation (7.51) states that it takes the same amount of time to increase entropy
production by s as it takes to reduce entropy production by −s.
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Figure 7.10. The escape problem for entropy production out of a symmetric interval (−s, s). Panel (a):
Example trajectories of Stot

t as a function of time. We highlight in blue three trajectories that first reach s
before −s (at stochastic times T+), and in red two trajectories that first reach −s before s (at stochastic times
T−). Panel (b): Splitting probabilities P+(s, s) that Stot

t goes above s before it (possibly) passes below −s
(blue squares), and P−(s, s) for Stot

t to first pass below −s before it goes above s (red circles). Markers are
obtained from numerical simulations, and the lines denote the analytical expressions (7.19) [P+(s, s), blue
solid line] and (7.20) [P+(s, s), red dashed line] for s+ = s− = s. (c) Conditional normalized densities for
T+ (blue open squares) and for T− (red filled circles) obtained from numerical simulations. Results illustrate
the symmetry relation given in Equation (7.51). All numerical results are obtained for the model sketched
in Figure 7.6(a) (see Ref. [11] for further details).

Relations analogous to the remarkable symmetry given in Equation (7.51) have been derived
in the context of Haldane equalities in enzyme kinetics [184] and for first-passage-time dualities
in diffusion processes [185]. Figure 7.10 shows a numerical test for the symmetry relation (7.51)
for first-passage times and the fluctuation relation (7.22) for splitting probabilities.

7.4.4. Trade-offs between speed, uncertainty, and dissipation

A recurrent theme in nonequilibrium thermodynamics is that processes far from thermal equilib-
rium are governed by a trade-off between speed, uncertainty, and dissipation. Indeed, concrete
examples of this thermodynamic trade-off have been found in kinetic proof reading [186–188],
sensory adaptation [189], and microscopic heat engines [190]. Even though speed and uncer-
tainty are quantified differently in these examples, they are suggestive of universal inequalities
describing a trade-off between speed, uncertainty, and dissipation in nonequilibrium systems.

In recent years, universal inequalities expressing trade-offs in generic, nonequilibrium,
stationary states have been derived for Markov jump processes and overdamped Langevin
processes. We revisit here two inequalities based on first-passage times, namely, the speed-
uncertainty-dissipation trade-off relation [34,35,178] and the thermodynamic uncertainty relation
[177].

As discussed in Section 4.1.5, martingale theory provides a powerful set of tools to study
processes at stopping times, and we will use this here to study nonequilibrium trade-off relations
involving first-passage times. In particular, we use martingale theory to show that the speed-
uncertainty-dissipation trade-off relation is optimal in a specific sense that we discuss below,
and we also use martingale theory to evaluate the trade-off relations in a simple example of a
nonequilibrium process.

7.4.4.1. Setup: empirical current and stopping time. Let Jt be an empirical integrated current
in a stochastic process Xt that is either a stationary Markov jump process or an overdamped
Langevin process, and assume without loss of generality that 〈Jt〉 > 0. In a Markov jump process,
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an empirical current takes the form

Jt =
∑
(x,y)

c(x, y)Jt(x, y), (7.52)

where Jt(x, y) = Nt(x, y) − Nt(y, x) is the difference between the number of jumps Nt(x, y) from
x to y minus the number of jumps Nt(y, x) from y to x counted in the time interval [0, t] (see
definition in Equation 3.50), and c(x, y) ∈ R quantifies the “resource” transported when the pro-
cess jumps from x to y. The stochastic entropy production, defined in Equation (6.35), takes here
the form

Stot
t = 1

2

∑
x,y

ln

(
ρst(x)ω(x, y)

ρst(y)ω(y, x)

)
Jt(x, y), (7.53)

and is a particular example of empirical current, where we identify c(x, y) in this case as the total
entropy change in a jump. An analogous formalism applies to Langevin processes in which case
empirical currents are Stratonovich integrals, viz.,

Jt =
∫ t

0
c(Xs) ◦ dXs. (7.54)

In what follows, and throughout this Section 7.4.4, we rely on the first-passage time

T ≡ inf {t ≥ 0 : Jt /∈ (−�−, �+)} (7.55)

for the current Jt to exit the open interval defined by the thresholds �−, �+ > 0, and we consider
the limit �min � 1, where �min = min{�−, �+}.

7.4.4.2. Trade-off relations based on first-passage times. We review thermodynamic, trade-
off relations between speed, uncertainty, and dissipation that are based on first-passage processes.

The nonequilibrium, thermodynamical trade-off relations we consider take the form

a εunc〈Ṡtot
t 〉〈T 〉(1 + o�min(1)) ≥ 1, (7.56)

where a ∈ R+ is a constant, where 〈Ṡtot
t 〉 is the average entropy production rate that quan-

tifies dissipation, 〈T 〉 is the mean first-passage time that quantifies speed, and where
εunc is a dimensionless observable that quantifies uncertainty in the process. Later when
considering specific examples of such trade-off relations, we define a and εunc.

The factor 1 + o�min(1) represents an arbitrary function that converges to one when �min � 1
and implies that Equation (7.56) is an asymptotic relation that holds in the limit of large values
of the first-passage thresholds �+ and �−. Dissipation 〈Ṡtot

t 〉 is given in (6.38) for Markov jump
processes and in (6.45) for Langevin processes. The trade-off relation equation (7.56) states that
processes that are fast, have a small amount of fluctuations, and dissipate little, are physically
nonpermissible, see Panel (a) of Figure 7.11 for an illustration.

Below we review two examples of trade-off relations that take the form of Equation (7.56),
but differ in the way that uncertainty εunc is quantified.
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Figure 7.11. Trade-off between speed, uncertainty, and dissipation. Panel (a): Illustration of the trade-off
relation equation (7.56). Processes under the plotted surface are nonpermissible. These processes are fast,
fluctuate little, and dissipate little. Panel (b): Illustration of the random walk model on a two-dimensional
lattice, as defined in Section 7.4.4.4. Panel (c): Plot of the ratios ŝFPR/〈Ṡtot

t 〉 and ŝTUR/〈Ṡtot
t 〉 for the model

illustrated in Panel (b) as a function of the parameter � that defines the current, see Equation (7.66).
Parameters ω+

1 = exp(2.5)/[4 cosh(2.5)], ω−
1 = exp(−2.5)/[4 cosh(2.5)], ω+

2 = exp(5)/[4 cosh(5)], and
ω−

2 = exp(−5)/[4 cosh(5)]. Vertical dashed lines denote the locations of the maxima of ŝFPR and ŝTUR,
the former corresponding with Equation (7.67). Panel (d): Similar plot as in Panel (c), but now the ratios are
plot as a function of 〈Ṡtot

t 〉/ωtotal, where ωtotal = ω−
1 + ω+

1 + ω−
2 + ω+

2 . To this aim, the model parameters
are set to ω+

1 = exp(ν/2)/[4 cosh(ν/2)], ω−
1 = exp(−ν/2)/[4 cosh(ν/2)], ω+

2 = exp(ν)/[4 cosh(ν)], and
ω−

2 = exp(−ν)/[4 cosh(ν)] and ν is varied. All figures are taken from Refs. [35,178].

The first relation we discuss is the speed-uncertainty-dissipation trade-off rela-
tion [34,35,178], which is the inequality equation (7.56) for

εunc ≡ 1

| ln P−| , and a ≡ �−
�+

, (7.57)

where

P− ≡ P [J(T ) ≤ −�−] , (7.58)

is the probability that Jt leaves for the first time the interval (−�−, �+) through the lower
threshold.
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The measure εunc ∈ [0, 1/| ln 2|] takes the value εunc = 0 for processes without fluctuations
(P− = 0) and takes the value εunc = 1/| ln 2| for processes with a large amount of fluctuations
(P− = 1/2).

The second relation we consider is the thermodynamic uncertainty relation [177],
which is the inequality equation (7.56) for

εunc ≡ 〈T 2〉 − 〈T 〉2

〈T 〉2
and a ≡ 1

2
. (7.59)

In the thermodynamic uncertainty relation, uncertainty is determined by the variance of the
first-passage time; an equivalent uncertainty relation holds at fixed times [36–38]. It should be
emphasized that both the speed-uncertainty-dissipation trade-off relation and the thermodynamic
uncertainty relation are generically valid for nonequilibrium stationary states of Markov jump
processes and Langevin processes.

7.4.4.3. Comparing the quality of different trade-off relations. To compare the quality of the
two trade-off relations, we evaluate the following estimates:

ŝFPR ≡ �+
�−

| ln P−|
〈T 〉 ≤ 〈Ṡtot

t 〉 and ŝTUR ≡ 2
〈T 〉

〈T 2〉 − 〈T 〉2
≤ 〈Ṡtot

t 〉 (7.60)

of dissipation based on first-passage times. The ratios ŝFPR/〈Ṡtot
t 〉 and ŝTUR/〈Ṡtot

t 〉 determine the
fraction of the average rate of dissipation 〈Ṡtot

t 〉 captured by the estimators of dissipation ŝFPR and
ŝTUR based on the trade-off relation between speed, uncertainty and dissipation or the thermo-
dynamic uncertainty relation, respectively. The closer the ratios ŝFPR/〈Ṡtot

t 〉 and ŝFPR/〈Ṡtot
t 〉 are to

one, the tighter are the inequalities in Equation (7.60), and hence the better is the quality of the
trade-off relation.

Using martingale methods, we show that for currents that are proportional to the entropy
production, viz.,

Jt = cStot
t , (7.61)

where c is a constant, it holds that

ŝFPR = 〈Ṡtot
t 〉, (7.62)

and hence the speed-uncertainty-dissipation trade-off relation is optimal in this case. Indeed,
Equation (7.18) in the limit of �−, �+ � 1 implies

P− = exp(−�−/c(1 + o�min(1))). (7.63)

In addition, since in this case [35],

〈T 〉 = �+
c〈Stot

t 〉 (1 + o�min(1)), (7.64)

we obtain from Equations (7.63) and (7.64) the equality

ŝFPR = 〈Ṡtot
t 〉 (7.65)

for currents that are proportional to Stot
t .
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7.4.4.4. Comparing ŝFPR with ŝTUR in a simple example of a nonequilibrium process. Let
us now compare ŝFPR with ŝTUR for the general case of currents Jt that are not necessarily
proportional to Stot

t in a simple model of a nonequilibrium process X, as done in Ref. [178].
We consider the process X = (X (1)

t , X (2)
t ) describing the position of a particle that jumps on

a two-dimensional lattice at rates ω+
1 , ω−

1 , ω+
2 , and ω−

2 , for which we assume that ω+
1 > ω−

1 and
ω+

2 > ω−
2 , see Panel (b) of Figure 7.11 for an illustration. In this example, empirical currents take

the form

Jt = (1 − �)X (1)
t + (1 + �)X (2)

t , (7.66)

and when

� = ln(ω+
2 /ω−

2 ) − ln(ω+
1 /ω−

1 )

ln(ω+
2 /ω−

2 ) + ln(ω+
1 /ω−

1 )
, (7.67)

the current Jt is proportional to Stot
t .

The mean rate of dissipation is, from definition Equation (5.92), given by

〈Ṡtot
t 〉 = (ω+

1 − ω−
1 ) ln

ω+
1

ω−
1

+ (ω+
2 − ω−

2 ) ln
ω+

2

ω−
2

. (7.68)

Note that here we have applied Equation (5.92) and assumed periodic boundary conditions in
the two-dimensional lattice which leads to a homogeneous steady-state density, i.e., ρst(x) to be
independent of x.

To determine ŝFPR and ŝTUR, we use in Appendix E.2 martingales and the technology of
Doob’s optional stopping theorems, as discussed in Section 4.1.5, to determine an explicit
expression for the splitting probability P−, the mean first-passage time 〈T 〉, and the variance
〈T 2〉 − 〈T 〉2, yielding

ŝFPR = |z∗| ((1 − �)(ω+
1 − ω−

1 ) + (1 + �)(ω+
2 − ω−

2 )
)
(1 + o�min(1)), (7.69)

where z∗ is the nonzero solution to

0 = [1 − exp(z∗(1 − �))]ω+
1 + [1 − exp(−z∗(1 − �))]ω−

1

+ [1 − exp(z∗(1 + �))]ω+
2 + [1 − exp(−z∗(1 + �))]ω−

2 , (7.70)

and

ŝTUR = 2
[(1 − �)(ω+

1 − ω−
1 ) + (1 + �)2(ω+

2 − ω−
2 )]2

(1 − �)2(ω+
1 + ω−

1 ) + (1 + �)2(ω+
2 + ω−

2 )
. (7.71)

In Panel (c) of Figure 7.11, we use Equations (7.68), (7.69), and (7.71), to plot ŝFPR/〈Ṡtot〉 and
ŝTUR/〈Ṡtot〉 as a function of �. Observe that for � given in Equation (7.67), as indicated by the
vertical dotted line in Figure 7.11, the inequality for ŝFPR is tight, as predicted by martingale
theory. In addition, for all values of � it holds that 〈Ṡtot

t 〉 ≥ ŝFPR ≥ ŝTUR, and hence ŝFPR is in this
example a better estimator of dissipation.

In Panel (d) of Figure 7.11, we plot ŝFPR and ŝTUR, as a function of 〈Ṡtot〉. This figure reveals
that ŝFPR = ŝTUR near equilibrium (〈Ṡtot〉 ≈ 0), whereas in the opposing nonequilibrium limit it
holds that ŝTUR/〈Ṡtot

t 〉 → 0, whereas ŝFPR/〈Ṡtot
t 〉 converges to a finite nonzero value for increasing

values of 〈Ṡtot
t 〉, which is indicated by the blue dashed line in the figure. Hence, far from equilib-

rium ŝTUR captures a negligible fraction of the dissipation, while ŝFPR captures a finite fraction of
the dissipation.
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7.5. Overcoming classical thermodynamic limits by stopping at a clever moment

The second law of thermodynamics at stopping times, given in Equation (7.11), states that it is not
possible to reduce entropy by stopping at a clever moment. This law applies to the total entropy
production Stot

t and implies that a demon cannot reduce entropy, not even when it is infinitely
smart and has complete knowledge of the past.

However, there exist observables Yt(X[0,t]) that obey a classic second law of thermodynamics,
in the sense that

〈Yt〉 ≥ 0, (7.72)

but do not obey a second law at stopping times, in the sense that

〈YT 〉 � 0, (7.73)

i.e., its average at stopping times is not necessarily greater than or equal to zero. A notable exam-
ple of such an observable is the heat dissipated −Qt, as defined in Equation (5.8), for stationary,
isothermal, overdamped, unidimensional Langevin processes given in Equation (5.3). In this case,
the second law of thermodynamics implies that the heat decreases on average, but nevertheless, a
demon can use stopping times T to overcome this classical thermodynamic limit. More generally,
for generic stationary processes the environment entropy change Senv

t , defined in (6.33), obeys,
on one hand12

〈Senv
t 〉 ≥ 0, (7.74)

even though Senv
t is not a submartingale. On the other hand,

〈Senv
T 〉 ≥ −〈�Ssys

T 〉 � 0, (7.75)

i.e., the average environmental entropy change at stopping times is not necessarily greater
than or equal to zero. Equation (7.75) implies that a demon can overcome the classical limit
equation (7.74) by stopping a process at a cleverly chosen moment T , as anticipated by Maxwell
[180]. Note that the operation of such a demon relies crucially on (i) the possibility to stop a
process at a random time and (ii) the fact that we ignore changes in the entropy of the demon
itself.

In what follows, we discuss two examples of cases for which a demon can use stopping
times to overcome the classical limit (7.74) in isothermal (Section 7.5.1) and non-isothermal
(Section 7.5.2) conditions.

7.5.1. Heat extraction from stopping at a cleverly chosen moment

Let X be the position of a colloidal particle described by the one-dimensional Langevin process
(Equation 5.3). As already anticipated in the introduction of this section, the negative heat −Qt

obeys the classical second law

−〈Qt〉 ≥ 0, (7.76)

which follows from inserting Equation (5.22) into Equation (5.25) and using that for stationary
systems 〈�Ssys

t 〉 = 0; Ssys
t is the system entropy as defined in Equation (5.14). On the other hand,

from the second law at stopping times (Equation 7.11) it follows that

−〈QT 〉 ≥ −T〈Ssys
T 〉 + T〈Ssys

0 〉. (7.77)

Since the right-hand side of Equation (7.77) can be negative, the negative heat does not satisfy a
second law at stopping times, and a colloidal particle can in principle absorb heat from a thermal
reservoir by stopping at a time T defined by a suitable prescribed criterion.
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Figure 7.12. Heat extraction by a colloidal particle from an reservoir at temperature T. Left panel: Illustra-
tion of the model used in the right panel, viz., a colloidal particle on a ring. The position of the particle is
described in Equation (5.3) with potential V (x) = T ln(cos(x/�) + 2) and constant force f. Right panel: The
average heat 〈QT 〉 at the stopping time T , defined in Equation (7.78) and illustrated in the Left Panel by a
star, and the average heat rate 〈Q̇〉, both plotted as a function of the forcing f �/T . Here, we estimate the aver-
age heat rate as 〈Q̇〉 $ 〈Qt〉/t using empirical averages and t sufficiently large, which leads to 〈Q̇〉 ≤ 0 by
virtue of 〈Qt〉 = −T〈Senv

t 〉 ≤ 0, see Equation (7.74). Simulation results are in agreement with the classical
second law 〈Qt〉 ≤ 0 (Equation (7.76)) and the second law at stopping times (Equation (7.77)), special-
ized for this example as 〈QT 〉 ≤ T

∫ 2π
0 dyρst(y) ln[ρst(y)/ρst(0)] (Equation (7.79)). In the simulations, the

parameters were set to T = 1, μ = 1, and � = 1. Figures taken from Ref. [13].

In Figure 7.12, we illustrate heat extraction for a colloidal particle that moves in a nonconstant
potential on a ring under the influence of a nonconservative force. The position of the colloidal
particle is described in Equation (5.3) with periodic boundary conditions, a constant, nonconser-
vative force f, and a potential V (x) = T ln(cos(x/�) + 2), as considered before in Figure 7.6. The
stopping criterion we implement is shown in the left panel of Figure 7.12: we stop the process as
soon as the colloidal particle reaches the peak of the potential located at x = 0, i.e.,

T = inf {t ≥ 0 : Xt = 0} . (7.78)

As shown in the right panel of Figure 7.12, as long as f is small enough, the system extracts on
average heat from the thermal reservoir at the stopping time T , i.e., 〈QT 〉 ≥ 0 (see blue squares
in the right panel in Figure 7.12), and the amount of heat that can be extracted is upper bounded
by the second law at stopping times given in Equation (7.77). More precisely, in this exam-
ple the system’s dynamics is initialized in the stationary state ρst(x) whereas ρst(XT ) = ρst(0).
Thus the average system entropy change up to the stopping time (7.78) reads 〈Ssys

T 〉 − 〈Ssys
0 〉 =∫ 2π

0 dyρst(y) ln ρst(y)/ρst(0). As a result, the second law at stopping times (7.77), copied here for
convenience

−〈QT 〉
T

+ [〈Ssys
T 〉 − 〈Ssys

0 〉] ≥ 0,

is specialized for this example as an upper bound for the averaged absorbed heat up to the
stopping time T given in Equation (7.78), i.e.,

〈QT 〉
T

≤
∫ 2π

0
dyρst(y) ln

ρst(y)

ρst(0)
. (7.79)
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We provide a numerical verification of the inequality (7.79) in the right panel of Figure 7.12,
which shows that such second law at stopping times is tight when the system is near equilibrium,
i.e., when f ≈ 0.

7.5.2. Super Carnot efficiency at stopping times

Steady-state heat engines are thermal machines that are permanently in contact with two thermal
reservoirs, one at hotter Th and another at a colder Tc ≤ Th temperature. After a transient, the
engine achieves an average stationary heat flow from the hot to the cold reservoir that can be
used to extract power. A key example of a steady-state heat engine is Feynman’s ratchet where a
ratchet and a pawl are immersed in two gas containers held at different temperatures. As shown
earlier [191,192], the nonequilibrium constraint Tc �= Th results in a net extraction of work which
can be used, i.e., to lift a weight against the gravitational pull.

It is well known the key role of fluctuations in determining the thermodynamic performance
of steady-state heat engines [26,193]. However, only very recently thermodynamic insights of
such machines at stopping times have been unveiled with the help of martingales [13,42]. For
example, an important question is what is the average heat transfer between two “main events”
corresponding to two consecutive passages in the teeth of Feynman’s ratchet wheel?

The average thermodynamic fluxes in steady-state heat engines over a fixed time interval [0, t]
obey 〈Wt〉 ≤ 0 (work extraction), 〈Qh〉 ≥ 0 (absorption of heat from the hot bath), and 〈Qc〉 ≤ 0
(dissipation of heat in the cold bath). The first law of thermodynamics implies

〈Ẇ〉 + 〈Q̇c〉 + 〈Q̇h〉 = 0 (7.80)

and the second law for steady-state heat engines

〈Ṡtot
t 〉 = −〈Q̇c〉/Tc − 〈Q̇h〉/Th ≥ 0, (7.81)

which follows from stationarity. Combining Equations (7.80) and (7.81), one finds that the long-
time efficiency (defined analogously as in classical heat engines) of the engine is always smaller
or equal than Carnot efficiency, i.e.,

η = −〈Ẇ〉
〈Q̇h〉

≤ 1 − Tc

Th︸ ︷︷ ︸
≡ηC

. (7.82)

We now ask the question: what are the implications of the second law of thermodynamics at
stopping times (7.11) concerning the efficiency achieved by a steady-state heat engine clev-
erly stopped at a stochastic time T ? To this aim, we consider the stopping-time efficiency ηT
associated with the stopping time T as

ηT ≡ −〈WT 〉/〈T 〉
〈Qh,T 〉/〈T 〉 = −〈WT 〉

〈Qh,T 〉 , (7.83)

where −〈WT 〉 and 〈Qh,T 〉 are respectively the average work extracted and the average heat
absorbed from the hot bath in the time interval [0, T ]. In general, trajectories X[0,T ] are not cyclic,
i.e., ρT �= ρ0. This implies that the first law averaged over many trajectories X[0,T ] stopped at a
stochastic time T reads

〈WT 〉 + 〈Qc,T 〉 + 〈Qh,T 〉 = 〈�VT 〉. (7.84)

Here, �VT = V (XT ) − V (X0) is the energy change in [0, T ], which one cannot simply neglect
with respect to the average heat and work done up to the stopping time – as in the traditional first
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law (7.80). Similarly, the second law of thermodynamics at stopping times (7.11) reads in this
case

〈Stot
T 〉 = 〈�Ssys

T 〉 − 〈Qc,T 〉/Tc − 〈Qh,T 〉/Th ≥ 0, (7.85)

with �Ssys
T the system entropy change in [0, T ]. The second law (7.85) reveals something inter-

esting, namely, the stopping time carries an additional system entropy term with respect to the
traditional second law (7.81). We also note that Yt = −Qc/Tc − Qh/Th satisfies a second law of
thermodynamics at fixed times but not at stopping times, and this is a key property that allows
us to overcome classical limits. In particular, combining Equations (7.83),(7.84) and (7.85) we
obtain

ηT ≤ ηC − 〈�Gne
c,T 〉

〈Qh,T 〉 , (7.86)

where

Gne
c,T = V (XT ) − TcSsys

T , (7.87)

is the nonequilibrium free energy of the system at stopping times with respect to the cold ther-
mal bath. Notably, the second term in the right-hand side of (7.86) may be positive for specific
“clever” choices of stopping times. Therefore, the second law of thermodynamics at stopping
times does not prevent stopping-time efficiencies ηT to surpass the Carnot efficiency.

For illustrational purposes, we borrow from Ref. [13] the illustration of the bound (7.86)
applied to a paradigmatic model of a steady-state engine, namely the Brownian gyrator which
was introduced in Ref. [194] and realized experimentally in [195], see also Refs. [190,196,197]
for theoretical insights. The model is described by a two-dimensional Langevin equation describ-
ing the motion of an overdamped Brownian particle in an elliptical confining potential that is
subject to two nonequilibrium constraints: (i) two thermal baths at temperatures Th and Tc < Th

each acting only along the x and y axes, respectively; and (ii) an external torque generated by
external, non-conservative forces. See Figure 7.13(a) for an illustration of the Brownian gyrator.
The equations of motion of the model read (cf. Equation (3.59))(

Ẋt

Ẏt

)
= −μ

(
∂xV (Xt, Yt)

∂yV (Xt, Yt)

)
+ μ

(
fx (Xt, Yt)

fy (Xt, Yt)

)
+
( √

2μTh 0
0

√
2μTc

)(
Ḃx

Ḃy

)
.

(7.88)

In Equation (7.88), the potential

V (x, y) = 1

2

(
u1x2 + u2y2 + cxy

)
, (7.89)

with u1, u2 > 0, and 0 < c <
√

u1u2 [190]. Furthermore, the two components of the external
non-conservative force are

fx(x, y) = ky, f2(x, y) = −kx, (7.90)

and Bx and By are two independent Wiener processes,
Amongst the infinite possible choices of stopping strategies, Ref. [13] considered the stopping

time of first occurrence of the “main event”

T = inf {t > 0 : ϕt− > π/2, ϕt+ ≤ π/2} , (7.91)

where we assume that at t = 0 the system is initialized in its stationary state (see green circles in
Figure 7.13 a). In Equation (7.91), the variable ϕt = tan−1(Yt/Xt) ∈ [−π , π ] is the phase asso-
ciated with the state (Xt, Yt), thus T corresponds to the first crossing from the second quadrant
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Figure 7.13. Efficiency of a gyrator that stops at a cleverly chosen time. (a) Illustration of the model: An
overdamped Brownian particle moves in one dimension, X and Y, trapped in an elliptical potential (7.89),
under the action of an external, non-conservative force field (7.90) (black arrows) and subject to thermal
fluctuations of different temperatures Th and Tc < Th along the X and Y coordinates, respectively. The
thick black arrow illustrates a single trajectory stopped at T given in Equation (7.91) being the first time
at which the “barrier” (thick line with black and orange stripes) is crossed by crossing from the second
to the first quadrant. The green filled circles show the initial state of 100 independent realizations drawn
from the stationary state, whereas the black filled circles are their value at the stopping time T . (b) Effi-
ciencies as a function of the stiffness k of the non-conservative force (in units of the “stalling” stiffness
ks ≡ cηC/(2 − ηC) at which the net current vanishes), viz., the long-time efficiency η (Equation 7.82, blue
squares, simulations; blue solid line, theory), the stopping-time efficiency ηT (Equation 7.83, red circles),
and the upper bound to the stopping time efficiency dictated by the second law of thermodynamics at stop-
ping times (right-hand side in Equation 7.86, black open circles). The horizontal green line is set at Carnot
efficiency ηC = 1 − (Tc/Th) = 7. Parameter values: μ = 1, u1 = 1, u2 = 1.2, Tc = 1, Th = 7, c = 0.9,
104 independent realizations, and simulation time step �t = 10−3, see [13] for further details.

to the first quadrant. The distribution at stopping times ρXT ,YT is concentrated near the positive
y axis (black circles in Figure 7.13a) and is less broad than the initial distribution (green circles
in Figure 7.13a). Thus the system entropy change in [0, T ], �Ssys

T = Ssys
T − Ssys

0 , is often nega-
tive for this example and this choice of stopping time. This result, together with the fact that the
system energy change in [0, T ], �VT = VT − V0, is often smaller than −Tc�Ssys

T , leads to pos-
itive free energy changes 〈�Gne

c,T 〉, which opens up the possibility for stopping time efficiencies
above the Carnot limit, see Equation (7.86). Readers are referred to Ref. [13] for details on the
calculations of the free energy change at stopping times. We show in Figure 7.13(b) with results
obtained from numerical simulations, that the stopping-time efficiency associated with the stop-
ping time T (red circles), which satisfies the bound (7.86), can surpass the Carnot efficiency near
equilibrium, a result that is inaccessible by stopping trajectories at a fixed time (blue squares).

Chapter 8. Martingales in stochastic thermodynamics IV: Non-stationary processes

La martingale est introuvable comme l’âme.
(The martingale is as elusive as the soul.)
Alexandre Dumas, La Femme au collier de velours, Chapter XVIII (1850).
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We use martingales to further extend classical results in stochastic thermodynamics, but this
time for nonstationary processes.

To this purpose, we use the generalized �-stochastic entropic functionals, as defined in
Equation (6.108), for the special case of r = 0 and Q(t) = P̃ (t), where P̃ (t) is a sequence of
probability measures associated with the time-reversed protocol. For simplicity, we denote here
such generalized �-stochastic entropic functionals by �̂s. Note that in Section 6.3 we have
shown that �̂s can be decomposed in terms of a stochastic environmental entropy flow, given
in Equation (6.32), or equivalently, in terms of a stochastic total entropy production, given in
Equation (6.33), viz.,

�̂s = ln

(
ρ0 (X0)

ρ̃
(t)
t−s (Xs)

)
+ Senv

s = ln

(
ρs(Xs)

ρ̃
(t)
t−s(Xs)

)
+ Stot

s , (8.1)

which holds for 0 ≤ s ≤ t. Here, ρ̃(t) is the instantaneous density associated with the time-
reversed protocol for a specified initial distribution ρ̃

(t)
0 = ρt (see Equation (6.8) for its definition).

Importantly, as shown in Section 6.3, the process exp(−�̂s) is a martingale with respect to
X[0,s]. In this chapter, we use the martingale property of exp(−�̂s) to derive fluctuation relations
at stopping times for nonstationary nonequilibrium processes.

We initiate this chapter with Section 8.1 that reviews Jarzynski’s equality. Subsequently, fol-
lowing Refs. [10,14], in Section 8.2 we extend Jarzysnki’s equality to an equality that applies at
stopping times and discuss applications of this result. In Section 8.3, we review another exten-
sion of Jarzynski’s equality for non-stationary processes, which is then used to design gambling
demons that can extract on average more work than the free energy difference at the stopping
time.

8.1. Jarzynski’s equality

Jarzynski’s celebrated equality, introduced in Ref. [169], provides an equality between the
statistics of the stochastic work done on the system and the (deterministic) equilibrium free
energy change between the initial and final states of a nonequilibrium protocol. As reviewed
in Section 6.1.5.3 (see Equation 6.52), Jarzynski’s equality is given by〈

exp

(
−Wt − �Geq

T

)〉
= 1, (8.2)

where the average 〈·〉 is taken over the trajectories X[0,t] of a mesoscopic process that is ini-
tially at time s = 0 in an equilibrium state and is for s ∈ [0, t] driven away from equilibrium
by an external protocol (after which it can be assumed to relax again to an equilibrium state).
The �Geq in Equation (8.2) denotes the free energy difference between the final and ini-
tial states. Equation (8.2) was first derived for a Hamiltonian system in [169] and was later
extended with a Master equation approach to stochastic processes, including Langevin pro-
cesses in Refs. [165,198,199]; in Section 6.1.5.3 we have rederived the Jarzynski equality for
overdamped isothermal Langevin processes. The Jarzynski equality implies the second law

〈Wt〉 ≥ �Geq, (8.3)

which states that the work done on a system must on average be larger than the free energy
difference between the final and initial states.
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8.2. Jarzynski equality at stopping times

Events in mesoscopic systems can happen at random times. Hence to address questions of the
sort “how much work is needed on average for a particle to escape a metastable state?” or “how
much work is required to stretch a polymer to a certain predefined fixed length?”, we need a
formulation of the second law of thermodynamics that holds at random times [14].

We further detail the latter example, which serves as a canonical example in this section.
Consider a polymer with one end attached to an anchor fixed at position x = 0, and the second
(dangling) end attached by a spring to a molecular motor positioned at λ0 = λi, as shown in the
upper panel of Figure 8.1. At time t = 0, the motor starts moving forwards. Our event of interest
is the binding of the second endpoint of the polymer to an anchor located at x = �, as shown in the
bottom panel of Figure 8.1. How much work does the motor perform on average on the polymer
to complete this event of interest, and what is the corresponding second law of thermodynamics?

Since the polymer is a mesoscopic system the position of its end point is a stochastic process,
and therefore the time T when the event of interest happens is a random variable. Consequently,
the classical second law of thermodynamics, Equation (8.3), does not apply. Instead, following
Refs. [10,14] we present a generalization of the second law of thermodynamics that applies at
random times.

8.2.1. System setup

For simplicity, we focus here on the one-dimensional Langevin process

Ẋs = −μ∂xV (X ; λs) +
√

2μT Ḃs, (8.4)

Figure 8.1. How much work is required to stretch a polymer to a certain fixed length �? A polymer (gray
zigzag line) has one end point (green circle) bound to an anchor point (red symbol) located at x = 0 and
has another end point coupled to a spring representing a molecular motor located initially located at λ0
(blue zigzag line). At times s > 0, the motor moves forward and when the dangling end point of the poly-
mer reaches the anchor point located at x = �, it binds to it. Since the dangling end point of the polymer
is fluctuating, also the time T of arrival at x = � is random, and hence for this event the second law of
thermodynamics at stopping times Equation (8.30) applies. Figure taken from [14].
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where s ≥ 0 is the time index, and

λs ≡
⎧⎨⎩λi if s ≤ 0,

λs if s ∈ [0, τ ],
λf if s ≥ τ ,

(8.5)

denotes a protocol that runs over a time interval s ∈ [0, τ ] of finite duration τ ; note that we
use here s as a time index instead of t to have a notation consistent with Section 6.3 on
generalized entropic functionals, as it will turn out that the central quantity of interest is a gener-
alized �-stochastic entropic functional. Equation (8.4) equals Equation (5.3) in the absence of a
nonconservative force fs = 0 and for Vs(x) = V (x; λs). We assume that the initial state

ρ0(x) = ρeq(x; λi), (8.6)

where

ρeq(x; λ) = exp

(
−V (x; λ) + Geq(λ)

T

)
, ∀x ∈ X , (8.7)

is the Boltzmann distribution, and

Geq(λ) = T ln

(∫
X

dx exp

(
−V (x; λ)

T

))
(8.8)

is the equilibrium free energy for a given value of the parameter λ.

8.2.2. Martingale associated with X

We identify a martingale, which we denote by exp(−�̂s), associated with the process Xs.
Consider the process

�̂s = −Qs

T
+ ln (ρeq(X0; λi)) − ln

(
ρ̃

(τ )
τ−s(Xs)

)
, (8.9)

where

Q̇s = ∂xV (X ; λs) ◦ Ẋs (8.10)

is the rate of heat absorbed by the system, as defined in Equation (5.11) or (6.46), and where ρ̃
(τ )
τ−s

is the solution to the Fokker–Planck equation

∂sρ̃
(τ )
s + ∂xJ̃s,ρ̃(τ ) = 0 (8.11)

with the probability current

J̃s,ρ̃(τ ) = −μ∂xV (x; λ̃s)ρ̃
(τ )
s (x) − μT∂xρ̃

(τ )
s (x), (8.12)

with the time-reversed protocol

λ̃s ≡
⎧⎨⎩λf if s ≤ 0,

λτ−s if s ∈ [0, τ ],
λi if s ≥ τ ,

(8.13)
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and with the initial state

ρ̃
(τ )
0 (x) = ρeq(x; λf). (8.14)

The constant term ln(ρeq(X0; λi)) in the expression (8.9) of �̂s assures that

〈exp(−�̂0)〉 =
∫
X

dxρ̃(τ )
τ (x) = 1. (8.15)

As suggested by the notation, the process �̂s given in Equation (8.9) is a particular case of the
generalized �-stochastic entropic functional (8.1) for t = τ , for ρ̃

(t)
0 given in Equation (8.6), and

for Senv given by Claussius’ statement equation (6.46).
In Appendix F.1, we use the Itô integral approach from Section 5.2.2.1 to derive a compact

Itô stochastic differential equation for �̂s, viz.,

d

ds
�̂s = vS

s (Xs) +
√

2vS
s (Xs)Ḃs, (8.16)

where

vS
s = 1

μT

(
J̃τ−s,ρ̃(τ ) (Xs)

ρ̃
(τ )
τ−s (Xs)

)2

. (8.17)

Note that Equation (8.16) has the same form as Equation (5.42), albeit with an entropic drift vS
s

that exhibits an explicit dependence on time s.
Applying Itô’s formula (see Appendix B.3.1) to the variable transformation �̂s → exp(−�̂s)

and using Equation (8.16), we obtain

d exp(−�̂s)

ds
= −

√
2vS

s (Xs) exp(−�̂s)Ḃs, (8.18)

and hence exp(−�̂s) is an Itô integral. Hence, according to Equation (8.18) exp(−�̂s) is the
stochastic exponential Es(M ) of the martingale

Ms =
∫ s

0
du
√

2vS
u(Xu)Ḃu. (8.19)

Hence, we have “rediscovered” (see previous Section 5.2.2.1 and Section 5.2.2.4) in an explicit
way that exp(−�̂s) is a martingale provided Novikov’s condition is satisfied, which we assume
to be the case in what follows. Moreover, since vS

s ≥ 0, it holds that �̂s is a submartingale, and it
satisfies a conditional strong second law

〈�̂s|X[0,u]〉 ≥ �̂u (8.20)

for all 0 ≤ u ≤ s.
Note that this example has the appealing property that the origin of time reversal t = τ is

immaterial. Indeed, the same process �̂s is obtained for all t ≥ τ , as we show in Appendix F.2.
This is because the initial state is given in Equation (8.14) and the protocol has finite duration.
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8.2.2.1. ♠Note on uniform integrability. An important distinction between the process
exp(−Stot

t ) for stationary X, as defined in Chapter 5, and the process exp(−�̂s) defined in (8.1)–
(8.9) for nonstationary X, is that exp(−�̂s) is (in general) a uniformly integrable for s ∈ R+,
while exp(−Stot

t ) is not uniformly integrable for t ∈ R+. This can be understood as follows.
Both exp(−Stot

t ) and exp(−�̂s) are bounded from below, and hence according to the
martingale convergence theorem, Theorem 8, limits

exp(−Stot
∞ ) = lim

t→∞ exp(−Stot
t ) (8.21)

and

exp(−�̂∞) = lim
s→∞ exp(−�̂s) (8.22)

exist. According to condition equation (4.34), if in addition 〈exp(−Stot
∞ )〉 = 1 and 〈exp(−�̂∞)〉 =

1, then exp(−Stot
t ) and exp(−�̂s) are, respectively, uniformly integrable processes.

However, for stationary processes

0 = 〈exp(−Stot
∞ )〉 �= 〈exp(−Stot

t )〉 = 1, (8.23)

and hence exp(−Stot
t ) is not uniformly integrable. This is because with probability 1,

limt→∞ Stot
t = +∞.

On the other hand,

〈exp(−�̂∞)〉 = 〈exp(−�̂s)〉 = 1, (8.24)

as with probability 1, lims→∞ �̂s ∈ R+.

8.2.3. Derivation of the Jarzynski equality at stopping times

To obtain a Jarzynski equality at stopping times, we rewrite the process �̂s in terms of
the stochastic work Wt done on the system and the equilibrium free energy Geq(λs), given
in Equation (8.8). Using the first law of thermodynamics equation (5.6) and the Boltzmann
distribution equation (8.7), we obtain

�̂s = Ws − �Geq(λs)

T
− πs, (8.25)

where the equilibrium free energy difference between the final and initial states reads (8.9)

�Geq(λs) = Geq(λs) − Geq(λi), (8.26)

and where the remainder term

πs ≡ ln

(
ρ̃

(τ )
τ−s(Xs)

ρeq(Xs; λs)

)
. (8.27)
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Since for finite τ the process exp(−�̂s) is a uniformly integrable martingale, see note
on uniform integrability in Section 8.2.2, Doob’s optional stopping theorem, Theorem 11,
applies, yielding the Jarzynski equality at stopping times [14], i.e.,〈

exp

(
−WT − �Geq(λT )

T
+ πT

) 〉
= 1. (8.28)

Equation (8.28) is reminiscent of Jarzynski’s equality equation (8.2), except for the presence
of the remainder term πT that includes the nontrivial contributions to �̂s due to the fact that we
stopped the process X at a random time T . Nevertheless, it is justified to call Equation (8.28) a
Jarzynski equality at stopping times as in several limiting cases it holds that πT = 0 yielding the
good-looking equality 〈

exp

(
−WT − �Geq(λT )

T

) 〉
= 1, (8.29)

which is Equation (8.2) for t → T .
Equation (8.29) applies in the following limiting cases for which it holds that πT = 0:

(i) T = τ : indeed, in this case ρ̃
(τ )
0 (x) = ρeq(x; λf) and thus πτ = 0. In this case,

equation (8.28) is identical to the Jarzynski equality equation (8.2) as T = τ .
(ii) The stopping time T is larger or equal than τ : indeed, ρ̃

(τ )

τ−T (x) = ρeq(x; λf) for T > τ

and thus πs = 0 for s > τ .
(iii) The driving λs is quasi-static: in this case, ρ̃

(τ )
τ−s(x) = ρeq(x; λs) for all s, such that πs = 0.

(iv) The protocol is quenched (i.e., λs = λf for s > 0) and the stopping time is with probability
1 greater than 0 (i.e., P(T > 0) = 1): this is a special case of (iii).

We derive now a second law of thermodynamics at stopping times based on the Jarzynski equality
at stopping times.

Jensen’s inequality equation (7.4) applied to X = Ss, together with Jarzynski’s equality
at stopping times, Equation (8.28), yields the second law of thermodynamics at stopping
times [14]

〈WT 〉 − 〈�Geq(λT )〉 + T〈πT 〉 ≥ 0. (8.30)

Although here, for reasons of simplicity we have derived Equations (8.28) and (8.30)
for one-dimensional, overdamped Langevin processes, these relations are generally valid for
multidimensional overdamped Langevin processes and Markov jump processes [14].

Note that for the special cases where πT = 0, as discussed below Equation (8.29), we obtain
the appealing bound

〈WT 〉 ≥ 〈�Geq(λT )〉. (8.31)

In other words, the average amount of work we need to perform on a system in order for a certain
event of interest to happen, as determined by the stopping time T , must be greater or equal
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than the average increase in free energy. This second law of thermodynamics holds for quenched
protocols for which the event happens with probability 1 at nonzero times and for quasistatic
protocols.

Although the remainder term πT in Equation (8.30) spoils in general the more practical
inequality equation (8.31), the remainder is at the origin of interesting phenomena, such as events
in which on average an agent increases the free energy of a system more than the work it does on
it.

In what follows, we illustrate the second law of thermodynamics Equation (8.30), as well as
Equation (8.31), on the canonical example of the polymer in Figure 8.1, and we discuss the role
of the remainder term πT .

8.2.4. Canonical example illustrating the second law of thermodynamics

We illustrate the second law at stopping times, Equation (8.30), on the example of Figure 8.2.
We assume that the position X of the dangling end point is well described in Equation (8.4)

with the thermodynamic potential

V (x; λs) = κp

2
x2 + κm

2
(x − λs)

2 , (8.32)

which is the sum of the potential κpx2/2 of a polymer with one of its end points anchored to the
substrate at x = 0, and the potential κm(x − λs)

2/2, of the spring that connects the dangling end
point of the polymer to the molecular motor with its center of mass located at λs. At time s = 0,
this motor-polymer system is in thermal equilibrium with its surroundings, and at time s > 0 the
motor starts moving forwards. The dynamics of the center of mass of the molecular motor is

Figure 8.2. Simulation results demonstrating the second law of thermodynamics at stopping times
(Equation (8.30)), for the model defined in Section 8.2.4 and illustrated in Figure 8.1. The parameters
used in simulations are � = 2.2, μ = 0.1, T = κp = 1, κm = 2, λi = 0.2, λf = 5, and τ = 106. The ver-
tical dotted lines denote the relaxation time τrel = 10/3 of the polymer towards equilibrium and the mean
first-passage time τfp = 1560 for the polymer to reach the dangling end point from the initial point in the
absence of a driving protocol. The black solid line indicates zero and is a guide to the eye. Figures are taken
from Ref. [14].
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described by

λs = λi + (λf − λi)
1 − exp

(−s/τprot
)

1 − exp
(−t/τprot

) , s ∈ [0, t], (8.33)

where τprot > 0 is the time scale determining the protocol speed. The polymer relaxes over a
time scale τrel = 1/(μ(κm + κp)). If τprot " τrel, then the molecular motor quenches the polymer,
whereas if τprot � τrel, then the motor stretches the polymer in a quasi-static manner.

We determine the average work 〈WT 〉 that the motor performs on the polymer to bring the
second end point of the polymer to the location X (t) = �. Hence, the stopping time is defined by

T = inf {s ≥ 0 : Xs = �} . (8.34)

Simulation results in Figure 8.2 show numerically that the second law of thermodynamics at
stopping times, Equation (8.30), holds. We observe two regimes, viz., the quenched regime for
τprot < τrel, in which case the dissipated work 〈WT 〉 − 〈�Geq(λT )〉 is large, and the opposing
quasi-static limit of τprot > τfp, for which 〈WT 〉 − 〈�Geq(λT )〉 ≈ 0. Another relevant time scale
for this problem is the mean first-passage time τfp that X needs to reach X = � when λf = λi. If
τprot > τfp, then 〈WT 〉 ≈ 0.

An interesting feature of the second law, which becomes evident from Figure 8.2, is that
〈πT 〉 ≈ 0, and hence the appealing bound equation (8.31) ensues. The approximation 〈πT 〉 ≈ 0
follows from the fact that 〈πT 〉 = 0 in the two limiting cases τprot � τrel and τprot " τrel, for
which the protocol is quasistatic and quenched, respectively. As discussed in Equation (8.29), in
these two limiting cases πT = 0. In the intermediate regime πT �= 0, but simulation results in
Figure 8.2 show that nevertheless 〈πT 〉 ≈ 0.

Taken together, it often holds that 〈πT 〉 ≈ 0 and hence the practical inequality equation (8.31)
applies. This inequality states that also at random times on average the free energy of a system
cannot increase more than the average work done on it, in accordance with the classical result
equation (8.3).

8.2.5. Overcoming classical limits by stopping at a clever moment: 〈WT 〉 ≤ 〈�Geq(λT )〉
As discussed in Section 7.5, it is possible to (apparently) overcome classical limits by stop-
ping a process at a clever moment. We consider now this question from the perspective of a
nonstationary process, which is significantly more subtle than the stationary case.

It is the remainder term πT in the second law equation (8.30) that describes the possibility
to increase on average the free energy of a system more than the work put into it. To achieve
this, we need a large enough positive value of 〈πT 〉 as the dissipated work is lower bounded by
−T〈πT 〉, viz.,

〈WT 〉 − 〈�Geq(λT )〉 ≥ −T〈πT 〉. (8.35)

To have 〈WT 〉 small enough we need a large enough value of 〈πT 〉, which as discussed in the
previous section can be attained when P(T = 0) > 0.

We illustrate this in Figure 8.3 for the same model for X as considered in Figure 8.2, i.e., the
Langevin equation (8.4) with potential equation (8.32). A notable difference is that the stopping
event is defined by

T = min {s ≥ 0 : Xs ≤ �} (8.36)

so that P(T = 0) > 0. The numerical results in Figure 8.3 show that there exists a region at inter-
mediate protocol speeds τprot for which 〈WT 〉 < 〈�Geq(λT )〉, demonstrating that the classical
limit 〈Wt〉 > �Geq can be overcome by stopping a process at a cleverly chosen moment.
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Figure 8.3. Overcoming classical limits by stopping at a clever moment, viz. 〈WT 〉 ≤ 〈�Geq(λT )〉. The
model used in the one of Figure 8.1 and defined in Section 8.2.4. The parameters used in simulations
are � = 0.2, μ = 0.1, T = 10, κp = 1 κm = 2, λi = 1, λf = 5, and τ = 50. The stopping time used is
T = min{s ≥ 0 : Xs ≤ �}. The black solid line indicates zero and is a guide to the eye. Figures are taken
from [14].

8.3. Second law at stopping times and gambling demons

The objects of interest in this section will be the generalized stochastic entropic functional given
in Equation (8.1):

�̂s = ln

(
ρs(Xs)

ρ̃
(t)
t−s(Xs)

)
︸ ︷︷ ︸

δ
(t)
s

+Stot
s , (8.37)

where the first term is denoted as the stochastic distinguishability between conjugate times
in the forward and backward processes [15]; it is given in Equation (6.105), copied here for
convenience

δ(t)
s = ln

(
ρs(Xs)

ρ̃
(t)
t−s(Xs)

)
. (8.38)

We recall that here the stochastic total entropy production Stot
s is given in (6.31)–(6.33)

Stot
s = ln

[
P
(
X[0,s]

)
P̃ (s)

(
�s
(
X[0,t]

))] , (8.39)

and we will consider 0 ≤ s ≤ t throughout this section. Here, the path probabilities P and P̃ (t)

are defined as follows:

• Forward process is a nonequilibrium Markovian process with initial state drawn from ρ0(x)
and driven through a deterministic protocol λu to a final state with distribution ρt(x). In the
forward process, a given trajectory x[0,t] is produced with probability P(x[0,t]).
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Figure 8.4. Illustration of forward and backward processes used in Section 8.3, where a Brownian particle
immersed in a fluid is externally controlled with a feedback trap creating a time-dependent potential (black
line in the central column). In the forward (backward) process, the particle is initially drawn from the
distribution ρ0(x) (ρ(t)

0 (x)) and the potential evolves as in the central column from top to bottom (bottom

to top), reaching a final state characterized by the distribution ρt(x) (ρ(t)
t (x)). The green dots illustrate

histograms of the particle position taken during the evolution of the forward (left) and backward (right)
processes, revealing the time-reversal asymmetry in the statistics of X, i.e., in general ρs(x) �= ρ̃

(t)
t−s(x) for

s ∈ (0, t], see Equation (8.38). Figure adapted from [200] with permission.

• Auxiliary backward process starts from state drawn from the final distribution of the for-
ward process ρ̃

(t)
0 (x) = ρt(x). It is driven by a protocol that is the time-reversal mirror of

the forward protocol λ̃s = λt−s. In the backward auxiliary process, a given trajectory x[0,t]

is produced with probability P̃ (t)(x[0,t]). See Figure 8.4 for an illustration of forward and
backward processes.

In the following, we make use of the mathematical power of the martingales to extract knowl-
edge about entropy production at stopping times for Markovian processes that are in general
non-stationary. First, we report recent results (see Refs. [14,15]) that revealed the stochastic total
entropy production Stot

t is not an exponential martingale in generic non-stationary nonequilibrium
processes.

For generic non-stationary Markovian processes, the stochastic entropy produc-
tion Stot

t given in Equation (8.39) is not an exponential martingale, i.e., in gen-
eral 〈exp(−Stot

t ) |X[0,s]〉 �= exp(−Stot
s ). However, as we saw in two different ways – in

equation (6.104) in Section 6.2.2 and in relation (6.144) in Section 6.3.4 – it is possi-
ble to “martingalize” Stot

t in non-stationary nonequilibrium processes, i.e., find a process
related to Stot

t that is an exponential martingale. In particular, it follows that for generic
(even non-stationary) nonequilbrium processes, for 0 ≤ u ≤ s ≤ t, it holds that (6.129)

〈exp(−Stot
s − δ(t)

s ) |X[0,u]〉 = exp(−Stot
u − δ(t)

u ). (8.40)
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Note that δ
(t)
t = 0 for all t and that the superindex in δ(t)

s denotes the time with respect one
does the time-reversal operation, t. The stochastic distinguishability vanishes at all times
for (possibly nonequilibrium) stationary states – for which ρs and ρP̃ (t)

s are independent on
time s. For non-stationary processes, δ(t)

s fluctuates and can in principle take any value.

Applying Jensen’s inequality to the “martingale property” (8.40), we obtain that for any 0 ≤
s ≤ t we have the sub-Martingale relation

〈Stot
t + δ

(t)
t |X[0,s]〉 ≥ Stot

s + δ(t)
s . (8.41)

Specializing the “submartingale” condition (8.41) to s = 0, noting that Stot
0 = 0 = δ

(t)
t , and

averaging with respect to X0, we get the refined second law for non-stationary Markovian
processes (6.116)

〈Stot
t 〉 ≥ 〈δ(t)

0 〉, (8.42)

where (8.38)

〈δ(t)
0 〉 =

∫
X

dxρ0(x) ln

[
ρ0(x)

ρ̃
(t)
t (x)

]
≥ 0, (8.43)

is the Kullback–Leibler divergence between the distribution ρ0 and ρ̃
(t)
t . It is equal to zero for

t = 0 and it is positive otherwise. We will generalize this second law in Section 9.2.1 within the
context of deterministic refinements of the second law.

The fact that for any 0 ≤ s ≤ t, Stot
s + δ(t)

s is an exponential martingale has other important
consequences for stochastic thermodynamics, which can be found applying Doob’s optional stop-
ping theorems. Similarly to the integral fluctuation theorem (7.9) at stopping times for stationary
processes, 〈exp(−Stot

T )〉 = 1, for non-stationary processes one can show (see Section 6.2.2) that
an integral fluctuation theorem holds.

Integral fluctuation relation at stopping times for driven Markovian processes that
may not be stationary. For a stopping time T ≤ t,

〈exp(−(Stot
T + δ

(t)
T ))〉 = 1, (8.44)

see Equation (6.107) and mathematical derivation in Section 6.2.2. Note that here, it is
crucial to note that the quantity δ

(t)
T = ln(ρs(Xs)/ρ̃

(t)
t−s(Xs))|s=T results from evaluating the

instantaneous densities ρs(Xs) and ρ̃
(t)
t−s(Xs) at (stochastic) stopping times s = T that are

extracted from the forward process. For stationary processes δ
(t)
T = 0, and thus one recovers

〈exp(−Stot
T )〉 = 1, see Equation (7.9).

The fact that the stochastic distinguishability can in principle take any value at stopping
times has implications regarding the extension of the second law for Stot

t in generic Markovian
nonequilibrium processes, as we show below, in terms of the so-called second law at stopping
times.
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Second law at stopping times for driven Markovian processes that may not be station-
ary. Applying Jensen’s inequality to (8.44), we find that for any stopping time T ≤ t, one
has

〈Stot
T 〉 ≥ −〈δ(t)

T 〉, (8.45)

where

〈δ(t)
T 〉 =

∫ t

0
ds
∫
X

dx ρXT ,T (x, s) ln

[
ρs(x)

ρ̃
(t)
t−s(x)

]
. (8.46)

Here ρXT ,T is the joint probability density for the stopping time to take the value T = s
and for the system to be at state XT = x when the stopping condition happens. On the other
hand, the densities ρs(x) and ρ̃

(t)
t−s(x) denote the instantaneous density of the forward and

backward process evaluated at times s and t− s, respectively.

Note that, using Bayes’ formula, we have in Equation (8.46) that ρXT ,T (x, s) =
ρT (s)ρXT |T (x|s), however, in general ρXT |T (x|s) �= ρs(x). This highlights the fact that the right-
hand side of Equation (8.46) is not a Kullback–Leibler divergence, hence it is not obvious the
sign of the term 〈δ(t)

T 〉. In the following, we present a physical example of a system in which using
stopping strategies one can find negative average stochastic entropy production at stopping times,
i.e., 〈Stot

T 〉 < 0, a feature that is not forbidden by the second law at stopping times (8.45).

Experimental implementation with single electron transistors. We now discuss a recent appli-
cation of the second law at stopping times given in Equation (8.45) in the context of information
demons, see Ref. [15] for details. Maxwell’s demon thought experiment is considered the corner-
stone of information thermodynamics. Such a “demon” is able to, i.e., induce a net heat flow from
a cold to a hot reservoir by using information acquired from the bath molecules in a clever way.
In Maxwell’s original proposal, an external controller (“demon”) is allowed to open and close a
tiny gate separating two gas containers that are held at different temperatures. Such demon acts at
stochastic times, it opens the gate only when a particle get sufficiently close to the gate. Moreover,
it applies a feedback protocol, as it opens the gate only to particles coming from the cold bath
than are colder than the average, and to particles coming from the hot reservoir that are hotter
than the average. This way, the demon applies feedback control on the entire system by changing
the concentration of particles in each of the baths, which results in a net heat flow from the cold to
hot bath, in an apparent violation of the second law. Such conundrum have been thoroughly stud-
ied within the framework of information thermodynamics [201], which established the minimal
energetic costs and the entropy production associated with measurement and feedback, which led
to the derivation of second laws in the presence of information processing (Figure 8.5).

We now ask the question: what is the entropy production associated with a demon that is
only able to stop the dynamics of a physical process at stochastic times using suitable gambling
strategies? Such scenario may result from considering a Maxwell-like demon that is able to ter-
minate a process at a random time (open/close a gate) but does not apply feedback control after
taking such action. We exemplify this question on an experiment in which an isothermal system
at temperature T is driven out of equilibrium through a time-dependent protocol of a fixed finite
duration t. By varying this protocol, the potential of the system is switched from V0(x) to Vt(x).
When averaging over many repetitions of the same protocol, the second law of thermodynamics
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Figure 8.5. Experimental realization of a Gambling demon. (a) Sketch of the gambling demon and exper-
imental setup. An external controller (“demon”) monitors the fluctuations of a mesoscopic system that is
driven out of equilibrium by a deterministic protocol of a prefixed duration t. The demon gambles with the
information retrieved from the system, by stopping its evolution when a specific criterion is first met. In
this case, it stops the external driving if the work done on the system exceeds a threshold value (orange
line) or in the contrary at time t (blue line). As a result of this procedure, the demon expects to extract on
average more free energy (gold coins) than the work invested (silver coins), an outcome that is inacessible
without using gambling strategies (i.e., stopping the dynamics always at time t). Such idea was realized in
[15] with an electronic system in which individual electrons can tunnel (black arrows) into a metallic island
(red) whose voltage is controlled in time. (b) The experimental value of the detected state of the island (red
line) is digitized (black line) and used for gambling. The blue line shows the expected value of the state
of the electron averaged over many trajectories in the absence of gambling. (c) Experimental values of the
work done on the electron until the stopping event of the gambling protocol takes place in two example
trajectories that stop at T < t (orange) and at T = t. Figure adapted from Ref. [15].

implies that

〈Wt〉 − 〈�Gne
t 〉 ≥ 0, (8.47)

where �Gne
t = Gne

t − Gne
0 is the nonequilibrium free energy difference between the final and

initial states of the system.13

A relevant question in this context is the following. Can one find a suitable stopping strategy
– in particular a bounded stopping time T ≤ t – that results on an average work extracted that is
above the free energy difference 〈�Gne

T 〉 averaged over all stopped trajectories? Note that here,
〈�Gne

T 〉 = Gne
T − Gne

0 is calculated between the state at the stopping time and the initial state,
therefore it involves trajectories of stochastic duration [0, T ]. From the second law at stopping
times (8.45) and noting that [202] Stot

s = (Ws − �Gne
s )/T for isothermal systems, one has

〈WT 〉 − 〈�Gne
T 〉 ≥ −T〈δ(τ)

T 〉, (8.48)

where the stochastic distinguishability term 〈δ(t)
T 〉 is given as in Equation (8.46). Equation (8.48)

opens the possibility for average work extraction beyond the nonequilibrium free energy change
using stopping times.

In Ref. [15], a gambling demon was proposed theoretically and realized with a single-electron
transistor (SET) experimental setup. Briefly, the dynamics of an electron hopping in an out of
metallic island was tracked in time. The energy of the island was externally controlled through a
deterministic protocol that was repeated many times to extract sufficient statistics. The stochastic
dynamics of the electron resembles that of a two level system with states 0 and 1 and time-
dependent transition rates. Under the assumption of local detailed balance, the transition rates
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between the two states obey

ω(0, 1)/ω(1, 0) = exp(−�V/T) (8.49)

where �V is the energy difference between the two levels at time s ∈ [0, t]. A useful choice of
gambling strategy is given by the family of stopping times

T = min(Twth, t), (8.50)

where Twth is the first passage time of the work done on the system to reach a predefined threshold
value Wth ≥ 0. For the two-level model system considered here, the work done up to time s ≤ t
reads

Ws = Vs(Xs) − V0(X0) −
Ns∑

j=1

[
VTj(XT +

j
) − VTj(XT −

j
)
]

, (8.51)

which follows from Equation (5.81). We recall here that the second term in (8.51) is the heat
absorbed by the system, which involves the energy change of the system at the j-th jump between
states XT −

j
→ XT +

j
, and that Nt is the total number of jumps in the trajectory X[0,t]. We recognize

in the right-hand side of (8.51) the first term as the energy change and the second term as the heat
absorbed by the system up to time t. Note also that here Xt ∈ {0, 1} for all t and time is assumed
to be continuous. The gambling strategy resulting from executing the stopping condition (8.50) is
such that it satisfies T ≤ t, as required by the second law at stopping times (8.48). It is important
to remark that other strategies involving stopping times would also satisfy the same constraint.
The strategy defined in (8.50) is such that the work at the end of the gambling protocol WT is a
random variable which takes the value

WT =
{

Wth if T < t,

Wt ≤ Wth if T = t.
(8.52)

Because Wt is a random variable, WT is also a random variable whose distribution depends
crucially on the threshold value Wth.

Experimental results in Ref. [15] explored the fluctuations of WT , with T defined in
Equation (8.50), for different values of the work threshold Wth, see Figure 8.6.

Figure 8.6(a) shows that the fluctuations of the work done up to the stopping time T defined
in Equation (8.50) does not satisfy Jarzynski’s equality, i.e.,

〈exp(−(WT − �Gne
T )/T)〉 �= 1. (8.53)

Notably, one recovers 〈exp(−(WT − �Gne
T )/T)〉 = 1 for the case of Wth large, which corre-

sponds to the case in which no gambling is executed at all, and all trajectories have the same
duration T = t, as in Jarzynski’s setup. The experimental results are however in excellent agree-
ment, see Figure 8.6(a), for all threshold values Wth with the integral fluctuation relation at
stopping times

〈exp(−(WT − �Gne
T )/T) exp(−δ

(t)
T )〉 = 1, (8.54)

which is a special case of Equation (8.44) for isothermal systems. Consistent with
Equation (8.54), the average work done on the system by gambling along trajectories of
stochastic duration T obeys the second law at stopping times 〈WT 〉 − 〈�Gne

T 〉 ≥ −T〈δ(t)
T 〉, see
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Figure 8.6. Experimental verification of the integral fluctuation theorem at stopping times (8.54) (left) and
of the second law at stopping time (8.48) (right) for the gambling demon setup: experimental values (circles)
and theoretical predictions (lines). In both panels, we plot the results obtained as a function of the work
threshold value Wth used in the stopping rule given in Equation (8.50). Here Ec = 109μeV is the charging
energy of the island. For large threshold values, Jarzynski’s equality (top) and the standard second law
(bottom) are recovered, as expected. See Ref. [15] for details.

Equation (8.48) which follows from applying Jensen’s inequality to (8.54). For the experimental
conditions used in [15], the term 〈δ(t)

T 〉 was positive for all the choices of the work threshold Wth,
see Figure 8.6(b) (red circles). Moreover, the second law at stopping times (8.48) provides a tight
bound in this system, which leads to values of work extraction at stopping times beyond the free
energy change along the stopped trajectories, i.e., 〈WT 〉 ≤ 〈�Gne

T 〉, a result that is forbidden by
the standard second law, i.e., without using gambling or feedback control. Moreover as it was
shown in [15] that the extent at which the “traditional” second law is violated, measured by how
negative can 〈WT 〉 − 〈�Gne

T 〉 be, depends on the degree of time-asymmetry induced by the exter-
nal protocol, which can be rationalized as follows. When the system is driven slowly (fast), the
statistics of the forward and backward protocols are similar (fast) at stopping times, which makes
the stochastic distinguishability term to be small (large).

Chapter 9. Martingales in stochastic thermodynamics V: the “tree” of second laws

Hänggi’s Law: The more trivial your research, the more people will read it and agree. You write
a nontrivial paper and you likely will be the only one who will remember it.

Arthur Bloch, Murphy’s Law: Book three (1985).

This chapter provides different formulations of the second law of thermodynamics descend-
ing from the martingale properties unveiled in Chapter 6. As fruits of the martingale theory
of stochastic thermodynamics, we derive a plethora of second-law-like inequalities from the
submartingale conditions of Chapter 6, from which the second laws Equations (7.10), (8.20)
and (8.41) from Chapters 7 and 8 are specific examples.

The “classical” second law of thermodynamics that appears in stochastic thermodynamics
takes the form

〈Z(X[0,t])〉 ≥ 0, (9.1)



Advances in Physics 183

Figure 9.1. A “tree” of second laws emerge with its root at the martingale property of the entropic function-
als introduced in Sections 6.1,6.2, and 6.3. The second laws are arranged in a hierarchical structure with the
arrows denoting which laws follow as specific examples of more general results. The different acronyms
stand for different formulations of the second law introduced below. See Section 9.1 for the definitions of
the conditional strong second laws (CSSL). See Section 9.2 for the definitions of the conditional second
laws (CSL). See Section 9.3 for strong second laws (SSL). See Section 9.4 for second laws (SL).

where Z is a functional evaluated over stochastic trajectories X[0,t]. Instead, martingale theory
provides second laws involving conditional expectations

〈Z(X[r,u]) |X[s,t]〉 ≥ Z(X[s,t]), (9.2)

for all 0 ≤ r ≤ s ≤ t ≤ u. Hence, with martingale theory we can address how knowledge about a
system’s trajectory affects the second law of thermodynamics.

Figure 9.1 illustrates the “tree”-like hierarchy of the different formulations of the Second
Law of Thermodynamics that we derive from the martingales of Sections 6.2–6.3. The different
formulations of the second law depend on the amount of knowledge we have available about a
system’s trajectory. The versions of the second law of thermodynamics that appear at the bot-
tom of the tree assume that the observer has detailed knowledge available about the system’s
trajectory, while the observer’s knowledge decreases when ascending the tree leading to weaker
version of the second law of thermodynamics.

In this chapter, we assume for simplicity that Xt is a Markov process in discrete or continuous
time, even though most of the results can also be formulated for generic stochastic processes.



184 É. Roldán et al.

9.1. Conditional strong second laws (CSSL)

The martingale properties for entropic functionals discussed in Chapter 6 can be interpreted as
conditional strong second laws, which constrain the average of entropic functionals in a future
time t conditioned on the fact that the system traces a specific trajectory X[0,s] up to a previous
time t ≤ s.

9.1.1. Conditional strong second law for �-stochastic entropic functionals (CSSL-�)

The submartingale condition (6.77) for �-stochastic entropic functionals states that〈
�

P ,Q
t

∣∣∣X[0,s]

〉
≥ �P ,Q

s , (9.3)

for all 0 ≤ s ≤ t. In other words, it is not possible to anticipate a decrease in �P ,Q
s based on

knowledge of the past trajectory X[0,s]. A physical example of a conditional strong second law is

〈Shk
t |X[0,s]〉 ≥ Shk

s , (9.4)

where Shk
t is the housekeeping entropy production, as defined in Equation (6.68).

9.1.2. Conditional strong second law for �-stochastic entropic functionals when Q = Qst

(CSSL-�st)

As we have discussed in Chapter 6.2, �-stochastic entropic functionals are in general not sub-
martingales, unless the reference path probability Q is time independent, stationary, and time
homogeneous, i.e., Q = Qst. In this case, the the submartingale condition (6.97) reads〈

�
P ,Qst

t

∣∣∣X[0,s]

〉
≥ �P ,Qst

s . (9.5)

for all 0 ≤ s ≤ t, which means that it is not possible to anticipate a decrease in �
P ,Qst

t based on
the knowledge of the past trajectory X[0,s]. If moreover P (or Xt) is a stationary Markov process,

i.e., P = P st, and it holds that �
P st,P st

t = Stot
t , with Stot

t the total entropy production given in
Equation (6.33), then the conditional strong second law equation (9.5) for Stot

t reads〈
Stot

t

∣∣X[0,s]
〉 ≥ Stot

s . (9.6)

Note that (9.6) is Equation (7.10) in Chapter 7.
On the other hand, if P (or Xt) is nonstationary, then the total entropic functional �tot

t and the
total stochastic entropy production Stot

t do not satisfy conditional strong second laws. The same
reasoning applies to the excess stochastic entropy production Sex

t given in Equation (6.64).

9.1.3. Conditional strong second law for the generalized �-stochastic entropic functional
(CSSL-�g)

Generalized �-stochastic entropic functionals �
P ,Q
[r,s],t with [r, s] ⊆ [0, t] are forward submartin-

gales with respect to s when r and t are fixed (see Equation (6.122)) and backward submartingales
with respect to r when s and t are fixed (see Equation (6.130)). We unify these two statements by
formulating a conditional strong second law.
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The generalized �-stochastic entropic functional �
P ,Q
[r,s],t with [r, s] ⊆ [0, t], as defined

in Equation (6.108), obeys the following conditional strong second law (CSSL-�g):〈
�

P ,Q
[r′,s′],t

∣∣∣X[r,s]

〉
≥ �

P ,Q
[r,s],t, (9.7)

for all 0 ≤ r′ ≤ r ≤ s ≤ s′ ≤ t. In words, �
P ,Q
[r,s],t conditionally increases with respect to the

final time s and conditionally decreases with respect to the initial time r.

The CSSL-�g given in Equation (9.7) implies all the conditional strong second laws presented
in Section 9.1.2 and is the root of many of the most well-known formulations of the second law
of thermodynamics, see Figure 1.4; for example, it implies the second laws equations (8.20)
and (8.41).

The conditional strong second law (9.7) together with the relation (6.139) proved in Chapter 6
gives for arbitrary Markovian process the following relation. For all 0 ≤ r′ ≤ r ≤ s ≤ s′ ≤ t, it
holds that 〈(

ln

(
ρr′ (Xr′)

ρQ(t)

t−s′ (Xs′)

)
+ Senv,P ,Q̂(t,s′)

s′ − Senv,P ,Q̂(t,r′)
r′

)∣∣∣∣∣X[r,s]

〉

≥ ln

(
ρr (Xr)

ρQ(t)

t−s (Xs)

)
+ Senv,P ,Q̂(t,s)

s − Senv,P ,Q̂(t,r)

r , (9.8)

in terms of the environmental Q̂-stochastic entropy change (6.27). Here Q̂(t,.) is the path prob-
ability of a Markovian process with generator given in (6.134). In the same way, with the
relation (6.140) proved in Chapter 6, we obtain for arbitrarily Markovian process the conditional
strong second law for all 0 ≤ r′ ≤ r ≤ s ≤ s′ ≤ t〈(

ln

(
ρs′ (Xs′)

ρQ(t)

t−s′ (Xs′)

)
+ SP ,Q̂(t,s′)

s′ − SP ,Q̂(t,r′)
r′

)∣∣∣∣∣X[r,s]

〉
≥

ln

(
ρs (Xs)

ρQ(t)

t−s (Xs)

)
+ SP ,Q̂(t,s)

s − SP ,Q̂(t,r)

r , (9.9)

in term of the Q̂-stochastic entropy production.

As a special case of (9.8), the relation (6.141) of Chapter 6 allows to derive the
following conditional strong second law for all 0 ≤ r′ ≤ r ≤ s ≤ s′ ≤ t :〈

ln

(
ρr′ (Xr′)

ρ̃
(t)
t−s′ (Xs′)

)
︸ ︷︷ ︸

α
(t)
r′,s′

+ Senv
s′ − Senv

r′
∣∣X[r,s]

〉
≥ ln

(
ρr (Xr)

ρ̃
(t)
t−s (Xs)

)
︸ ︷︷ ︸

α(t)
r,s

+Senv
s − Senv

r , (9.10)

which generalizes Equation (8.20) and where Senv
s is the environment entropy change

defined in Equation (6.32). Furthermore, using the decomposition (6.33) of total entropy
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production, we obtain the following conditional strong second law for generic Markovian
process and for all 0 ≤ r′ ≤ r ≤ s ≤ s′ ≤ t:〈

ln
ρs′(Xs′)

ρ̃
(t)
t−s′(Xs′)︸ ︷︷ ︸
δ

(t)
s′

+ Stot
s′ − Stot

r′
∣∣X[r,s]

〉
≥ ln

(
ρs(Xs)

ρ̃
(t)
t−s(Xs)

)
︸ ︷︷ ︸

δ(t)
s

+Stot
s − Stot

r , (9.11)

which generalizes Equation (8.41). This relation extends the conditional strong second
law (9.6) to the nonstationary setup.

9.1.4. Conditional version of the historical second law (CSSL-H) for Markovian processes

From the CSSL-�g given in Equation (9.7), it is possible to derive many well-known formula-
tions of the second law of thermodynamics.

Let us consider the following �-stochastic entropic functional that only depends on the state
Xr at the initial time r of the interval of interest [r, s], viz.,

�
P ,Ph,(t)

[r,s],t = ln

(
ρr

ρ ′
r

(Xr)

)
. (9.12)

Here, ρ ′
r represents the instantaneous density of a Markov process that has the same generator

L as the process Xt, but with an initial density ρ ′
0 that may be different from ρ0, the probability

density of X0 under its native measure P .
The path probability Q = Ph,(t) that determines the generalized �-stochastic entropic func-

tional in Equation (9.12) has a similar structure to the excess path probability Pex,(t), as defined
in Section 6.1.6. In particular, Ph,(t) is the path probability of a process with initial density
ρPh,(t)

0 = ρ ′
t and with a Markovian generator that is given by the generalized Doob’s h-transform

Lh,(t)
s ≡ (ρ ′

t−s

)−1 ◦ L†
t−s ◦ ρ ′

t−s −
(
ρ ′

t−s

)−1
(
L†

t−sρ
′
t−s

)
, (9.13)

which holds for s ≤ t, and ◦ denotes here the composition operator. See Ref. [82] for addi-
tional information about continuous-time Doob’s h-transform. Note that, if we replace in
Equation (9.13) the density ρ ′

t by the accompanying density πt, as defined in Equation (6.66),
then we get the Markovian generator associated with the “excess” dynamics Pex,(t), see
Equation (6.65). 14

Specializing the backward submartingale relation (9.7) to the choice (9.12) yields the
following conditional version of the “historical” second law (CSSL-H), viz.,〈

ln

(
ρr (Xr)

ρ ′
r (Xr)

)∣∣∣∣X[s,t]

〉
≥ ln

(
ρs (Xs)

ρ ′
s (Xs)

)
(9.14)

for all 0 ≤ r ≤ s ≤ t. Because r ≤ s, Equation (9.14) implies that ln ρr(Xr)

ρ ′
r(Xr)

is conditionally
increasing in the reverse flow of time.
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Now, we consider two examples for which the conditional version of the historical strong
second law CSSL-H is particularly beautiful.

• “Canonical” setup: Let us consider Xt, a process which starts from an arbitrary ini-
tial distribution ρ0(X0) and has a stationary density given by the Gibbs canonical
distribution ρst(x) = exp(−(H(x) − Geq)/T), with the equilibrium free energy Geq =∫
X dx exp(−H(x)/T). Such dynamics, starting from a non-Gibbsian initial distribution, is

sometimes called a relaxation process. This is the case for example of isothermal Langevin
processes [Langevin equation (3.65) with Einstein relation (3.69)] with time-independent
potential and no external forces. For such relaxation dynamics, we have

ln

(
ρt(Xt)

ρst(Xt)

)
= ln (ρt(Xt)) + H(Xt) − Geq

T
, (9.15)

where in the right-hand side, we recognize the nonequilibrium free energy which is
defined as

Gne
t = H(Xt) + T ln (ρt(Xt)) , (9.16)

which is a fluctuating quantity whose ensemble average is given by [201–203]〈
Gne

t

〉 = 〈H(Xt)〉 + T〈ln ρt(Xt)〉 = 〈H(Xt)〉 − T〈Ssys
t 〉. (9.17)

For the choice ρ ′
t = ρst, the CSSL-H (9.14) with Equation (9.15) and using the

definition (9.16), we derive a universal constraint for the expected value of the nonequilib-
rium free energy for such relaxation processes.

Let Xt represent a process that relaxes under isothermal conditions to the sta-
tionary Gibbs canonical density ρst(x) = exp(−(H(x) − Geq)/T), starting from an
arbitrary initial state ρ0(X0). In this case, the CSSL-H, given in Equation (9.14),
implies that 〈

Gne
r

∣∣X[s,t]
〉 ≥ Gne

s , (9.18)

for all 0 ≤ r ≤ s ≤ t. Hence, the nonequilibrium free energy, given in
Equation (9.16), of a relaxation processes under isothermal conditions is a backward
submartingale.

• “Microcanonical” setup: Let us consider Xt, a process which has a homogeneous stationary
density ρst (i.e., a driven Langevin process on a ring with constant force considered in
Section 1.6), the CSSL-H given in Equation (9.14) for the choice ρ ′

t = ρst gives that for all
0 ≤ r ≤ s ≤ t, one has 〈

ln (ρr (Xr))|X[s,t]
〉 ≥ ln (ρs (Xs)) . (9.19)

The above equation can be formulated in terms of a constraint for the nonequilibrium
system entropy Ssys

t = − ln ρt(Xt), see Equation (5.14), as follows.
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For relaxation processes towards a homogeneous stationary state, the system
entropy is a backward supermartingale, i.e.,〈

Ssys
r

∣∣X[s,t]
〉 ≤ Ssys

s , (9.20)

for all 0 ≤ r ≤ s ≤ t. Hence, in a “microcanonical” setup, the system entropy
conditionally decreases in the reverse flow of time.

Note that there exist two types of second laws, those that consider the expected value of an
observable in the future given its past history, and those that consider the expected value of an
observable in the past given its current history. For example, the stochastic entropy production in
a stationary process is a submartingale in the forward dynamics, implying we cannot anticipate
a decrease of entropy in the universe based on knowledge of the past’s history of a system.
On the other hand, the nonequilibrium free energy in a relaxation process is a submartingale
in the backward dynamics, implying that we expect free energy to have decreased in the past,
irrespective of our knowledge of the system’s trajectory. Both laws imply that knowledge of
a system’s trajectory does not affect the second law, irrespective whether we look forwards or
backwards in time.

9.2. One-time conditional second laws (CSL)

In Section 9.1, we have introduced second-law-like inequalities for ensembles of trajectories
satisfying constraints that involve their values over a finite time window. Such conditional strong
second laws can be simplified when considering ensembles of trajectories X[0,t] for which their
value at a given time, i.e., Xs for s ≤ t is constrained. We call these relations one-time conditional
second laws, which we abbreviate as CSL.

9.2.1. One-time conditional second law for �-stochastic entropic functionals (CSL-�) and
�-stochastic entropic functionals (CSL-�)

From the definition of generalized �-stochastic entropic functional over the subset interval
[r, s] ⊆ [0, t], see Equation (6.108), we find

�
P ,Q
[0,t],t = �

P ,Q
t , �

P ,Q
[s,s],t = ln

(
ρs

ρQ
t−s

(Xs)

)
. (9.21)

Then, the Conditional Strong Second Law for generalized �-stochastic entropic functionals,
i.e., the CSSL-�g given in Equation (9.7), implies a one-time Conditional Second Law for
the �-stochastic entropic functional (CSL-�), viz., for 0 ≤ s ≤ t and for an arbitrary auxiliary
process Q,

〈�P ,Q
t |Xs〉 ≥ ln

[
ρs(Xs)

ρQ
t−s(Xs)

]
. (9.22)

Note that this result follows also from the choice Z(X[0,t]) = δ(Xs − x) in the mother fluctua-
tion relation (6.19) and applying Jensen’s inequality. We also note that the right-hand side of
Equation (9.22) can be negative. Similarly, one can also prove an analogous result, the one-time
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conditional second law for �-stochastic entropic functionals (CSL-�):

〈�P ,Q
t |Xs〉 ≥ ln

[
ρs(Xs)

ρQ
s (Xs)

]
, (9.23)

which holds for any 0 ≤ s ≤ t, and an arbitrary Q. Averaging Equations (9.22) and (9.25) over
all possible values of Xs, we obtain for any 0 ≤ s ≤ t the deterministic refinements of the second
laws

〈�P,Q
t 〉 ≥ D

[
ρs(x)||ρQ

t−s(x)
]

(9.24)

and

〈�P,Q
t 〉 ≥ D

[
ρs(x)||ρQ

s (x)
]

. (9.25)

Notably, Equation (9.24) extends the Kawai–Parrondo–Van Den Broeck relation derived in
Ref. [204] to arbitrary nonequilibrium Markovian processes.

9.2.2. One-time conditional second law for isothermal Markovian systems

For Xt an overdamped Markovian nonequilibrium process in isothermal conditions, we showed
in Section 6.1.5.2 that the total �-stochastic entropic functional can be written in terms of the
fluctuating work and the equilibrium free energy change, as �tot

t = [Wt − (Geq
t − Geq

0 )]/T , see
Equation (6.51). This result holds for driven isothermal systems initially in thermal equilibrium,
i.e., ρ0(x) = exp(−(H0(x) − Geq

0 )/T). As we showed in Section 6.1.5.3, to obtain this simple
relation between �tot

t and Wt one needs to choose as auxiliary process that with initial density
ρQ

0 (x) = exp(−(Ht(x) − Geq
t )/T) with the “naive” time reversal of the Markov generator of the

original process LQ
s = Lt−s (s ≤ t). Applying the results from Section 9.2.1 to the functional

�tot
t = [Wt − (Geq

t − Geq
0 )]/T has important physical consequences that we explain below.

(1) First, specializing Equation (9.24) to the choice �tot
t = [Wt − (Geq

t − Geq
0 )]/T and setting

s = t, one gets a refined second law for the fluctuating work exerted on an isothermal
system,

〈Wt〉 ≥ Geq
t − Geq

0 + TDKL

[
ρt(x) || exp

(
−Ht(x) − Geq

t

T

)]
= 〈Gne

t

〉− 〈Gne
0

〉
. (9.26)

The second equality in (9.26) follows from the definition (9.17) for the average nonequi-
librium free energy 〈Gne

t 〉 = 〈Ht(Xt)〉 + T〈ln ρt(Xt)〉 and the fact that 〈Gne
0 〉 = Geq

0 since
the system is initially in thermal equilibrium. This refinement of the second law was
derived in [172], see also [201].

(2) Second, specializing Equation (9.22) to the choice �tot
t = [Wt − (Geq

t − Geq
0 )]/T , and

setting s = t equal to the final time, one retrieves the conditioned second law

〈Wt|Xt 〉 + Geq
0 ≥ T ln (ρt (Xt)) + Ht (Xt) . (9.27)

Then, using Bayes’ theorem in (9.27) we obtain for any subset � ⊆ X of the phase
space X ,

〈Wt|Xt ∈ �〉 + Geq
0 ≥ T

∫
�

dxρt (x) ln (ρt(x))∫
�

dxρt (x)
+
∫
�

dxρt (x) Ht(x)∫
�

dxρt (x)

= T

∫
�

dxρt (x) ln
(

ρt(x)
exp (−Ht(x)/T)

)
∫
�

dxρt (x)
. (9.28)
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Equation (9.28) suggests introducing the conformational free energy [205]

G�
t = −T ln

(∫
�

dx exp

(
−Ht(x)

T

))
, (9.29)

which is in general different to the equilibrium free energy Geq
t in which the integral is

done over X , see Equation (6.48).

Equation (9.28) can be understood as a conditional second law for the fluc-
tuating work exerted along an arbitrary nonequilibrium process in isothermal
conditions:

〈Wt|Xt ∈ �〉 ≥ G�
t − Geq

0 + T ln

(∫
�

dx ρt (x)

)
. (9.30)

Analogously, plugging relation �tot
t = [Wt − (Geq

t − Geq
0 )]/T in Equation (9.22)

but this time for s = 0, we get after some analogue algebra the initial time
Condition Second Law for the fluctuating work exerted on an isothermal system

〈Wt |X0 ∈ �〉 ≥ (Geq
t − G�

0 ) − T ln

(∫
�

dx ρQ
t (x)

)
. (9.31)

Note that, because
∫
�

dxρt(x) ≤ ∫X dxρt(x) = 1, then the last term in Equation (9.30)
is negative, which implies that the average work done over trajectories that belong to the
subset Xt ∈ � can be below the conformational free energy change.

Proof of Equation (9.30): We have from the relation (9.28) that

〈Wt|Xt ∈ �〉 + Geq
0 − G�

t ≥ T
∫

�

dxρt,� (x) ln

⎛⎝ρt,�(x)
∫
�

dyρt (y)

exp
(
−Ht(x)−G�

t
T

)
⎞⎠ , (9.32)

where

ρt,�(x) = ρt (x) 1�(x)∫
�

dxρt (x)
, (9.33)

is the normalized density over the subset �. Equation (9.32) can also be written as
follows:

〈Wt|Xt ∈ �〉 + Geq
0 − G�

t ≥T
∫

�

dxρt,� (x) ln

⎛⎝ ρt,�(x)

exp
(
−Ht(x)−G�

t
T

)
⎞⎠+T ln

(∫
�

dyρt (y)

)

≥ T ln

(∫
�

dxρt (x)

)
, (9.34)

where in the second line we have used the fact that the first term in the right-hand side of
the first line is positive because it is a Kullback–Leibler divergence. This concludes the
proof of conditional second law for the fluctuating work (9.30).
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Note that Equations (9.30) and (9.31) were previously derived, respectively, in the
context of the energetics of symmetry breaking and symmetry restoration in Ref. [206].
They provide the generalization of Landauer’s principle and a rationale for the ener-
getics of Szilard’s engine. These relations, and related generalizations, have also been
derived in Refs. [207–209], and fruitfully applied to uncover thermodynamic properties
of biopolymers in single-molecule experiments.

9.3. Strong second laws (SSL)

The conditional strong second laws presented in Section 9.1 have as interesting colloraries the,
so-called, strong second laws, which involve the rate of change of the average of �-stochastic,
�-stochastic, and generalized �-stochastic entropic functionals. Moreover, it is also possible to
recover a “historical” formulation of the second law, which we discuss below in Section 9.3.3.

9.3.1. Strong second law for �-stochastic (SSL-�) and �-stochastic (SSL-�st) entropic
functionals of stationary auxiliary process Q = Qst

The conditional strong second law for entropic functionals CSSL-�, given in Equation (9.3),
implies that the average of a �-stochastic entropic functional increases with time, i.e.,

d

dt

〈
�

P ,Q
t

〉
≥ 0, (9.35)

for all t ≥ 0. This motivates us to call �
P ,Q
t a Lyapunov function [96], as it is, on average, an

increasing function of time. An example of the strong second law (9.35) is when �
P ,Q
t is the

housekeeping entropy production, see Equation (6.86).
Similarly, the CSSL-�st for �-stochastic entropic functionals with stationary auxiliary

reference process implies a strong second law (SSL-�st), i.e.,

d

dt

〈
�

P ,Qst
t

〉
≥ 0, (9.36)

for all t ≥ 0. Equation (9.35) implies that functionals of the form �
P ,Qst
t increase on average

in time. We note, however, that this result does not imply the concavity in time, sometimes
postulated for entropy production in classical thermodynamics [167].

We provide some remarks concerning the SSL-� (9.35) and the SSL-�st (9.36).

(1) Analogously as what we have discussed in Section 9.1.2 for the CSSL-�st, if the pro-
cess Xt is not stationary, then the total entropic functional �tot

t and the stochastic entropy
production Stot

t do not necessarily obey strong second laws. Analogously, the excess
stochastic entropy production Sex

t , given in Equation (6.64), does not satisfy, in general, a
strong second law.

(2) If the process Xt is stationary, i.e., P = Pst, then the total �-stochastic entropic func-
tional �tot

t defined in (6.31) fulfills a strong second law. This includes the case of the
total stochastic entropy production Stot

t (6.33). Lastly, for Xt an overdamped isothermal
stationary process, the associated second law (9.35) is the second law for fluctuating work
exerted on isothermal system, viz., d〈Wt〉/dt ≥ 0.

9.3.2. Strong second laws for generalized �-stochastic entropic functionals (SSL-�g)

Strong second laws also hold for the generalized �-stochastic entropic functionals in the subset
interval [r, s] ⊆ [0, t], for which we have shown that they fulfill two conditional strong second
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laws, one forward and another backwards in time, see Equation (9.7). This allows us to derive
two strong second laws, one with respect to a decreasing initial observation time r, and another
one with respect to an increasing final observation timed s. Indeed, averaging the CSSL-�g rela-
tion (9.7) implies the following strong second laws for the generalized �-stochastic entropic
functional (SSL-�g):

∂

∂s

〈
�

P ,Q
[r,s],t

〉
≥ 0 (9.37)

and

∂

∂r

〈
�

P ,Q
[r,s],t

〉
≤ 0, (9.38)

where 0 ≤ r ≤ s ≤ t. This result implies that �
P ,Q
[r,s],t is increasing with time s and decreasing

with time r. Note that the SSL-�g does not imply that ∂
∂t 〈�P ,Q

t 〉 ≥ 0; in general, the average

�-stochastic entropic functional, given by 〈�P ,Q
t 〉 = 〈�P ,Q

[0,t],t〉, does not increase monotonically
a function of t,15 as setting s = t in the relation (9.38) after taking the derivative ∂/∂s is different
from setting s = t before taking the derivative with respect to s.

9.3.3. Historical strong second law (SSL-H) for Markovian processes

Below, we derive the “historical” formulation of the strong second law as a direct consequence
from the CSSL-�g. This is an important point, as it reinforces the physical interest in the
conditional strong second law.

Averaging the Conditional version of the Historical Strong Second Law (9.14) over
X[s,t] (recall that X[s,t] is random in (9.14)), one retrieves the “historical” formulation of the
second law (SSL-H) which is formulated as follows. Let ρt(x) be the instantaneous density
at time t of a generic stochastic process, and ρ ′

t(x) the density at the same time of a process
which has the same dynamics but an arbitrary initial density ρ ′

0 that may be different from
the actual initial density of the process ρ0. For all t ≥ 0, it follows that

d

dt
DKL

[
ρt(x)‖ ρ ′

t(x)
] ≤ 0, (9.39)

with equality for the special case ρ ′
0(x) = ρ0(x) which implies that ρt(x) = ρ ′

t(x) for
all t. Equation (9.39) is considered by many authors “the” historical second law asso-
ciated to a Markovian process in many place in the literature, see the books and
reviews [4,73,142,158] and also and the classic article [210].

We now provide some additional remarks about the SSL-H (9.39).

(1) Let us consider the “microcanonical” relaxation setup introduced in Section 9.1.4, i.e.,
a system with arbitrary initial distribution that relaxes towards a homogeneous station-
ary distribution ρst. Averaging the CSSL-H (9.20) over X[s,t], we obtain that the system
entropy increases with time on average d〈Ssys

t 〉/dt ≥ 0.
(2) Following an analogous procedure for the case of “canonical” relaxations (i.e., a system

such that its stationary density ρst exist and is the Gibbs canonical density) introduced in
Section 9.1.4, we obtain d〈Gne

t 〉/dt ≤ 0.
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9.4. Second laws for entropic functionals (SL)

To finalize our journey through the tree of second laws, Figure 9.1, we quote here second laws
that follow readily as corollaries from the strong second laws presented in Section 9.3.

9.4.1. Second law for �-stochastic entropic functionals (SL-�) and for �-stochastic entropic
functionals (SL-�)

From the definitions of the �-stochastic and �-stochastic entropic functionals, we have shown
in Equation (6.17) that

〈�P ,Q
t 〉 ≥ 0, and 〈�P ,Q

t 〉 ≥ 0, (9.40)

for all t ≥ 0, which we refer to as the second law for �-stochastic entropic functionals (SL-�)
and the second law for �-stochastic entropic functionals (SL-�), respectively.

Consequently, the SL-� holds for all the examples of �-stochastic entropic functionals intro-
duced in Chapter 6, inter alia, �tot

t , Stot
t , and Sex

t , and analogously, the SL-� holds for all examples
of �-stochastic entropic functionals considered, such as Shk

t .

9.4.2. Second law for generalized �-stochastic entropic functionals (SL-�g)

We derive a second law for generalized �-stochastic entropic functionals from the strong second
law equation (9.38).

The definition of �
P ,Q
[r,s] , given in Equation (6.108), specialized to s = r, yields

�
P ,Q
[r,r],t = ln

(
ρr

ρQ
t−r

(Xs)

)
, (9.41)

for all 0 ≤ r ≤ t. Using Equation (9.41) in the SSL-�g (9.38), we find that

〈
�

P ,Q
[r,s],t

〉
≥ DKL

[
ρr(x)‖ ρQ

t−r(x)
]

, (9.42)

for all 0 ≤ r ≤ s ≤ t. As the Kullback–Leibler divergence is nonnegative, the second law〈
�

P ,Q
[r,s],t

〉
≥ 0, (9.43)

for all 0 ≤ r ≤ s ≤ t, ensues. The second law equation (9.43) holds for generalized �-stochastic
entropic functionals (SL-�), as given in Equation (6.116). The (8.42) is a specific example of the
second law equation (9.43).

This concludes our almanac of second laws derived from the martingale properties of entropic
functionals.

Chapter 10. Martingales in progressive quenching

We are from the very beginning illogical and thus unjust beings and can recognize this.
F. Nietzsche, from “Human, All Too Human”.
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In this chapter, we meet with the martingale in physics in a different route from the path-
probability ratio, which has been discussed in the previous two chapters. We mostly use a
discrete-“time” variable. We hope this chapter may provide with a new look at the martingale
process in physics and inspire the readers to explore its consequence in their domain of research.

10.1. Introduction

The conservation laws in physics are in many cases related to some form of invariance under
symmetry operations. When a system has such a symmetry, the consequent conservation law
imposes an ever-lasting memory of the initial condition. The martingale property is a kind of
stochastic conservation property. Unlike the sub- or super-martingale, the expectation of a ran-
dom variable is kept constant once its value is observed at some point of time. Then the natural
questions might be : (i) What form of memory is brought by the martingale property? and (ii) Is
there any invariance behind its martingale property? Below we will give, through the study of the
concrete model which we call Progressive Quenching (PQ), answers to these questions.

As a part of this review on the martingale in physics, this chapter brings two ingredients that
might be of general interest for those who are entering this domain. First we take the route to
the martingale through the so-called tower rule (or tower property) (see Equation 2.3), which
is a route distinct from the path-probability ratio mainly discussed in the precedent chapters.
Second we show the case in which the martingale is found in the mean drift of the stochastic
evolution of the principal process of interest. In the language of stochastic differential equations,
Ẋt = Gt(Xt) +

√
2DḂt, it is Gt(Xt) that is martingale. For such case, we coin a word hidden

martingale relative to the process Xt.
Below we will show that the martingale can be used for the inference of the past state and,

moreover, for the prediction of the future probability distribution, beyond just some conditional
expectations. In Section 10.2, we introduce the notion of PQ process. Then in Section 10.3, we
introduce the model we focus on, which is of discrete states and discrete time. We show the
presence of martingale process behind the main stochastic process. In Section 10.4, we describe
the consequences of the hidden martingale process, concerning the inference and the prediction.
We conclude this chapter in Section 10.5.

10.2. Progressive quenching as a neutral operation

We sometimes encounter the situations in which system’s degrees of freedom become progres-
sively fixed. When a molten material as a fluid system is pulled out as a string from a furnace
and is quickly cooled down [211], the fluid degrees of freedom associated to fluid particles are
progressively fixed (quenched), see Figure 10.1. The roughness exponents of the diffusion-type
field, such as the surface undulation of the string, show the modified and anisotropic exponents as
compared with the equilibrium one [212]. Although the analogy is not close, we might also con-
sider the process of decision-making by a community, in which the members progressively make
up her or his mind before the referendum. In both examples, the already fixed part can influence
the behavior of the part whose degrees of freedom are not yet fixed. We shall call these types of
processes the progressive quenching, PQ. It is largely unknown what generic aspects are in this
type of problem. In the non-equilibrium statistical mechanics viewpoint, the PQ should be cate-
gorized in such class that (1) the system’s dynamics breaks the local detailed balance (because
the fixed part will never be unfixed afterwords) and that (2) the partition between the system
and the external system is revised. While the progress has been made a lot in understanding the
repartition between the system and the bath since the last decade [25], the similar question for
the system and the external system has been much less explored.
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Figure 10.1. Sketch of the drawing of hollow fibers. See [211] for the details. Figure taken from Figure 1
of [211].

To have an intuition of PQ, we first describe this process for a one-dimensional ferromag-
netic Ising chain up to the second-nearest neighbor interaction [213], whose energy H can be
written as

−H = J0

N−1∑
i=1

sisi+1 + J1

N−2∑
i=1

sisi+2 + h
N∑

i=1

si. (10.1)

The protocol of PQ is described in Figure 10.2. After an event of quenching (see below) is done,
the unquenched part is re-equilibrated. Then the polarity of a specified number of spins (one
spin in the case of Figure 10.2a) is fixed at their orientations that they took at the moment.
This is the quenching event. The orientation of the newly fixed spins is, therefore, sampled
from the equilibrium ensemble of the unquenched spins’ configurations, but these spins are
subject to the interactions with the quenched spins in addition to the interaction among the
unquenched part. We should note that this process is not quasi-static although the unfixed spins
are completely re-equilibrated. It is in the sense that the fixing of some spins implies to raise the
barrier for the flipping of these spins so that the mean flipping interval exceeds the time-scale of
observation/operation (see Chapter 7.1 of [25]).

If J1 = 0, then the system has only the nearest neighbor interaction and we can directly use
the technique of the transfer matrix. For J1 > 0, we can still use this technique by introducing
the composite variable, ξp ≡ {s2p−1, s2p}. Using this technique it was found that, for all the four
models of PQ shown in Figure 10.2, the statistics of the finally quenched spins over the entire
semi-infinite chain is identical to the equilibrium ensemble characterized by the temperature at
which each spin has been quenched. This result is somehow counterintuitive because the protocol
of PQ is very far from equilibrium, breaking the local detailed-balance (LDB) symmetry. A lesson
that we might obtain from this solvable example is that PQ is a kind of neutral or non-invasive
operation. For those unfixed spins which are just ahead of the quenching frontier, the fixation of
the frontier spins is not “sensed” in the sense that the statistics of their equilibrium average is
not biased nor modified by this operation. In general, the fixed part can cause the persistence in
the process of unfixed part through the coupling between fixed part and unfixed one.
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Figure 10.2. [Rule] shows elementary iterative step of progressive quenching applied to 1D Ising models.
After the unquenched part is re-equilibrated, a specified number of spins are fixed at their orientation that
they took at the moment. [Models] present different systems and different quenching units. In the first row
in [Models] the spins interact with their first nearest neighbors, while in the lower row in [Models] the spins
interact also with their second nearest neighbors. In the left column in [Models] a single spin is quenched
at a time, while in the right column in [Models] a pair of spins are quenched at a time. (Figures are adopted
from [213].)

10.3. Globally coupled spin model and hidden martingale

10.3.1. Setup of model and protocol

In [214], the authors took the ferromagnetic Ising model on a complete network, that is, the model
in which any one of the spins interacts with all the other spins with equal coupling constant, j0/N0,
where N0 is the total number of spins. Each spin sk takes the value ±1. We mean by the stage-
T, or simply T, the stage there are T fixed spins, see Figure 10.3(a) for illustration. The integer
T acts as a fictive time of discrete stochastic processes. In this chapter, we avoid purposely the
notation of usual time t because T should be better understood as the parameter characterizing the
hybrid statistical ensemble consisting of the statistics of thermally fluctuating spins and that of
fixed spins. At the stage-T, those N = N0 − T unfixed spins are subject under the field consisting
of two parts, h = (− j0

N0
M ) + hext. The part − j0

N0
M is the “molecular field” due to the quenched

magnetization M =∑T
k=1 sk , where we have relabeled the spins for our convenience. The other

part, hext, is the genuine external field to perturb the process of PQ. The energy function then
reads

HT,M = − j0
N0

∑
T+1≤i<j≤N0

sisj +
(
− j0

N0
M + hext

) N0∑
i=T+1

si. (10.2)

The protocol of PQ is the cycle of re-equilibration of the unfixed spins and the fixation of a single
spin at ±1 just in the state it took at the moment of fixation. Because of the canonical equilibrium
of unfixed spins, the probabilities for fixing in ±1 are, respectively, (1 ± m(eq)

T,M )/2, see Figure

10.3(b), where m(eq)

T,M is the canonical average of the unfixed spins with the probability weight
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Figure 10.3. (a) In the complete network of N0(= 9) spins, T(= 3) spins have been fixed and there remain
N0 − T unfixed spins. (b) PQ process of a complete spin network is a Markovian process on the 2D directed
lattice coordinated by T and M =∑T

k=1 sk . Those lattice points which are not visited are masked. (c) Three
sample histories with j0 = 1.5 (curves near the diagonals), and three others with j0 = 0 (curves near the
horizontal axis) are shown by different colors (brightness) for the system with the total size N0 = 256. (d)
The six sample histories (curves of different colors (brightness)) with j0 = j0,c($ 1.030), the “critical cou-

pling” with the size N0 = 256, are superposed on the contour plot of m(eq)

T,M for the same j0 (almost straight

lines inside the triangle with gradient of color (brightness)). The value of m(eq)

T,M is positive [negative], respec-
tively, above [below] the horizontal axis. (e) Probability distributions of the mean fixed spin value, MT/T, at
different stages, T = 2k with integers k = 4− 8. The system size is N0 = 28 = 256. The initial conditions
is M0 = 0. The increment of T is indicated by the thick red arrows. Figures adapted from [214,215].
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exp(−βHT,M ), where β is the inverse of the temperature times the Boltzmann constant. If we are
quenching the spin sT+1 having already quenched {s1, . . . , sT} ≡ s[1,T], its conditional expectation,
〈sT+1|s[1,T]〉, is m(eq)

T,MT
where MT =∑T

i=1 si. As we focus on the quenched magnetization, MT, this
relation may be rather written as

MT+1 = MT + sT+1, 〈sT+1|M[0,T]〉 = m(eq)

T,MT
. (10.3)

Hereafter we shall use the energy unit so that β = 1. When we follow a process of PQ, the fixed
magnetization, M, realizes an observable stochastic process, if we regard T as the discrete time.
We will denote this process by MT. Besides, though it may be hidden behind MT, the equilib-
rium fixed spin, m(eq)

T,MT
, also realizes a stochastic process, which we will denote by mT. Both

processes, MT and mT, will play crucial roles in our analysis. Figure 10.3(b) shows that the PQ is
a Markovian stochastic process for MT. When the coupling parameter j0 is either too small (i.e.,
too high temperature) or the opposite (i.e., too low temperature) the process of PQ is trivial as
shown in Figure 10.3(c), that is, MT undergoes either almost unbiased random walk or almost
polarized, MT $ ±T, the polarity of which is determined during the first few stages, respectively.
To explore the most non-trivial case, j0 will be chosen at the “critical” point. Because of the finite
size N0 < ∞, the true paramagnetic susceptibility χ is bounded as O(N0). Therefore, the critical
coupling, j0,crit, is determined as the best fit of χ to the Curie’s law; χ ∼ (j0,crit − j0)−1. We found
j0,crit $ 1.030 for N0 = 28.

The stochastic process MT starting with this critical coupling gives rise to the trajectories that
are far from the unbiased random walks and look to follow more or less contour lines of m(eq)

T,M
as shown in Figure 10.3(d). This quasi-ballistic trajectory is a sort of persistent random walk.
At the ensemble level, Figure 10.3(e) shows that the probability density of the mean fixed spin,
MT/T, evolves from a single peaked form to the double peaked one [214]. Although one might
suppose some spontaneous symmetry breaking mechanism behind the double peak, it is not the
case because the effective coupling among the unfixed spins, jeff = j0,crit(1 − T

N0
) is below critical

for T ≥ 1.

10.3.2. Hidden martingale process

In [214], it was found that the process MT that shows apparently the long-term memory in Figure
10.3(d) can be characterized by the hidden martingale of the stochastic process, mT(≡ m(eq)

T,MT
). In

mathematical term, it can be shown that

〈mT+1|M[0,T]〉 = mT, (10.4)

where 〈X |M[0,T]〉 means to take the conditional expectation of X under the given sub-history,
M[0,T], that is, under the specified data of MT from T = 0 up to T. In the present model of PQ,
specifying the sub-history is equivalent to listing the values of the fixed spin up to the stage-T, i.e.,
s[1,T], or M[0,T] with M0 = 0 is understood. The value of mT on the right-hand side is, therefore,
known for a given M[0,T]. In the present case, the process MT is Markovian and we could replace
M[0,T] by the information of the last stage, MT.

Equation (10.4) or, equivalently, 〈(mT+1 − mT)|M[0,T]〉 = 0, guides the evolution of the total
fixed spin, MT+1 − MT, which takes only the binary values, ±1.16 By inductively applying (10.4),
we can show (see also [216])

〈mT′ |M[0,T]〉 = mT, T ≤ ∀T′ ≤ N0. (10.5)

The relationship (10.5) means that, as far as the average value is concerned, we need not integrate
the discrete-time master equation from T to T′ to evaluate mT′ .
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In [214], (10.4) has been derived up to a possible stochastic error of O(N0
−2) using the

large N0-expansion of the formula of quasi-canonical expectation of m(eq)

T+1,MT+1
. More recently

[217], however, it was noted that (10.4) holds precisely and from general principle of tower
rule (Equation 2.3). The following argument follows the line of Appendix B.2. Since those
unquenched spins at the stage T, i.e., {sT+1, . . . , sN0}, are all equivalent (homogeneity), we can
replace sT+1 in the second part of (10.3) by sN0 , the last spin to be fixed. If (mT =)〈sN0 |M[0,T]〉
can be regarded as 〈Z|X[0,T]〉 in Appendix B.2 with the mappings, Z &→ sN0 and Xt &→ Mt, then it
follows the higher order tower rule (Equation 2.3); for 0 < T ≤ T′ ≤ N0,

〈〈sN0 |M[0,T′]〉 |M[0,T]〉 = 〈sN0 |M[0,T]〉. (10.6)

This means (10.5), i.e., 〈mT′ |M[0,T]〉 = mT. We would stress that the hidden martingale property
shown here holds irrespective of the initial coupling parameter j0, either near critical or not.

10.4. Consequences of hidden martingale process

The next step is to find the consequence of this (hidden) martingale property in the (principal)
stochastic process {MT}. Noting MN0 = MT +∑N0

j=T+1 sj and 〈sj|M[0,T]〉 = 〈〈sj|M[0,j−1]〉 |M[0,T]〉 =
〈mj−1 |M[0,T]〉 = mT for j > T, we have the hidden martingale formula (discrete version):

〈MN0 |M[0,T]〉 = MT + (N0 − T)mT. (10.7)

At the end of this section, we will discuss the continuum version of (10.7).

10.4.1. Inference

Below are given the examples of the usage of the hidden martingale formula (10.7) to infer the
past stage, which will also provide with an elementary demonstration of this theorem.

Suppose that the process starts by the stage-T (T > 0) with a fixed magnetization MT, and
that we are given 〈MN0 |M[0,T]〉 from a large ensemble of the final data {MN0}. Now in (10.7), the
value of the left-hand side is known, while the right-hand side is a function of unknown MT with
a given T. Therefore, (10.7) is an (implicit) equation for MT. In this manner, we can infer MT with
the cost of calculation of ∼ N0 (for a reliable expectation of MN0 ) instead of solving the master
equation costing ∼ N0

2. It was numerically verified that this scenario indeed works very well.

10.4.2. Prediction

Another usage of the hidden martingale formula (10.7) is the prediction of the conditional expec-
tation of the main stochastic process, MT′ , for T′ > T. In [215], the equivalent of (10.7) was
shown:

〈
MT′ − MT

T′ − T

∣∣∣∣M[0,T]

〉
= mT, T′ > T. (10.8)

For example, in the case of N0 = T′ = 100 and T = 5, we can predict 〈M100|M[0,5]〉 to be M5 +
95 × m5.
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10.4.3. Prediction of probability distribution function

In the present model of PQ, the hidden martingale formula (10.7) allows to predict MN0 from the
data of Tth stage with T " N0 :

MN0 = MT + (N0 − T)mT +O((N0 − T)
1
2 ), (10.9)

where we recall mT ≡ m(eq)

T,MT
and the last term, O((N0 − T)

1
2 ), represents the sum,

∑N0
k=T+1(sk −

mT), consisting of the terms deemed to vanish individually upon the conditional average,
〈|M[0,T]〉. The approximation (10.9), which ignores the diffusive aspect of the process after the
Tth stage, may be called a geometrical optics approximation.17 To know the probability distri-
bution of MT is a relatively easy task for T " N0 with the calculation cost of some power of T.
The last formula (10.9) then allows to predict the final probability distribution of MN0 (for the
numerical procedure, see Section 10.4.4). Figure 10.4 demonstrates how it works well. In the left
part of the figure, the PQ process is unbiased, where the distribution at T = 24 is symmetric and
unimodal (inset) while the final one is bimodal (dense dotted curve). The final distribution of MN0

is predicted by the piecewise linear curve with 24 + 1 nodes. In the right part of the figure, the
PQ process is unbiased except at the stage-(24 − 1), when the infinite external field, hext = ∞, is
applied to force s24 is quenched to be +1. The distribution at the stage-24 (inset) is almost equal
to the unbiased case but suffers the shift by �M = +1. The subsequent unbiased PQ process
leads then to the final bimodal but asymmetric distribution as shown by the dense dotted curve.
Also in this case, the prescription described above (the piecewise linear curve with 24 + 1 nodes)
reproduces well the main feature of the full numerical result.

Amazingly this method of hidden martingale can predict the binodal distribution in the far
future (N0 � T) given the data of unimodal distribution. Since m(eq)

T,M is a monotonous function
of M (not shown), the results are far from trivial. In case that N0 and T constitute the double
hierarchy 1 " T " N0, our methodology may serve as a reasonable tool of numerical asymptotic
analysis.

Figure 10.4. Comparison between the final distributions of MN0 predicted by the hidden martingale property
(joined T + 1 dots) and those by full numerical solution (filled circles) with T = 24 and N0 = 28 [215]. See
text for details.
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10.4.4. Numerical construction of the distribution from (10.9)

We note that, in the absence of stochastic diffusion, i.e., the term O((N0 − T)
1
2 ) in (10.9), the

probability associated to any subset of the values of MT at the stage T is directly conveyed
to the corresponding subset of the values of MN0 at the finale stage, somehow reminiscent of
the Liouville’s theorem that allows the probability to be carried along the Hamiltonian flow.
Suppose that, at the stage T, we have an access to the probabilities, P(T)

i , of having the fixed
magnetization M = −T + 2i ≡ μi with i = 0, 1, . . . , T. Also we prepare the data of m(eq)

T,M=μi

with i = 0, 1, . . . , T. The object is to generate the normalized probability density, p(M ), with
continuous variable M ∈ [−N0, N0], of the final fixed magnetization through a piecewise linear
approximation with T + 1 nodes. The assignment of the binning box may not be unique. Here we
follow the Appendix C of [215] to use a simple trapezoidal rule to make Figure 10.4:

For the simplicity of notations, we introduce (see Equation 10.9)

xi = μi + (N0 − T) m(eq)

T,μi
, (10.10)

where i = 0, 1, . . . , T. We will make up the final probability density p(x) so that its normalization
is
∫ xT

x0
p(x) dx = 1. We make a piecewise linear approximation of p(x) whose joint points are

{xi, p(xi)}. The normalization condition then reads

1 =
T−1∑
i=0

p(xi) + p(xi+1)

2
(xi+1 − xi)

= p(x0)
x1 − x0

2
+

T−1∑
i=1

p(xi)
xi+1 − xi−1

2
+ p(xT)

xT − xT−1

2
. (10.11)

Then we define p(xi) through

p(x0)
x1 − x0

2
= P(T)

0 ,

p(xi)
xi+1 − xi−1

2
= P(T)

i i = 1, . . . , T − 1

p(xT)
xT − xT−1

2
= P(T)

T (10.12)

so that the “ray” of geometrical optics carries the probability from T = T to T = N0. The uneven
weight on both extremities is harmless because P(T)

0 and P(T)

T are very small. The martingale
prediction of the probability densities in Figure 10.4 is thus made. Naturally, the prediction by
hidden martingale gives narrower distributions than the full numerical results because the former
method ignores the diffusion, whose contribution would fatten the distributions by ∼ (256 −
16)

1
2 $ 15.
Hidden martingale formula with continuous time ( [215]) Before concluding the main results

of this section, we give the continuum version of Equation (10.7). Suppose that the stochastic
process Xt is generated by a hidden martingale system through the stochastic differential equation
(SDE),

Ẋt = Gt(Xt) + Vt(Xt)Ḃt, (10.13)

where Bt is a Wiener (or martingale) process and Gt(Xt) is the martingale drift satisfying

〈Gt(Xt)|M[0,s]〉 = Gs(Xs), t ≥ s. (10.14)
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Then 〈
Xt − Xs

t − s

∣∣∣∣M[0,s]

〉
= Gs(Xs), t ≥ s. (10.15)

Proof Taking the conditional expectation of Equation (10.13) with the condition M[0,s] we have
for all τ ≥ s,

〈Ẋτ |M[0,s]〉 = 〈Gτ (Xτ ) |M[0,s]〉 = Gs(Xs),

where (10.14) has been used in the second equality. By integrating the above equation with
respect to τ from s up to t, we have 〈Xt − Xs|M[0,s]〉 = Gs(Xs) (t − s). �

In the present model of our PQ, we may approach our process to an SDE by dMτ := Mτ+1 −
Mτ and dτ := 1 for ∀τ ≥ s. Then a type of the Doob–Meyer decomposition, dMτ = mτ dτ +
(sτ+dτ − mτ dτ), gives what corresponds to (10.13).

Remark 1 While the generalization from discrete version is straightforward, there can be func-
tional constraints on Gt(Xt) in order for Gt(Xt) to be martingale with respect to X[0,s]. The practical
application of the continuous version has not been tested yet. Some analysis has been recently
made for the case where Vt(z) = 1 and Gt(z) is independent of time [218].

10.5. Concluding discussion of this chapter

When a martingale process is hidden behind the observed Markovian stochastic process, the
former may bring long-lasting memory effects to the latter. If we regard (10.9) as a geometrical
optics approximation of the full evolution, there may be a route to reach this form through the
Freidlin–Wentzell approach [219] under the constraint of hidden martingale. Further theoretical
studies are also needed.

The authors of [217] showed that the hidden martingale property (10.5) is equivalent to a local
invariance of the path weights. This invariance may reflect an aspect of martingale as stochastic
conservation although such invariance is not found with any martingale other than the present
PQ model. In the latter case, the local invariance implies a constrained canonical structure of
the statistics of MT [217]. While the given quenched spins impose a permanent memory on the
individual process, the neutral action of quenching allows to reflect the equilibrium statistics
of the unquenched spins in the quenched ensemble. The constrained canonical structure makes
compatible these two complementary aspects, see also [220] .

Chapter 11. Martingales in population genetics

It is remarkable, I think, that their behavior [of mutant frequencies] is calculable from the
theory of stochastic processes, a theory which until recently has been regarded as too academic

to have actual biological applications.
Motoo Kimura, from “The neutral theory of molecular evolution”, 1983 [221].

Individuals belonging to natural populations are characterized by a certain degree of genetic
diversity. Population genetics studies the distribution of these genetic variants as effect of muta-
tions, natural selection, stochasticity, and other evolutionary forces. In particular, it is nowadays
established that a large portion of mutations confer a negligible selective advantage (or disadvan-
tage) to individuals carrying them. The fate of these mutations is therefore determined by pure
chance without any deterministic selection. In population genetics, these mutations are called
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“neutral”. The widespread occurrence and importance of neutral mutations was pointed out by
Motoo Kimura [221]. Kimura’s theory has encountered substantial resistance over the years –
partially due to the fact that, historically, evolution was implicitly thought to be a deterministic
process. In contrast, Kimura’s neutral theory is inherently stochastic.

The distinction between neutral, advantageous, and deleterious mutations has become a cor-
nerstone of modern population genetics. This concept provides us with a perfect example of the
analogy between population genetics and non-equilibrium physical systems, and how martingales
can be applied to population genetics.

11.1. The Moran model

To make our discussion more concrete, we introduce the Moran model of population genetics.
The Moran model describes a population of N individuals reproducing asexually. The total num-
ber of individuals N is kept constant by resource availability, so that every time an individual
dies another individual instantly reproduces. A number of individuals n in the population, with
0 ≤ n ≤ N , carry a given mutation. We call these individuals the “mutants” and the remaining
(N − n) “wild-type individuals”. For the time being, we assume the mutation to be neutral, i.e.,
mutants die and reproduce at the same rates as the wild type individuals. The number of mutants
in the population evolves with rates

n → n + 1 with rate
n(N − n)

N

n → n − 1 with rate
n(N − n)

N
(11.1)

Equation (11.1) can be understood by thinking that the rate at which the number of mutants
increase is proportional to the number (n − N) of wild-type individuals, times the probability
n/N that the dead individual is replaced by a copy of a mutant. Similar reasoning apply to the
rate of decrease of n. The master equation defined by the rates (11.1) is characterized by two
absorbing states, n = 0 and n = N. In the language of population genetics, if the absorbing state
n = N is reached we say that the mutation has “reached fixation”. To understand the evolution
of a population, it is important to compute the probability P+ of this event. A short way of
computing this probability is by noting that nt is a martingale defined on a bounded interval, and
therefore must satisfy Doob’s optional stopping theorem. Calling τ the time at which one of the
two absorbing states is reached, we obtain

n0 = 〈nτ 〉 = 0 · P− + N · P+ → P+ = n0

N
. (11.2)

Therefore, in the neutral Moran model, the probability of a mutation to reach fixation is equal to
its current fraction in the population. This is a basic yet fundamental result of neutral population
genetics.

We now generalize the Moran model to a case in which the mutation possibly confers a
selective advantage to individuals carrying it. We define a selective advantage s as a relative
increase in the reproduction rate. The transition rates of the model read

n → n + 1 with rate (1 + s)
n(N − n)

N

n → n − 1 with rate
n(N − n)

N
. (11.3)
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In the three cases s > 0, s = 0, and s < 0, the process is a submartingale, martingale, and sur-
martingale, respectively. In population genetics, if s is negligible, the mutation is considered to
be neutral; if s is sufficiently large and positive the mutation is advantageous; and if s is negative
and sufficiently large in absolute value, the mutation is deleterious. By analyzing the model, we
will clarify what does it mean to be “negligible” and “sufficiently large”. For simplicity, we study
the model in the continuous approximation. Assuming N to be large, the fraction X = n/N of
mutants satisfies the Langevin equation

Ẋt = sXt(1 − Xt) +
√

2Xt(1 − Xt)

N
Ḃt. (11.4)

The Langevin equation (11.4) is interpreted in the Itô sense and can be derived from the master
equation by means of a Kramers–Moyal expansion [4]. We truncated this expansion at the first
order in 1/N and assumed s to be order 1/N, so that we neglected terms of order s/N.

Also Equation (11.4) is characterized by two absorbing states, in this case at X = 0 and
X = 1. In this case, if s �= 0 the process Xt is not a martingale. However, performing a change
variable to Yt = exp(−sNXt) by means of the Itô formula we obtain

Ẏt = −sNYt

√
2Xt(1 − Xt)

N
Ḃt (11.5)

of Yt is governed by an Itô stochastic differential equation without drift, the process Yt is a
martingale. It is interesting to note the analogy with stochastic thermodynamics, where entropy
production is a submartingale whereas the exponential of minus the entropy production is a mar-
tingale. The range Xt ∈ [0, 1] corresponds to a range Yt ∈ [e−sN , 1]. We can therefore apply once
more Doob’s optional stopping theorem to the stopping time defined as the first time at which
one of the two absorbing states is reached:

Y0 = P+ exp (−sN) + P−. (11.6)

Using that P+ + P− = 1 and expressing the probabilities in terms of X0, we find that the
probability of fixation is

P+ = 1 − exp (−sNX0)

1 − exp (−sN)
. (11.7)

Equation (11.7) is the celebrated Kimura’s formula for the fixation probability of a muta-
tion [222]. It is analogous to the expression (1.15) that we derived for the biased random walk.
Equation (11.7) is singular for s = 0. However, it correctly predicts the neutral result p1 = X0

(see Equation (11.2)) in the limit s → 0.
Importantly, Kimura’s formula clarifies when a selective advantage is sufficiently large. Note

that Kimura’s formula depends on the parameters s and N only via the combination sN. It follows
that mutations characterized by selective advantages |s| " N−1 behaves essentially as neutral.
This fact has deep consequences for the evolution of natural populations.

In population genetics, the model embodied in Equation (11.4) is used to describe the fate of
mutations in real populations. However, the intensity of random fluctuations of mutation frequen-
cies tends to be much larger than predicted by models such as Equation (11.4). An explanation
is that many simplifying assumptions underlying the Moran process do not hold in reality. One
of the most important is the assumption of constant population size: it can be shown that, in pop-
ulations of variable size, evolution is strongly affected by “bottlenecks”, i.e., epochs in which
the population size happened to be small [223]. To compensate for these effects, when using the
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Figure 11.1. Kimura’s fixation formula (11.7) (lines) compared to simulations of the Moran process (11.1)
with N = 1000 (points). Each point is an average over 103 Gillespie simulations of a master equation with
rates (11.3), where we set μ = 1 and s as in the figure legend.

Moran model to describe real populations, the parameter N is taken as an effective parameter,
called the “effective population size”. For example, the effective population size estimated for
humans from fluctuations of mutation frequencies is on the order of N = 104, whereas estimates
for Escherichia coli range between 106 and 108. In general, Equation (11.7) reveals that mutations
characterized by small selective advantages s " 1/N do not significantly influence the fixation
probability and therefore effectively behave as neutral. This fact implies that bacteria such as E.
coli, characterized by a large effective population size, are much more sensitive to fitness dif-
ferences than for example humans. For example, a mutation conferring a selective advantage
s = 10−5 would be seen as neutral by a human population, but as strongly advantageous by most
bacteria (Figure 11.1).

An alternative approach to study Equation (11.5) is to perform a random time change

Dτ = DtXt(1 − Xt) (11.8)

so that Equation (11.5) becomes

D
Dτ

Xτ = s +
√

2

N
Ḃ′

τ , (11.9)

where Ḃ′
τ is also a white Gaussian noise. In terms of the random time, the population dynamics

is described by a simple Langevin process with constant drift and diffusion terms.

11.2. Duality and martingales

So far we analyzed the Moran process using a diffusion approximation, which paved the way
to an analysis using martingales. In the following, we discuss another type of correspondence
between discrete population models and Ito stochastic differential equations, based on the notion
of duality, that does not rely on any approximation [224,225]. We consider a single population
made up of a variable number n of individuals. Each individual reproduces at rate γ and dies at
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rate χ(n − 1), proportional to the number of other individuals due to competition for resources:

n → n + 1 with rate γ n

n → n − 1 with rate χn(n − 1) (11.10)

The corresponding master equation reads

∂tρt(n) =
∑

m

ω(n, m)(ρt(m) − ρt(n)) (11.11)

with the transition rates

ω(n, m) = γ mδn,m+1 + χm(m − 1)δn,m−1. (11.12)

We now associate to the Master equation (11.11) a Langevin dynamics

Żt = −γ Zt(1 − Zt) +
√

2χZt(1 − Zt)Ḃt. (11.13)

We note that Equation (11.13) has the same form of Equation (11.4) if we perform the change of
variable

Xt = 1 − Zt. (11.14)

With this mapping, Equation (11.13) can be seen as a (truncated) Kramers–Moyal expansion of
the particle model defined in Equation (11.3), with selective advantage γ and constant population
size χ−1.

In this section, we shall instead relate Equation (11.13) with the Master equation (11.11),
which does not conserve population size. This relation is very different in spirit to the one based
on the Kramers–Moyal expansion and, in particular, does not rely on any approximation. The
idea of this alternative approach is to combine the discrete process defined in Equation (11.10)
with the continuous process described in Equation (11.13) to obtain a new process which is a
martingale. To this aim, we consider the process Zm

t , where m is an arbitrary integer number.
Applying the Ito formula (2.88) yields

Żm
t = mZm−1

t Żt + χm(m − 1)Zm−1
t (1 − Zt). (11.15)

Substituting Equations (11.13) and (11.12) into Equation (11.15) we obtain

Żm
t =

∞∑
n=0

ω(n, m)(Zn
t − Zm

t ) +
√

2γ mZm−1
t

√
Zt(Zt − 1)Ḃt, (11.16)

We now introduce the quantity

Mt =
∞∑

m=1

Zm
t ρT−t(m), (11.17)

where T is an arbitrary (reference) time. The process Mt combines a solution of the Langevin
equation (11.13) with a backward solution ρT−t(m) of the master equation (11.11). Independently
of the choice of the time T and the initial conditions of the two processes, Mt is a martingale.
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We can in fact prove from Equations (11.11) and (11.16) that Mt is governed by an Ito process
without drift:

Ṁt =
∞∑

m=1

(
Żm

t ρT−t(m) + Zm
t ∂tρT−t(m)

)
=

∞∑
m=1

ρT−t(m)
√

2γ mZm−1
t

√
Zt(Zt − 1)Ḃt. (11.18)

From its definition, the martingale Mt can be also expressed as

Mt = 〈Zt
NT−t〉N , (11.19)

where with 〈. . . 〉N we denote the expectation over trajectories NT−t of the Master
equation (11.11). We note that, while the continuous process Zt progresses forward in time t, the
discrete process NT−t progresses backward in time. The martingality of Mt implies for example
that

〈ZN0
t 〉Z,N = 〈ZNt

0 〉Z,N , (11.20)

where 〈. . . 〉Z,N is the expectation over the forward continuous process and the backward discrete
process. We remark that this equality is valid for any t, and any choices of the initial conditions
of the two processes. By appropriate choices of initial conditions, this relation can be exploited
to derive useful properties of the two processes [225].

Interestingly, these techniques can be also applied to spatially extended populations. A
prototypical stochastic model describing the dynamics of spatial populations is the stochastic
Fisher–Kolmogorov equation

∂tFt(x) = sFt(x)(1 − Ft(x)) + D∂2
x Ft(x) +

√
2Ft(x)(1 − Ft(x))

N
ξt(x). (11.21)

Using duality it can be shown that the probability of a small, localized population described by
the Fisher–Kolmogorov equation to grow up to a large size is still governed by the formula (11.7)
for the fixation probability of a well-mixed population [225,226].

Chapter 12. Martingales in finance

October: This is one of the particularly dangerous months to invest in stocks. Other dangerous
months are July, January, September, April, November, May, March, June, December, August

and February.
Mark Twain, from “Pudd’nhead Wilson”, 1894

We give here an overview of the use of martingales in finance. Since the theory of martingales
had its early discussions in finance, it is no wonder that a huge amount of literature exists on this
subject. In the treatment below, we do not aim to be exhaustive or rigorous in any way, and
our primary (and perhaps only) motivation is to introduce the basic terminologies of quantitative
finance and discuss how the theory of martingales arises naturally in this setting. In the process,
we hope to get the readers excited about the field of quantitative finance. For further details,
readers are directed to more specialized texts on the subject [227–230]. A concise and self-
contained review on the topic, written from a physicist’s point of view, is Ref. [231]. A reader
aspiring to master all of stochastic calculus required for a rigorous mathematical formulation of
quantitative finance may look up Refs. [232,233].
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12.1. Riskless and risky financial assets: bank deposits and stocks

A riskless asset is one for which the return is fixed and guaranteed regardless of the market
situation. A prominent example is a bank deposit Bt, with t denoting time: an amount B0 deposited
in a bank that offers a fixed interest rate r increases at a rate

Ḃt = rBt, (12.1)

where the dot denotes derivative with respect to time. The above evolution implies an exponential
growth in time and yields a fixed return with value Bt = B0 exp(rt) at time t. Depending on r and
B0, although that does sound like a fortune, it could be possible that the depositor earns more
through investments whose worth is contingent on the evolution of the market. Such investments
are in general risky, since unlike riskless assets no fixed return is guaranteed, but which when
planned and managed well nevertheless offer the investor the unique opportunity to profit from
market fluctuations.

An example of risky assets is what are called stocks or shares. A stock gives its holder the
ownership of a small part of the company issuing the stock. A company that requires to raise
its capital often does so by issuing stocks. By selling many such stocks, the company is able to
raise its capital at typically lower costs than would have been possible if it were to borrow money
from banks, which would ask for high interests on the money borrowed. It is evident that the
stock price depends on the overall worth of the company in the market,18 which in turn depends
on how it has been performing in recent times, but also, interestingly, on how it is projected
to perform in future. A small market fluctuation due to, i.e., a Government decision, which is
anticipated to affect the future performance of the company, may lead to a change in the current
price of its stocks. All the aforementioned factors lead to stock prices behaving erratically in
time, an example of which is shown in Figure 12.1. In other words, the stock price St is a random
function of time t; expressing its variation in time as

Ṡt = RtSt, (12.2)

where Rt is now the rate of return, which is itself a fluctuating quantity. In analogy with
Equation (12.1), we may expect the “rate of return” Rt, a random function of time, to have a
part representing the mean or expected rate of return and a part that varies randomly in time. The
former part may be deducible on the basis of the average of the company’s past, present, and
projected future performance, and is thus a deterministic or a predictable component, while all
the uncertainty that got glossed over in computing the average is included in the random part.
While there may be several ways to model the random part as a function of time, one of the most
popular and simple ones in the field of quantitative finance is the so-called Geometric Brownian
Motion (GBM) model. In this model, the rate of change in the stock price is

Ṡt =
(
μ + σ Ḃt

)
St, (12.3)

where the constants μ and σ represent respectively the expected rate of return and the standard
deviation of returns, also called volatility, and where Bt is the standard Brownian motion or a
Wiener process, as defined in Section 2.2.2. Volatility is a statistical measure of the dispersion of
returns: the higher the volatility, the riskier is the stock.

Equation (12.3) is an example of an SDE, which may be solved subject to a given initial
condition St0 = s0. In terms a new random variable Zt ≡ ln St, on applying the Itô’s formula, see
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Figure 12.1. Representative stock price fluctuations as a function of time. The figure depicts data on the
closing price of HDFC Bank on a daily basis from 19th September 2017 to 18th September 2019, i.e., over
a period of 24 months. Source: National Stock Exchange, India.

Equation (B14) in Appendix B.3, and using Equation (12.3), we get

Żt = μ − σ 2

2
+ σ Ḃt, (12.4)

which on integration with respect to time gives

Zt = Zt0 +
(
μ − σ 2/2

)
(t − t0) + σ

(
Bt − Bt0

)
, (12.5)

with Zt0 = ln s0; when expressed in terms of St, we get the following random function of time for
the stock price St:

St = s0 exp

((
μ − σ 2

2

)
(t − t0) + σ

(
Bt − Bt0

))
. (12.6)

Equation (12.4) implies that Zt − Zt0 is normally distributed with mean (μ − σ 2/2)(t − t0) and
variance σ 2(t − t0), i.e., Zt − Zt0 ∼ N ((μ − σ 2/2)(t − t0), σ

√
t − t0). It then follows that the

probability density of the stock price St at time t, subject to the initial condition St0 = s0, is given
by the log-normal distribution

ρSt(s|St0 = s0) = 1

s
√

2πσ 2(t − t0)
exp

⎛⎜⎝−
[
ln
(

s
s0

)
−
(
μ − σ 2

2

)
(t − t0)

]2

2σ 2(t − t0)

⎞⎟⎠ . (12.7)

12.2. Options and the Black–Scholes equation for option pricing

Stocks are sold and bought (“traded”) in organized stock exchanges, such as the New York Stock
Exchange, the NASDAQ Stock Market, and so on. Every stock exchange devises an index that is
a representative of the daily average behavior of the corresponding market. Different from stocks
whose intrinsic values are based directly on their market values and which therefore constitute
primary financial assets for the holder, there are financial instruments called derivatives whose
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intrinsic values derive from the price of some underlying primary assets. Derivatives are also
referred to as contingent claims as their values are contingent on that of the underlying asset. One
such basic derivative is what are called options, which we will deal with now.

An option is a contract between two parties to buy or sell in future an underlying primary asset
at an agreed price, regardless of the market situation prevailing at the time the asset is bought or
sold. The two sides of the contract are called the buyer and the seller or the underwriter. European
options can be exercised only on the future date (the maturity or expiration date) agreed in the
contract, while American options can be exercised at any point of time until the expiration date.
Here we will discuss only European options. The two common types of European options are
calls and puts. An European call option gives the buyer the right, but not the obligation, to buy
the underlying asset (stock St) at the strike price K specified in the contract on the expiration date
T , regardless of the current price (the spot price) ST of the asset. If the call buyer exercises his
option, the seller is accordingly obliged to sell the asset at price K. An European put option is
quite similar to the call option, excepting that it gives the buyer the right, but not the obligation,
to sell the underlying asset at price K on date T regardless of the spot price ST , and if exercised,
the seller is then obliged to buy the asset at price K. Either way, due to the obligation to sell or
buy at a predetermined price on date T regardless of the spot price ST , the seller may incur a loss,
so that the buyer when entering into the option contract must compensate somewhat by paying
on-spot a certain amount called the option premium to the seller. From the above, it is evident
that investors buy calls or sell puts (respectively, sell calls or buy puts) when they anticipate that
the price of the underlying asset will increase (respectively, decrease) in time.

Here, we discuss the concept of price of an option, from the point of view of a potential buyer
of a call option, which would help us fix our ideas about option premium. If the spot price St at
any time t exceeds the strike price K, it would make sense, in case it were possible, to exercise the
call option, buy the asset from the seller at price K and sell it in the market at price St (buy low
and sell high), thereby making a profit; we would then say that the option has a positive intrinsic
value given by the difference St − K. If on the other hand one has St < K, it is cheaper to buy
in the market itself, and it would be meaningless to exercise the call option; we would then say
that the option has zero intrinsic value. This leads us to define the intrinsic value of a call option
at time t to be the function max(St − K, 0). Besides the intrinsic value, the option would also
have a time value that may be understood thus. At any time t < T , suppose that we have St > K.
Now, since there is still time left until expiration, there is a possibility that in course of time until
T , St will increase even further beyond K, which is to say that the option has a certain positive
time value. It is clear that the further St is beyond K, higher is the probability that in the time
until T , St will increase even further beyond K, and so higher will be the time value. How about
the case St < K? Again, since there is still time until expiration, there is still a chance that St

will exceed K: the lower St is below K, of course, the smaller is this chance. All these lead us to
conclude that the time value of the option is a monotonically increasing function of St. Moreover,
the further one is from expiration, the higher is the time value. This is because longer is the time
until expiration, higher is the investor’s expectation and consequently, higher is the probability
that market fluctuations may cause St to exceed K. The sum of the time value and the intrinsic
value gives the option price C ≡ C(St, t; K, T ), where we have shown explicitly the factors on
which the option price depends: the time at which we value the option and the spot price of the
underlying asset, as well as the strike price K and the expiration date T . Since the time value
gets smaller as the expiration date gets closer, the call option price as t hits T is just the intrinsic
value. These points are shown schematically in Figure 12.2(a).

We now discuss the price of a put option, from the point of view of a potential buyer. If
the spot price St at any time t is below the strike price K, it would make sense, in case it were
possible, to exercise the put option, sell the asset to the buyer at a higher price K, thereby making
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Figure 12.2. Price of a European call and put option; here, we have t1 < t2 < T . The red line, which is the
limit t → T of the t < T -curves, is also the intrinsic value of the option. Note that the origin of the St-axis
is certainly not zero: you cannot have a stock priced at zero!

a profit; we would then say that the option has a positive intrinsic value given by the difference
K − St. If on the other hand one has St > K, it is better to sell in the market itself, and it would
be meaningless to exercise the put option; we would then say that the option has zero intrinsic
value. The intrinsic value of a put option at time t is then the function max(K − St, 0). Coming
to the time value, suppose at any time t < T , we have St < K. Now, since there is still time
left until expiration, there is a possibility that in course of time until T , St will decrease even
further below K, which is tantamount to saying that the option has a certain positive time value.
The further St is below K, higher is the probability that in the time until T , St will decrease even
further below K, and so higher will be the time value. Summarizing, the time value of a put option
is a monotonically decreasing function of St, and the further one is from expiration, the higher
is the time value. The sum of the time value and the intrinsic value gives the put option price
P ≡ P(St, t; K, T ). Since the time value gets smaller as the expiration date is approached, the put
option price as t hits T is made up entirely of the intrinsic value. The discussed scenario is shown
in Figure 12.2(b).

Now that we have discussed the scenario of a potential buyer of either a call or a put option,
let us now proceed to discuss the situation of one who has already purchased the option. A buyer
of a call option who has purchased the option at time t1 < T when the spot price was S1 ≡ St1
and the corresponding cost was C1 ≡ C(S1, t1; K, T ) had to pay as option premium the amount
C1 to the seller. A payoff diagram summarizes the net worth of the option from the point of view
of the buyer and is shown in Figure 12.3(a). On the expiration date, the payoff is −C1 if ST < K
and is ST − K − C1 if ST > K. The payoff of a call option (buy) on maturity is thus given by

payoffbuy
call = max(ST − K, 0) − C1. (12.8)

From the point of view of the seller, the call option payoff diagram is evidently just the mirror
image of that for the buyer Figure 12.3(b): the maximum profit of the call option buyer is the
maximum loss of the call option seller and vice versa. Moreover, the buyer has unlimited potential
for profit, and correspondingly, the seller has unlimited loss potential.

Arguing as above, one may obtain the payoff diagram of a put option (buy) on maturity. Thus
a buyer of a put option who has purchased the option at time t2 < T when the spot price was
S2 ≡ St2 and the corresponding cost was P2 ≡ P(S2, t2; K, T ) has his payoff given by

payoffbuy
call = max(K − ST , 0) − P2, (12.9)

while that from the point of view of the seller is the mirror image of that for the buyer (Figure
12.3 c,d). Comparing Figures 12.2 and 12.3, we see that the payoff curve at time t < T may be
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Figure 12.3. Payoff diagrams for call and put options. The quantities C1 and P2 are defined in Figure 12.2.

obtained from the corresponding cost curve in the former by shifting it (vertically down for the
buyer and vertically up for the seller) by an amount given by the cost at the corresponding value
of the stock (see Figure 12.3 c,d for an illustration).

From the above discussion, it is evident that the buyer and the seller of an option have different
expectations from the market, so that a central question as regards entering into an option contract
is: What should be the “right” option price V (= C for call and = P for put) that would ensure
that none of the two sides of an option contract have an a-priori advantage to make profit, for
it is the magnitude of V that enters into the payoff diagram for the buyer and the seller, see
Figure 12.3: the buyer would not like a high V while the seller would very much like a high V .
The value of V depends on the dynamics of the underlying stock St. The question of finding the
right V , equivalent to finding a closed form expression for V as a function of K, T , St, and time,
has paramount importance in option pricing. It was answered in the most remarkable way by
economists Black and Scholes [234] and Merton [235], a work that earned Scholes and Merton
(Black had died by then) the Nobel prize in Economics in 1997. A crucial assumption behind
deriving the model is that of a market with “no-arbitrage” opportunity, so we now digress to
discuss briefly what an arbitrage opportunity means.
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An investor who does not wish to make any initial commitment of money may still make
money in the market in the following way. He may borrow a stock from someone who has it
and sell it in the market. This process of selling an asset that one does not own is called short
selling or shorting or taking a short position on the asset (buying the actual asset is what is termed
“taking a long position on the asset”). The borrower has to eventually pay back the lender (i.e.,
he has to “close” his short position on the borrowed asset), so what he may do is to buy the same
stock from the market on a later date, and return it to the lender, and in the process, if the stock
price decreases, he makes a profit by this short selling; otherwise, he incurs a loss. Thus there is
a risk involved in short selling, which may be compensated thus: he chooses a company that is
listed in two different stock exchanges, say, exchange A and exchange B. Suppose he finds that
at some point in time, the last traded price S(A) for selling a stock of the company in A is higher
than the last traded price S(B) for buying a stock of the same company in B. He may then with
no initial commitment short sell N stocks in A and use the proceeds to close his short position by
buying N stocks in B, making in the process a riskless profit of N(S(A) − S(B)). This process of
making a riskless profit, with no initial money at all, by entering simultaneously into transactions
in two or more markets is called an arbitrage opportunity or an arbitrage, and those who exploit
such opportunities are called arbitrageurs. A minute’s thought would reveal that such arbitrage
opportunities cannot last in the market for long, for selling the stock in A will decrease the price
for selling a stock in A, while buying the stock in B will increase the price to buy a stock in
B. As a result of these two competing tendencies, an equilibrium price for the stock in both the
exchanges will be reached in time and then the arbitrage opportunity will no longer exist. The
action of an arbitrageur is said to be self-destroying in that it is destroying the action itself, but
the latter takes time, and in the process, the arbitrageur makes profit. An efficient market is then
one that satisfies the no-arbitrage condition, that is, it does not allow anyone to make profit out
of thin air (even if some short-term profit may be possible, it would not allow for any long-term
profit). In common parlance, one says that there is no free lunch possible in an efficient market.

Besides arbitrageurs, there are hedgers in the market.19 A hedge is defined to be an investment
that protects one’s finances from risks. Hedgers may use derivatives to reduce the risk in their
portfolio in the following manner. Consider an investor with a long position on a stock, for whom
the risk is associated with the possibility of the stock price going down in time. In this case, a
hedging strategy could be to buy a put option on the stock, so that one would sell the stock only
if the price goes below a certain level and can keep it with him if the price goes up. In the former
case, the proceeds from selling the stock at a higher price (the strike price) than the spot price
may minimize or offset somewhat the risk associated with the long position, and this comes at
the price of the option premium that he paid in buying the put option. We may think of the option
as like an insurance in the present scenario.

With the above background, we now move on to describe the Black–Scholes equation for
option pricing. Here, we will discuss the Black–Scholes equation in a simple setting, while gen-
eralizations and a more detailed consideration may be found in [228]. To derive the equation,
assume within our simple setting that there are two assets in the market: a bank deposit Bt and a
stock St, whose dynamics are given respectively by Equations (12.1) and (12.3). The quantity r in
Equation (12.1) is the interest rate offered by the bank to a depositor, but is also the interest rate
the bank charges on money borrowed from the bank. Moreover, the market is assumed to be free
of arbitrage opportunities. For a more extensive list of assumptions behind the Black–Scholes
equation, the reader is directed to Ref. [228].

Let us define a financial portfolio as a combination of financial assets held by, i.e., individ-
ual investors and/or managed by financial professionals. To derive the Black–Scholes equation,
consider a portfolio consisting of a long position on a European call option and a short position
on � stocks. The option has strike price K and expiration date T on the underlying stock St. The
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question is what should be the value C(St, t; K, T ) of the option at time t subject to the boundary
condition C(ST , T ; K, T ) = max(ST − K, 0). We take the portfolio to be self-financing, that is,
in course of time no money is taken out of the portfolio and no additional money is put into it, so
that any change the portfolio value may undergo is due to change in asset prices only. The value
Vt of the portfolio at time t is given by

Vt = C(St, t) − � St, (12.10)

where we have suppressed the dependence of C on K and T , for ease of notation. The minus sign
on the right-hand side of Equation (12.10) is a reminder of the fact that we need to eventually
close the short position on the stocks, and so we “owe” the market an amount � St. As it will
turn out, � will be a function of time: � = �t. The portfolio is self-financing, which implies the
following. Let us specialize to discrete times. The value of the portfolio at time t = 0 is

V0 = C(S0, 0) − �0S0, (12.11)

which on its own will yield the value at the next time instant t = 1 as C(S1, 1) − �0S1, while our
strategy being self-financing, the new portfolio at time t = 1 should be able to be bought with
the asset one has from the previous period, i.e.,

V1 = C(S1, 1) − �1S1 = C(S1, 1) − �0S1, (12.12)

yielding

S1(�1 − �0) = 0. (12.13)

In continuous times, we thus have

Std�t = 0. (12.14)

Using the above equation, we obtain from Equation (12.10) the rate of change in its value as
given by

V̇t = Ċ − � Ṡt. (12.15)

Equation (12.10) represents what is known as a delta-hedging portfolio. Delta hedging involves
holding an option and shorting a quantity � of the underlying. Its practical importance and
hedging implications will be discussed below.

Now, using Equation (12.3) and Itô’s formula, see Appendix B.3.1, we have

Ċ = ∂C

∂t
+ μSt

∂C

∂St
+ σ 2S2

t

2

∂2C

∂S2
t
+ σSt

∂C

∂St
Ḃt, (12.16)

which when used in Equation (12.15) yields

V̇t = ∂C

∂t
+ μSt

∂C

∂St
+ σ 2S2

t

2

∂2C

∂S2
t
− μ� St + σSt

(
∂C

∂St
− �

)
Ḃt. (12.17)

What the above equation gives is the value Vt of the portfolio in the future on knowing its value at
the current instant t at which one knows with certainty the current stock price St. Note that when
one says that the stock price St is a random function of time (see Equation 12.7), what one means
is that although one knows the price at the current instant (one has to just visit a stock exchange),
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one cannot predict with certainty the price in the future. We will now show how, knowing St and
Vt at the current instant t, the above equation allows to know with certainty the value of V̇t and
hence of Vt in future. To this end, let us choose � in such a way that one gets rid of the term
involving Ḃt on the right hand side, namely, we choose � such that

� = ∂C

∂St
. (12.18)

With the above choice, Equation (12.17) gives

V̇t = ∂C

∂t
+ σ 2S2

t

2

∂2C

∂S2
t

. (12.19)

It is now evident that knowing St allows one to compute the right-hand side and obtain with
certainty the value of V̇t (one has to evaluate the derivatives at St) and consequently, the value of
Vt+dt (provided Equation (12.18) remains valid during the interval [t, t + dt]), and hence, there is
no more randomness or stochasticity in the evolution of Vt. In other words, Vt has a deterministic
evolution in time, and so the portfolio becomes risk free for the choice given by Equation (12.18),
i.e., for � = ∂C/∂St.

Now that we have a risk-free portfolio and the market is by assumption free of arbitrage oppor-
tunities, the portfolio would yield the same rate of return as we would get if we had deposited
an equivalent amount of cash in a bank account, see Equation (12.1). This may be explained as
follows: Suppose the rate of return rrisk−free from the risk-free portfolio is different from r, and
let us say that one has rrisk−free > r. Then, someone would borrow money from the bank (which
would according to our assumptions ask for an interest rate r on the lent amount), and would
invest it in the risk-free portfolio. He would then use the return from the portfolio to give back
the money he owes to the bank, and in the process, pocket the difference of the return from the
invested amount and the money given back to the bank, without making any initial investment.
The market being arbitrage-free would not allow for such a possibility, and hence, we conclude
that rrisk−free should equal r. Then, we may write

V̇t = rVt = r

(
C − ∂C

∂St
St

)
, (12.20)

where in obtaining the second equality we have used Equations (12.10) and (12.18).

Comparing Equations (12.19) and (12.20) yields the celebrated Black–Scholes
equation

∂C

∂t
+ σ 2S2

t

2

∂2C

∂S2
t
+ rSt

∂C

∂St
− rC = 0, (12.21)

with the boundary condition

C(ST , T ) = max(ST − K, 0). (12.22)

As we have discussed earlier, hedging relates to reduction of risks in one’s financial portfolio.
We saw above that choosing � = ∂C/∂St, which corresponds to exploiting correlation between
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the option and the stock making up the portfolio (clearly, evolution of C depends on the dynamics
of St), led to perfect elimination of risks in that the resulting portfolio has completely determin-
istic evolution (12.19). Such a strategy goes by the name of delta hedging. Note that the quantity
∂C/∂St continually changes in time. This implies that the amount � of stocks that one needs to
short to offset the risk associated with the long position must change continually in time. Delta
hedging is thus an example of a dynamic hedging strategy.

In obtaining the Black–Scholes equation (12.21), the only place where the nature of the
derivative enters into the derivation is through the boundary condition (12.22). Thus it should
be possible to generalize the derivation for the price of an arbitrary European option F(St, t)
with payoff F(ST , T ) = �(ST ), where �(S) is a known function. The price F(St, t) should then
follow the equation:

∂F

∂t
+ σ 2S2

t

2

∂2F

∂S2
t
+ rSt

∂F

∂St
− rC = 0, (12.23)

with the boundary condition

F(ST , T ) = �(ST ). (12.24)

12.2.1. Solution of the Black–Scholes equation (12.21)

The treatment here follows the one given in Refs. [228,231]. The Black–Scholes equation (12.21)
may be solved by performing the following transformation to a set of dimensionless variables that
turns it into the heat equation or the Fokker–Planck equation for a free Brownian particle, both
well known in physics:

τ ≡ T − t

2/σ 2
, x ≡ ln(St/K), u(x, τ) ≡ exp(αx + β2τ)

C(St, t)

K
,

α ≡ 1

2

(
2r

σ 2
− 1

)
, β = 1

2

(
2r

σ 2
+ 1

)
. (12.25)

In terms of transformed variables u, x, τ , Equation (12.21) reads [231] (for details, see Appendix
G.1):

∂u

∂τ
= ∂2u

∂x2
, (12.26)

while the condition (12.22) becomes an initial condition thus: Equation (12.22) gives the result
u(x, 0)K/ exp(αx) = max(St − K, 0), that is,

u(x, 0) = max(St exp(αx)/K − exp(αx), 0) = max(exp((α + 1)x) − exp(αx), 0), (12.27)

where we have used the fact that St/K = exp(x). Next, using α + 1 = β, we finally have the
desired initial condition:

u(x, 0) = max(exp(βx) − exp(αx), 0). (12.28)

Now, the heat Equation (12.26) is solved as

u(x, τ) =
∫ ∞

−∞
dx′ u(x′, 0)G(x, x′), (12.29)



Advances in Physics 217

in terms of the Green’s function for the heat equation: G(x, x′) = 1/
√

4πτ exp(−(x − x′)2/(4τ)).
Using the initial condition (12.28) in the last equation allows to write u(x, τ) as

u(x, τ) = I(β) − I(α); I(a) ≡ 1√
4πτ

∫ ∞

0
dx′ exp(ax′ − (x − x′)2/(4τ))

= exp(ax + a2τ)N(da), (12.30)

with

da ≡ x + 2aτ√
2τ

, (12.31)

and N(x) being the cumulative distribution for a Gaussian random variable distributed as N (0, 1):

N(x) = 1√
2π

∫ x

−∞
dy exp(−y2/2). (12.32)

Using Equation (12.30) and reverting to the original variables of C, St, K, etc. by using
Equation (12.25) lead to the following result:

The Black–Scholes formula for the price of a European call option:

C(St, t) = StN(d1) − K exp(−r(T − t))N(d2);

d1 = ln (St/K) + (r + σ 2/2
)
(T − t)

σ
√
T − t

, d2 = ln (St/K) + (r − σ 2/2
)
(T − t)

σ
√
T − t

.

(12.33)

Equation (12.33) is known as the Black–Scholes formula for option pricing: a closed
expression to price an option in a market where there are two assets, namely, a bank deposit
Bt subject to interest rate r and a stock St with expiration T and strike price K, and with
the dynamics of Bt and St given respectively by Equations (12.1) and (12.3).

From the foregoing, it is easy to write down the solution to Equation (12.23) for an arbi-
trary European option. Defining u(x, τ) ≡ exp(αx + β2τ)F(St, t)/K, and following the same line
of argument as the one followed in Equations (12.25)–(12.29), one obtains in analogy with
Equation (12.29) that

u(x, τ) =
∫ ∞

−∞
dx′ �(x′)G(x, x′), (12.34)

which when expressed in terms of variables F, St, K, etc. yields

F(St, t) = exp(−r(T − t))√
2πσ 2(T − t)

∫ ∞

0
dS′ �(S′)

S′ exp

[
−{ln(S′/St) − (r − σ 2/2)(T − t)}2

2σ 2(T − t)

]
.

(12.35)

Equation (12.35) is the Black–Scholes formula for an arbitrary European option with payoff
F(ST , T ) = �(ST ), where �(S) is a known function. For a European call option, F(St, t) =
C(St, t) and �(S) = max(S − K, 0), while for a European put option, F(St, t) = P(St, t) and
�(S) = max(K − S, 0), where K is the strike price and T is the expiration time.
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12.3. Efficient market and the martingale approach

The so-called martingale approach to an efficient market offers an alternative elegant way to
arrive at the Black–Scholes equation. With the preliminaries on elements of probability theory
that may be found in Appendix B.1, let us now describe the martingale approach to an efficient
market.

12.3.1. Equivalent martingale measure and the Girsanov theorem

We have already seen that the standard Brownian motion is a martingale. We know that the
probability density of the standard Brownian motion is a Gaussian:

ρP
Bt

(b) = 1√
2π t

exp
(−b2/(2t)

)
. (12.36)

Using the defining property of a martingale, we may conclude that the motion with a drift, given
by

B̃t = at + Bt; 0 ≤ t ≤ T , (12.37)

is not a martingale precisely because of the presence of the drift a. The Girsanov theorem [66]
states, however, that B̃t becomes a standard Brownian motion with respect to the probability
measure Q given by

ρQ
B̃t

(b) = MB̃t
(b)ρP

B̃t
(b), (12.38)

where MB̃t
(b) is the function

MB̃t
(b) = exp

(
−ab + a2t

2

)
. (12.39)

Indeed, using

ρP
B̃t

(b) = 1√
2π t

exp
(− (b − at)2 /(2t)

)
, (12.40)

we see that

ρQ
B̃t

(b) = 1√
2π t

exp
(−b2/(2t)

)
, (12.41)

which indeed corresponds to the probability density of the standard Brownian motion. Thus, with
respect to measure Q, the process with drift, B̃t, becomes a standard Brownian motion and is thus
a martingale. The measure Q is called the equivalent martingale measure.

Consider now the Geometric Brownian motion (12.3), which we rewrite below as

dSt = σSt

(μ

σ
dt + dBt

)
= σSt dB̃t; 0 ≤ t ≤ T , (12.42)

with

B̃t = μ

σ
t + Bt. (12.43)

The Girsanov theorem would make B̃t a standard Brownian motion with respect to the mea-
sure (12.38) with a = μ/σ , and then the SDE (12.42) will have no drift so that the stochastic
process St will be a martingale with respect to the measure Q.
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12.3.2. The martingale approach to an efficient market

With the above background, we now come to discuss about the main object of this section:
the martingale approach to an arbitrage-free market. Consider a market comprising two assets
(Bt, St), with Bt a risk-free asset (a bank deposit) and St a risky asset such as a stock that
is modelled as a stochastic process. As implied by Equation (12.1), we have the growth law
Bt = B0 exp(rt), where B0 ≡ Bt=0 is the initial amount deposited in the bank. Based on the
information available up to time t0, the expected price of St at a later time t > t0 is 〈St|S[0,t0]〉
with S[0,t0] = {Ss}s∈[0,t0], so that if the market is arbitrage-free, we now argue that the price
at time t0 should be 〈St|S[0,t0]〉/ exp(r(t − t0)). For, if the stock is priced at time t0 at a value
y < 〈St|S[0,t0]〉/ exp(r(t − t0)), then a buyer would take advantage of the situation by borrowing
an amount of money y at time t0 to buy the asset and then selling at time t to repay his debt of
y exp(r(t − t0)), thereby pocketing at time t a positive profit of 〈St|S[0,t0]〉 − y exp(r(t − t0)). On
the other hand, if the stock is priced at y > 〈St|S[0,t0]〉/ exp(r(t − t0)), then a seller would take
advantage of the situation by selling the stock at time t0 and lending an amount of money y so
that at time t, he would receive an amount y exp(r(t − t0)) and would buy back the asset to make
a positive profit of y exp(r(t − t0)) − 〈St|S[0,t0]〉. The market being arbitrage-free, it would not
allow for both these opportunities of making profit out of thin air, and hence, the stock at time t0
should be priced at 〈St|S[0,t0]〉/ exp(r(t − t0)), which by definition is the actual price St0 at time t0.
Rewriting in terms of B(t), and recalling that a bank deposit is risk-free, i.e., non-stochastic, we
get 〈

St

Bt

∣∣∣∣ S[0,t0]

〉
Q

= St0

Bt0

; t ≥ t0. (12.44)

From the definition of a martingale, it then follows that the stochastic process given by {St/Bt}t≥0

is a martingale. The ratio St/Bt is known as the discounted price of the stock St. Note that
Equation (12.44) holds with the expectation calculated with respect to a suitable probability
measure Q.

In the light of the foregoing, we now state the two fundamental theorems of asset pricing.

First Fundamental Theorem of asset pricing. If in the market there exists at least one
probability measure Q such that the discounted price St/Bt is a martingale with respect to
the measure Q, that is, 〈

St

Bt

∣∣∣∣ S[0,t0]

〉
Q

= St0

Bt0

; t ≥ t0, (12.45)

then the market does not admit arbitrage, or, in other words, the market is efficient. In
words, an efficient market is one for which it should not be possible to make definite
predictions about future price on the basis of the information available today, so that the
best prediction that one can make for the expected future price discounted to the present
time is today’s price itself. One may ask when does the measure Q exist? If the market
is arbitrage-free, the measure Q has to exist. For a mathematically-rigorous discussion of
conditions for the existence of Q, beyond the scope of this review, the reader is referred to,
i.e., Refs. [236,237].

In the above backdrop, we now turn to the Black–Scholes model of option pricing. To this end,
assume, as in Section 12.2, that there are two assets in the market: a bank deposit Bt and a stock
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St, whose dynamics are given respectively by Equations (12.1) and (12.3). Moreover, the market
is assumed to be free of arbitrage opportunities, which according to our discussions above is to be
regarded as an efficient market. Using the fact that in an efficient market, all financial assets are
martingales with respect to the measure Q, we may now write for an arbitrary European option
F(St, t) with maturity T and payoff function �(S) that

F(St, t)

Bt
=
〈

F(ST , T )

BT

∣∣∣∣ S[0,t]

〉
Q

=
〈
�(ST )

BT

〉
Q;t,St

, (12.46)

where in obtaining the second line, we have used the fact that F(ST , T ) = �(ST ). In the second
line, using Bt = B0 exp(rt), and denoting by ρQ

St
(s|St0 = s0) the probability density under the

measure Q of St with initial value St0 = S0, the quantity 〈·〉Q;t.S means the following:

F(St, t) = exp [−r(T − t)]
∫ ∞

0
ds′ �(s′)ρQ

ST
(s′|St = St). (12.47)

To obtain Q, consider the stochastic process

Zt = St

Bt
= exp(−rt)St, (12.48)

so that

dZt = r exp(−rt)St dt + exp(−rt) dSt = σZt dB̃t; B̃t = μ − r

σ
t + Bt, (12.49)

where we have used Equation (12.3) to arrive at the second equality. The latter when rewritten in
terms of the process B̃t reads

dSt = rSt dt + σSt dB̃t. (12.50)

From our previous discussion on the Girsanov theorem, we know that one can construct a measure
Q with respect to which the process B̃t is a standard Brownian motion. Note that the measure Q
will be different for different St’s that would have in general different μ and different σ that gets
reflected in having correspondingly different B̃t’s, see Equation (12.49). Then, Equation (12.50)
has the same form as the Geometric Brownian motion (12.3), with mean rate of return given by
μ = r. The latter fact, which implies that risky stocks guarantee the same mean rate of return as
the risk-free bank account, makes the pricing method based on the measure Q sometimes referred
to as risk-neutral valuation. The measure Q with respect to which the discounted stock price St/Bt

is a martingale is therefore said to be a risk-neutral measure.
Using Equation (12.7) and with the substitution μ = r, S0 = St, we thus have

ρQ
ST

(s′|St = s) = 1

s′
√

2σ 2(T − t)
exp

[
−
{
ln
(
s′/s
)− (r − σ 2/2

)
(T − t)

}2

2σ 2(T − t)

]
, (12.51)

which when used in Equation (12.47) yields

F(St, t) = e−r(T −t)√
2πσ 2(T − t)

∫ ∞

0
ds′

�(s′)
s′

exp

[
−
{
ln
(
s′/St

)− (r − σ 2/2
)
(T − t)

}2

2σ 2(T − t)

]
,

(12.52)

the same as Equation (12.35).
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In an efficient market, we know that at least one risk-neutral measure Q will exist. If a unique
Q exists, there is a unique arbitrage-free price for every derivative, and the market is said to be
complete. This brings us to the second fundamental theorem of asset of pricing:

Second Fundamental Theorem of asset pricing. An arbitrage-free (Bt, St)-market is
complete if and only if the measure Q is unique.

For rigorous mathematical proof and implications of the two fundamental theorems of asset
pricing, the reader is referred to Ref. [233].

To conclude, we see in this brief overview on use of martingales in the field of finance how
an approach based on martingales allows to obtain rather straightforwardly the solution of the
Black–Scholes equation without actually solving it using the rather nontrivial variable transfor-
mation discussed in Section 12.2. The martingality encodes the expectation that in an efficient
market, all relevant information is already reflected in the prices, so that the best possible pre-
diction for the expected future price would be today’s price. The Nobel-winning Black–Scholes
model for pricing an option contract with an underlying martingale structure provided one of the
earliest and remarkable mathematical foundations to option-market activities around the world.
The success of the model led to an eventual boom in options trading with people gaining confi-
dence in engaging in such activities. The assumptions behind the model have over the years been
relaxed and generalized in many directions, leading to a spectrum of models that are currently in
wide use in derivative pricing and risk management all over the world.

Chapter 13. Final remarks and discussion

In the old days, you could type into our main computer “Edit explain life” and you got the
answer “Life is a supermartingale”

Obituary: Joseph Leonard Doob, J. L. Snell, J. Appl. Prob. 42, 247–256 (2005).

13.1. Other revelations of martingales

There exist other fields in science where martingales have found valuable applications. Here is a
swift list of some of the miscellaneous topics that we have not covered in this treatise.

The main aim of decision theory is to develop algorithms that take fast and reliable deci-
sions from the observations of a noisy process. Wald’s sequential probability ratio test (SPRT)
[47,238,239] is optimal amongst sequential hypothesis tests with a prescribed error probabil-
ity when the observation process consists of a sequence of iid random variables, in the sense
that it provides the minimum average time to decide between two competing hypothesis. In
addition, for a broad class of observations processes Wald’s SPRT is optimal in the asymp-
totic limit of small prescribed error probabilities when neglecting subleading order terms [47].
The recent work [240] shows that Wald’s SPRT is optimal in an information theoretically sense
for continuous observation processes, providing an information theoretical interpretation for the
SPRT.

The SPRT takes sequential observations from a stream of data coming from a stochastic
process Xt, and measures the weight of evidence through the log-likelihood ratio

�t = log
P(X[0,t]|H1)

P(X[0,t]|H2)
, (13.1)
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where P(X[0,t]|H1) and P(X[0,t]|H2) are the path probabilities for the sequence X[0,t] when the
statistical hypothesis H1 and H2 are, respectively, true. Wald’s SPRT takes a decision when the
log-likelihood ratio leaves the interval (−L2, L1) for the first time with L1 > 0 and L2 > 0 the
decision thresholds, i.e.,

T = min {t ≥ 0 : �t ≤ −L2 or �t ≥ L1} . (13.2)

When �T ≥ L1, then the SPRT test decides for H1, whereas if �T ≤ −L2, then the SPRT decides
for H2. The decision thresholds are set by the prescribed error probabilities [47,238,239].

Reference [34] uses Wald’s SPRT to decide on the direction of time’s arrow from the observa-
tion of a trajectory drawn from a time-homogeneous stationary process. Interestingly, [34] shows
that the mean decision is related to the entropy production rate of the process. Moreover, as the
log-likelihood ratio (13.1) has the form of a �-stochastic entropic functional (see Chapter 6), it
is possible to exploit the mathematical machinery of martingales to derive fluctuation relations
for decision times [11] and to develop quantitative criteria on how far from Wald’s optimality is
a decision maker [241].

A field in physics where martingales have found profound applications and we did not discuss
in this treatise are quantum measurements. Briefly, in models of iterated discrete (continuous)
time measurements, the collapse of the system at large times can be rationalized in terms of the
convergence theorem of submartingales (as Theorem 8 in Chapter 4 or more precisely version
with almost sure convergence). More precisely, under a discrete iterated (resp. continuous) time
measurement, the diagonal elements of the density matrix is a martingale, in a special basis called
pointer basis and given by a non-demolition hypothesis [242]. For a pure state, such martingale
is given by the modulus square of the projection of the ket in the pointer basis. This result has
been shown for both continuous time [243] and discrete time [244].

Let us now we give a smell of this formulation in a physical example. In continuous-time
quantum measurements, the equation for the evolution of the density matrix is called quantum
trajectory [242]; it is given by a matricial stochastic differential equation with Gaussian and/or
Poissonian white noise. If the Hilbert space of the system is two-dimensional with orthonormal

basis {|+〉, |−〉},20 then the density matrix in this basis is parametrized by ρt =
(

Xt Zt

Zt 1−Xt

)
where

Xt ∈ [0, 1] and Zt is the coherence of the density matrix. Then the quantum trajectory with Gaus-
sian noise which results from the continuous measurements of the operator21 1

4σz = 1
4

(
1 0
0 −1

)
, is

given by the Ito stochastic differential equation for Xt

Ẋt = rXt (1 − Xt) Ḃt, (13.3)

where r is a parameter quantifying the rate of measurement. Figure 13.1 shows representative
trajectories for Xt obtained from numerical simulations.

Then, from the absence of drift in this stochastic differential equation, Xt is a bounded (local)
Martingale and converges to X∞ ∈ {0, 1} by virtue of continuous-time version of Theorem 8 in
Chapter 4. Moreover, the martingale property implies that X0 = 〈X∞〉 = 1 × P(X∞ = 1) + 0 ×
P(X∞ = 0). We then find the Born law as an emergent property:{

P (X∞ = 1) = X0 = Tr (P1ρ0)

P (X∞ = 0) = 1 − X0 = Tr (P−1ρ0)
with

{
P1 = |1〉 〈1|
P−1 = |−1〉 〈−1| .

Lastly, let us mention two more interesting applications of martingales in statistical physics. In
the context of spin glass theory [245,246], a full replica symmetry breaking theory for a spin



Advances in Physics 223

Figure 13.1. Representative time series of the process (13.3). Parameters: r = 1, X0 = 1/3, dt = 10−3.

glass on a Bethe lattice, which is one of the main open challenges in this research area, has
been formulated with the help of martingales [247,248]. In the theory of critical phenomena,
Cardy’s formula for the crossing probability of a stochastic Loewner evolution, which in the case
of percolation gives the probability that there exist a percolating cluster, has been rederived and
extended with martingales [249]. Martingales also play a key role in the study of nonequilibrium
properties of interacting particles, see i.e., Spohn’s treatise [250]. In particular, martingale
theory was applied to prove directly weak convergence of path probabilities, which go beyond
the convergence of moments as done in expansion techniques. Fruits of this approach, explicit
proofs for the Green-Kubo formula, current statistics and various hydrodynamic limits can be
retrieved through elegant calculations, see also Refs. [251–253].

Discussion

This treatise highlights the use of martingale theory in statistical physics, population dynam-
ics, and quantitative finance. Although martingales have been used extensively in the latter two
research areas, its relevance and usefulness for statistical physics, notably stochastic thermody-
namics, is a recent endeavor. Taken together, the results and techniques reviewed here address
why a statistical physicist should learn martingale theory. As we have shown, martingales are
ubiquitous and their properties are fundamental in probability theory. Therefore, we think that
martingale theory can be considered as relevant for statistical physics as, i.e., the theory of
Markov processes or large deviation theory. Particularly interesting is the fact that once a martin-
gale, submartingale, or supermartingale has been identified, we can use theorems from martingale
theory to unveil universal physical principles. For random walks, the “martingale” approach is
particularly useful when dealing with first-passage properties and extreme-value statistics. As
we have shown with several examples, non-trivial extreme-value and first-passage-time calcu-
lations can be greatly simplified upon using Doob’s theorems for stopping times. This leads
to another key concept for physics unveiled by this treatise, viz., the stopping time. We have
thoroughly reviewed the concept of stopping times in the context of stochastic processes as gener-
alized first-passage times. Furthermore, upon applying several well-known martingale theorems
to physically-relevant stopping times, we have presented several “shortcuts” to calculations of,
i.e., absorption probabilities, first passage time statistics (mean, second moment, distributions),
and finite-time statistics of extrema.
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When dealing with the stochastic thermodynamics of small systems, the martingale approach
provides novel insights with respect to conventional fluctuation theorems developed in the 1990s
and 2000s. On one hand, the martingale structure of thermodynamically-relevant probability
ratios leads to a tree-like hierarchy of second laws of thermodynamics, among which only some
of them were known previously in the literature. Furthermore, applying mathematical proper-
ties of martingales to thermodynamics quantities unveils universal fluctuation relations for, i.e.,
stopping times, extrema, and absorption probabilities of entropy production in stationary states.
Interestingly, for stationary processes one can overcome classical limits for, i.e., the efficiency
of thermal machines, by stopping the dynamics of a system upon a cleverly-chosen time. On
the other hand, we have shown that extra care is required when applying martingale concepts
to non-stationary processes, as the second laws at stopping times are in this context nontriv-
ial generalizations of the traditional second laws at fixed times. This leads to the so-called
gambling opportunities, which allow an observer to extract more work from a system than
given by the free energy difference between the initial and final state through several execu-
tions of a protocol stopped at a cleverly chosen strategy. For future work, it will be interesting
to relate the martingale bounds on work extraction to the performance of Szilard demons or
engines [179,254].

We expect that martingales will find use in statistical physics beyond the study of fundamental
principles in stochastic thermodynamics. In biophysics, recent work proposed that small living
systems (i.e., cells) can take accurate rapid decisions in noisy environments through applying
threshold criteria (i.e., Wald’s SPRT) to accumulated chemical species [255,256]. Similarly, in
cognitive neuroscience it has been hypothesized that binary perceptual decisions taken by i.e.,
rhesus monkeys [257,258] result from the accumulation of neural evidence in the brain and the
implementation of log-likelihood-ratio threshold tests. The plethora of second laws for path-
probability ratios discussed in this work and the trade-off relations between speed and accuracy
may thus shed further light in understanding decision making of living systems from the sub-
cellular to the whole organism level [259,260]. Furthermore, stopping times form a versatile
toolbox with applications in various research areas. A notable example is computer science [261],
where the first thermodynamics insights brought by, i.e., Landauer and Bennett [262,263] were
rationalized by the field of information thermodynamics [201]. The development of a comprehen-
sive stochastic-thermodynamic framework of computation is, however, still in its infancy [264].
Stopping-time statistics could be pushed forward in unveiling novel generic thermodynamic laws
that govern computational tasks executed by, i.e., finite automata, Turing machines, and quantum
computers, and beyond.

Notes
1. “I went [to Venice’s casino], taking all the gold I could get, and by means of what in gambling is called

the martingale I won three or four times a day during the rest of the carnival”.
2. For the example of a Markov chain, which we introduce below in Chapter 3, explicit time dependence

occurs if the transition matrix in Equation (3.2) has a supplementary dependence on n, i.e., the path-
probability equation (3.4) reads

Q(n)(x[0,n]) = ρ0(x0)

n∏
j=1

w(n)(xj−1, xj). (2.20)

Note that this latter property is different than the time-inhomogeneity of a Markov chain for which
the transition matrix has a supplementary dependency on the present time j and the path-probability
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equation (3.4) reads

Q(x[0,n]) = ρ0(x0)

n∏
j=1

w(j)(xj−1, xj). (2.21)

This time inhomogeneity is not a problem for the last step of the derivation in Equation (2.19), which
remains valid.

3. See [265] for generalizations where α ∈ R and even space dependent.
4. The expression of the spurious drift depends on the convention chosen in Equation (3.65). In some

references, it is claimed that the spurious term disappears in the anti-Itô convention (α = 1 in
Equation (2.85)) of the isothermal overdamped version of (3.65), and therefore the convention α = 1 is
often called the isothermal convention. Note, however, that the spurious drift disappears in the anti-Itô
convention only for the case Dt(x) = gt(x)Dt, with g a scalar function and Dt a space homogeneous
matrix, i.e., if all the x dependence is in the scalar part. The latter condition holds in one dimension,
but is not generally true for d ≥ 2. See also [266,267]. An alternative perspective is to consider the
Langevin equation (3.65) as the zero correlation time limit of Equation (3.65) but with a colored,
Orsntein–Uhlenbeck noise, see [268,269]. Note that the limiting equation has also in general a non-
vanishing spurious drift, except for the one-dimensional case if we choose to write Equation (3.65)
in the Stratonovich convention. Such spurious drift is in general different to the spurious drift in
Equation (3.65). For the expression and the proof of such spurious drift in the general case, we refer to
Theorem 7.2 on page 497 of the book [270].

5. Indeed, if we apply Itô’s formula to exp(Z), see Appendix B.3, with Z = Yt − Y0 − [Y , Y ]t/2, and use
that [Y , [Y , Y ]] = 0 and [[Y , Y ], [Y , Y ]] = 0, we obtain Equation (4.92). Note that the correction term
inside the exponential can be understood from the passage of Equation (4.92) from the Itô convention
to the Stratonovich convention (see Appendix B.3 on stochastic integrals).

6. The Ẋs in these relations must be interpreted in Stratonovich convention.
7. The Dynkin martingale approach does not provide a rigorous proof of martingality neither as exp(−s)

is not a bounded function, which is required to show martingality, see Theorem 4.
8. See also the footnote in Section 2.1.3 for an example in the discrete-time setup.
9. Here, �[s,t] should depend on X[s,t] only.

10. An example of Markov process where we have condition (3) without condition (2) is a general Isother-
mal Langevin equation: (3.65) with Einstein relation (3.69), without external force ft = 0, generic
time-homogeneous potential Vt = V , and with the mobility matrix μt having an explicit time depen-
dence. For this example, the stationary density is the Gibbs density ρst ∼ exp(−H(x)/T), and if
moreover ρ0 = ρst, we have (3) without (2).

11. For all 0 ≤ r ≤ s ≤ t, we have the decomposition of the Markovian path probabilities

P[0,s]
(
X[0,t]

) = P[0,r]
(
X[0,t]

)
P[r,s]

(
X[0,t]

)
ρr (Xr)

, (6.136)

and

Q(t)
[t−s,t]

(
�tX[0,t]

) = Q(t)
[t−s,t−r]

(
�tX[0,t]

)
Q(t)

[t−r,t]

(
�tX[0,t]

)
ρ

Q(t)

t−r (Xr)
. (6.137)

12. This follows from stationarity which gives 〈�Ssys
t 〉 = 0, and the fact that the second law (6.29) holds

for all normalized Q.
13. The nonequilibrium free energy is formally defined as Gne

t = Vt − TSsys
t , see Equation (9.16) in Chap-

ter 9, with Et and Ssys
t the (stochastic) energy and nonequilibrium entropy of the system at time t. We

will provide a proof of the second law (8.47) in Chapter 9, see Equation (9.26).
14. See p. 174–175 in [98] for a detailed proof of Equation (9.12)
15. Except for the case Q = Qst where we have (9.35).
16. Note that if we replaced mT+1 on the left-hand side by sT+1 = MT+1 − MT, the equation is nothing but

the definition of our quenching protocol.
17. While the analogy is not close, let us regard the ensemble of the graphs {(t, Mt)}T≤t≤N0 representing

the histories of the total magnetization on the (t, M )-plane as a light wave emitted from (T , MT ) in
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the direction parallel to (1, mT ). In the wave optics, when the wavelength of the light is non-negligible
against the aperture of the light source, the flux of light is broadened as it propagates while the location
of the maximum intensity goes along the “ray”, Mt = MT + (t − T)mT for T ≤ t ≤ N0, according to
the geometrical optics. Likewise, in the Progressive Quenching, the stochasticity causes diffusion of
the trajectories around the mean history, Mt = MT + (t − T)mT for T ≤ t ≤ N0. While the broadening
of the light flux grows linearly with distance from the source, the trajectories of Progressive Quenching
will diffuses like ∼ (t − T)1/2 for T ≤ t ≤ N0.

18. There are two types of markets – primary and secondary. When a company issues its shares, the process
is called Initial Public Offering (IPO). Investors interested in buying the shares have to apply to procure
the shares. In case there are more applications than the number of shares issued, applicants are chosen
randomly. Selected applicants buy shares directly from the company. Stock exchanges have no part to
play here. This is referred as the primary market. After the above process is complete, the company
gets listed in the stock exchanges. Only after this can an investor trade (buy or sell) the stock of the
company in the exchanges from another share holder. This is called the secondary market.

19. In the market, there are also speculators who unlike the hedgers like to take risks, by anticipating trends
in the market and exploiting them to make profit [228].

20. Which will be here also the pointer basis.
21. This matrix is diagonal in the orthonormal basis | ± 1〉; this is the meaning of the quantum non-

demolition hypothesis here.
22. In mathematics, a set A is considered a subset of a set B, or, equivalently, B is a superset of A, if all

elements of A are also elements of B.
23. We might appreciate this meaning from different facets: (1) When a pair of histories, ω and ω′, realizes

the identical set of data X[0,n], therefore also identical 〈z|X[0,n]〉, it can occur that z(ω) �= z(ω′). (2)
When a history ω is given, 〈z|X[0,n]〉 takes the average of z over all the histories {ω′} which share the
same tata X[0,n]. (3) z can be any function of n variables, X[0,n]. Nevertheless, each of X[0,n] are prefixed
functions of the history, being independent of z. While z is an object of observation, X[0,n] are the
measureing apparatus for that. (4) Yet, z is not restricted to a linear combination of X[0,n] and, therefore,
the functional subspace spanned by 〈z|X[0,n]〉 is not n-dimensional.
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Appendix A. Appendix to Chapter 1

A.1. Random walk between two absorbing boundaries
Consider a random walker moving in discrete time steps on a one-dimensional lattice, with Xt ∈ {−L,−L +
1, . . . , L} the sites of the lattice. At every discrete time step, the walker hops to its right-neighbor site with
probability 0 ≤ q ≤ 1 and to its left-neighbor site with a complementary probability 1− q. The process ter-
minates at the random time T when either Xt = L or Xt = −L. This is the classical gambler’s ruin problem,
as formulated, for example, in Feller’s treatise on probability theory [44]. Following Ref. [44], we determine
here the splitting probabilities and mean-first passage time of the gambler’s ruin problem, see also [8].

https://people.math.harvard.edu/~knill/books/KnillProbability.pdf
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A.2. Splitting probabilities
We determine the probabilities P+(i) and P−(i) that the walker ends its excursion at XT = L or XT = −L,
respectively, given that the walker started its excursion from site X0 = i.

The splitting probabilities satisfy the following recurrence equation:

P−(i) = qP−(i + 1) + (1 − q)P−(i − 1), for i ∈ {−L + 1,−L + 2, . . . , L − 1} , (A1)

with boundary conditions P−(−L) = 1 and P−(L) = 0. For q �= 1/2, Equation (A1) admits solutions of
the form P−(i) = αi. Substitution in Equation (A1) gives α = qα2 + (1 − q), which admits two solutions,
α = 1 and α = (1 − q)/q. Consequently,

P−(i) = α0 + β0

(
1 − q

q

)i

(A2)

where α0 and β0 are determined by the boundary conditions. Consequently,

P−(i) =
(

1−q
q

)2L −
(

1−q
q

)i+L

(
1−q

q

)2L − 1
(A3)

and analogously,

P+(i) =
(

1−q
q

)i+L − 1(
1−q

q

)2L − 1
. (A4)

Note that since the solution to Equation (A1) with boundary conditions P−(−L) = 1 and P−(L) = 0 is
unique, these are the expressions for the splitting probabilities.

For q = 1/2, we suggest a linear solution of the form

P−(i) = α0 + β0i (A5)

leading to

P−(i) = 1 − i + L

2L
. (A6)

Equations (1.15) and (1.16) in the main text are obtained by setting i = 0 in Equations (A3)–(A6).

Figure A1. Comparing Equation (1.15) with results from simulations for L = 5. The data involve sampling
106 independent dynamical realizations.
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A.3. Mean first-passage time
We determine the mean duration of the process, τi = 〈T |X0 = i〉, which obey the recurrence relations

τi = qτi+1 + (1 − q)τi−1 + 1 (A7)

with boundary conditions

τ−L = τL = 0. (A8)

For q �= 1/2, the solution takes the form

τi = i + L

1 − 2q
+ α0 + β0

(
1 − q

q

)i

(A9)

Using the boundary conditions, we find

τi = L + i

1 − 2q
− 2L

1 − 2q

1 −
(

1−q
q

)i+L

1 −
(

1−q
q

)2L
(A10)

On the other hand, for q = 1/2 the solution takes a quadratic form

τi = −i2 + α0 + β0i, (A11)

such that with boundary conditions

τi = (i + L)(L − i). (A12)

Equations (1.18) and (1.19) in the main text are obtained by setting i = 0 in Equations (A10) and (A12).

Appendix B. Appendix to Chapter 2

B.1. A primer on probability theory
Here, we provide a primer on probability theory, emphasizing in particular the elements that may prove to
be both essential and useful in reading this review. For a more extensive treatise on probability theory within
the ambit of quantitative finance, the reader is referred to Ref. [232]. While a physicist’s notion of probabil-
ity and measure may suffice to understand martingales, the rigorous mathematical foundation of probability
theory, a glimpse of which is provided below, is absolutely necessary to comprehend scientific papers (reg-
ular postings may be found on the arXiv: https://arxiv.org/list/q-fin/new) and standard mathematical treatise
on quantitative finance, i.e., Ref. [232]

B.1.1. Probability space and σ -algebra
In discussing probability, one talks about a random experiment or a random trial, namely, an experiment
whose outcome is random, i.e., one gets in general a different outcome every time the experiment is repeated
under identical conditions. Let � denote the sample space, i.e., the set of all possible elementary outcomes
ω of the random trial. An event A is a subset22 of �. The set of observable events is the collection F of
subsets of � (conventionally called the family of subsets of �) with the following properties:

(1) ∅ ∈ F and � ∈ F . Here, ∅ is the empty set, denoting the event “nothing happens”, while � denotes
the event “something happens”.

(2) A ∈ F =⇒ Ac ∈ F , where Ac is the complement of A (if A is an event, “A does not happen” is
also an event).

(3) A1, A2, A3, . . . ∈ F =⇒ ∪iAi ∈ F (if a sequence of events can occur, then “at least one of them
occurs” is also an event).

When the above properties are satisfied, F is said to form a σ -algebra on �. From the three properties, it fol-
lows that A1, A2, A3, . . . ∈ F =⇒ ∩iAi ∈ F . An element A ∈ F is called a measurable set or an observable
event. The pair (�,F) forms the measure space.
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Given a sample space � and a σ -algebra F on �, a probability measure is a function that assigns
to each event A ∈ F a nonnegative real number ≤ 1. Specifically, a probability measure P is a function
P : F → [0, 1], such that

(1) P(A) ≥ 0 ∀ A ∈ F ,
(2) P(∅) = 0 and P(�) = 1, and
(3) For A1, A2, . . . ∈ F , if Ai ∩ Aj = ∅∀i �= j, then P(∪iAi) =∑i P(Ai).

Altogether, the triple (�,F , P) forms a probability space.
Let us consider an example:

• Random trial: Tossing a coin two times in a row.
• Sample space � = {HH , TT , HT , TH} = {ω1, ω2, ω3, ω4}.
• Event: could be “getting identical result in the two throws”: A = {ω1, ω2}.
• For F , there are several possibilities:

(1) The smallest σ -algebra: Fmin = {∅, �} (the events are “getting nothing” and “getting some-
thing”). Fmin contains what is known before the random trial is performed.

(2) Another possibility: F1 = {∅, {ω1, ω2}, {ω3, ω4}, �}. F1 contains what can be observed after the
first trial: whether the random trial gives identical or non-identical results for the two throws.

(3) Another one: F2 = {∅, {ω3}, {ω4}, {ω1, ω2}, {ω3, ω4}, {ω1, ω2, ω4}, {ω1, ω2, ω3}, �}. F2 contains
information on what can be observed after the second trial. Note that here, i.e., the element {ω3}
refers to the event “Observing HT”, the element {ω1, ω2, ω4} refers to observing the correspond-
ing complement event, i.e., the event “Not observing HT”. Here, we have assumed that Fs ⊂ Ft
for s ≤ t, since a natural expectation is that with subsequent throws, we gain new information and
do not discard the old ones.

(4) The largest σ -algebra:

Fmax = {∅, {ω1}, {ω2}, {ω3}, {ω4}, {ω1, ω2}, {ω1, ω3}, {ω1, ω4}, {ω2, ω3}, {ω2, ω4},
{ω3, ω4}, {ω1, ω2, ω3}, {ω1, ω2, ω4}, {ω1, ω3, ω4}, {ω2, ω3, ω4}, �}. (B1)

Fmax is the largest possible collection of events that can be observed on tossing a coin two times
in a row.

Summarizing, we may think of a σ -algebra F as the amount of information contained in � that can be
observed: The smaller the F , the lesser is the amount of information we have of �.

From the above example, we see an illustration of the general result that the smallest σ -algebra Fmin
consists of the empty set ∅ and the sample space �, while the largest σ -algebra Fmax consists of all subsets
of � including the empty set and the set � itself (Fmax would conventionally be called the power set of
�); note that the number of elements in Fmax is 2 raised to the power “number of elements in �”, hence,
one writes Fmax = 2�. A σ -algebra G is a sub-σ -algebra of another σ -algebra F if G ⊂ F . In the above
example of tossing a coin two times in a row, we have F1 ⊂ Fmax.

B.1.2. F-measurability, random variables and stochastic processes
We now discuss the concept of F -measurability. Let (�,F , P) be a probability space. A function f : � → R
is said to be F -measurable if to any given interval (a, b) ∈ R one can associate an event A ∈ F . Consider
throwing a die. Here, we have � = {1, 2, 3, 4, 5, 6}. Next, consider the function X ≡ X (ω) that equals +1
if ω is either 1 or 3 or 5 and equals −1 if ω is either 2 or 4 or 6. Then, X is measurable with respect
to the σ -algebra F1 = {∅, �, {1, 3, 5}, {2, 4, 6}} but is not measurable with respect to the σ -algebra F2 =
{∅, �, {1, 2, 3}, {4, 5, 6}} or with respect to the σ -algebra F3 = {∅, �, {1, 2}, {3, 4}, {5, 6}}. A random variable
X on a probability space (�,F , P) is an F -measurable function. A collection of random variables {Xt}
defined on the probability space (�,F , P) and parametrized by the variable t is called a stochastic process.
Taking t to be time, the stochastic process may be denoted as {Xt}t≥0, or, when no confusion may arise, by
simply Xt as in the Main Text.

B.1.3. Filtration and adaptation
Given a probability space (�,F , P), a filtration is a collection {Ft}t≥0 of nested sub-σ -algebras of F such
that Fs ⊂ Ft for 0 ≤ s ≤ t. The probability space with filtration {Ft}t≥0 is called the filtered probability
space (�,F , {Ft}, P). A stochastic process {Xt}t≥0 defined on (�,F , P) whose values can be completely
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determined from {Ft}t≥0 is said to be adapted to the filtration {Ft}t≥0. In other words, the process {Xt}t≥0

is adapted to the filtration {Ft}t≥0 if Xt is Ft-measurable for every t ≥ 0. The natural filtration {FX
t }t≥0

associated to a stochastic process {Xt}t≥0 is a filtration that records the past behavior of the stochastic process
at each time, i.e., the information contained in the trajectories {Xt} up to time t. Thus, all information related
to the process, and only that information, is available in the natural filtration. Note that {Xt}t≥0 is obviously
adapted to its natural filtration. The reader is referred to Ref. [271] in which several illustrative examples of
filtration and adaptation are discussed.

B.1.4. Conditional expectation
Given a random variable X on a probability space (�,F , P) and a sub-σ -algebra F ′ ⊂ F , one may define
a new random variable as the conditional expectation of X :

Z ≡ 〈X |F ′〉, (B2)

namely, the expected value of X, given the information contained in F ′, i.e., the conditional expectation. The
conditional expectation satisfies 〈X |F〉 = X if X is F -measurable, and the property of iterated conditioning
[232] given by 〈〈X |F〉〉 = 〈X 〉.

In more practical terms, for two discrete random variables X and Y, the conditional probability distri-
bution of X given Y is the probability distribution of X when Y is known to have a particular value. Thus
the conditional probability distribution of X given Y = y is given by the Bayes’ theorem from probability
theory:

P(X = x|Y = y) = PX ,Y (x, y)

PY (y)
. (B3)

Here, PX ,Y (x, y) is the joint distribution of the random variables X and Y, while PY (y) is the probability dis-
tribution of the random variable Y alone. The definition in Equation (B3) holds also for continuous random
variables. Considering the case of continuous random variables, we then have the conditional expectation

〈X |Y 〉 =
∫

dx xP(X = x|Y = y), (B4)

so that

〈〈X |Y 〉〉 =
∫

dy PY (y)
∫

dx xP(X = x|Y = y)

=
∫

dx x
∫

dy PX ,Y (x, y)

=
∫

dx xPX (x)

= 〈X 〉. (B5)

Here, in obtaining the second step, we have used Equation (B3).

B.2. Tower rule
In Section 2.1.3 we introduced the conditional-expectation process as a key example of martingale. For this
route to the martingale the core is the tower property,

〈〈Z|X[0,n]〉|X[0,m]〉 = 〈Z|X[0,m]〉 0 ≤ m ≤ n.

In the main text Z = Xq (q ≥ n) has been taken, but Z can be any random variable whose statistical character
is given once X[0,m] is known. See, for example, Chapter 10.
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B.2.1. Elementary tower rule
We first recall Equation (B5) in Section B.1.4, that we write

〈 〈Z|X 〉 〉 = 〈Z〉. (B6)

The fact that the conditional expectation 〈Z|X 〉 is found at the inside of another expectation implies that X is
also a random variable. In other words, the value of the condition X = x occurs according to the probability
of X, that is ρX (x). The outer expectation is taken according to such probability distribution.

B.2.2. Higher order tower rule
We can immediately extend the above rule to a higher order Tower Rule,

〈 〈Z|X[0,n]〉|X[0,m]〉 = 〈Z|X[0,m]〉, 0 ≤ m ≤ n, (B7)

where we have used the abbreviation X[0,m] = X0, X1, . . . , Xm, etc., for the sequence of random variables
with consecutive discrete time. Below we shall also abuse this notation for x[0,m] = x0, x1, . . . , xm, etc. The
demonstration is done in the same line as (B6):

〈 〈Z|X[0,n]〉
∣∣X[0,m]〉 =

∑
x[m+1,n]

〈Z|X[0,m], x[m+1,n]〉PX[m+1,n]|X[0,m](x[m+1,n]|X[0,m])

=
∑

x[m+1,n]

(∑
z

zPZ|X[0,n](z|X[0,m], x[m+1,n])

)
PX[m+1,n]|X[0,m](x[m+1,n]|X[0,m])

=
∑

x[m+1,n]

∑
z

zPX[m+1,n],Z|X[0,m](x[m+1,n], z|X[0,m])

=
∑

z

zPZ|X[0,m](z|X[0,m]) = 〈Z|X[0,m]〉, (B8)

where we have used

PZ|X[0,n](z|X[0,m], x[m+1,n])PX[m+1,n]|X[0,m](x[m+1,n]|X[0,m])

= PX[0,n] ,Z(X[0,m], x[m+1,n], z)

PX[0,n](X[0,m], x[m+1,n])

PX[0,n](X[0,m], x[m+1,n])

PX[0,m](X[0,m])

= PX[m+1,n],Z|X[0,m](x[m+1,n], z|X[0,m]) (B9)

and
∑

x[m+1,n]
PX[0,n] ,Z(X[0,m], x[m+1,n], z) = PX[0,m],Z(X[0,m], z). It is worth noting the similarity of this deriva-

tion to the one for the martingality of the ratio of path probability densities, see (2.19). In fact both have the
common origin in the inclusively ordered series of conditional probabilities, or, the ordered structure of the
filtration, see Section B.1.3. In other words, behind these generic ways to make martingale processes, i.e.,
by the path probability ratios and by the higher order tower rule, there lies the tower rule for the conditional
probability function.

We illustrate intuitively the tower property or tower-rule of the conditional expectation (B7). We hope
this illustration helps a little for demystifying the martingale. Let z be a random variable (RV), that is, a
function of the elementary event which we regard to be a sample history. In Figure B1, we schematize
by the 3D space the functional space on the elementary events. For example, the RV, z, is a vector. When
Xk’s represents the value of an observable X at time k, it is also a function of the history, therefore, of the
elementary event. Then the expectation 〈z|X[0,n]〉 is also the function of the elementary event but through
X1, . . . , Xn. However, being different from z this expectation spans only a subspace of the whole functional
space, which we symbolize by the 2D bottom plane in Figure B1. Then 〈z|X[0,n]〉 is said to be the orthogonal
projection of z onto the sub-space associated with X[0,n]. Then it is understandable that 〈z|X[0,m]〉 with m < n
as function of elementary event finds itself in the (further) sub-space associated with (X[0,m]), which we
schematize by an 1D edge in Figure B1.

Physically speaking we interpret 〈z|X[0,n]〉 as a coarse-grained version of z as function of sample history
such that its value is determined only through n data, X[0,n].23 It is understandable that 〈z|X[0,m]〉 with
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Figure B1. Schematic illustration of the tower property of the conditional expectation.

m < n is even more coarse-grained than 〈z|X[0,n]〉. Now the tower property or tower rule is nothing but an
elementary extension of the theorem of three perpendiculars in Euclidean geometry, which claims that the
orthogonal projection through an intermediate orthogonal projection is identical to the one obtained by the
direct projection. In the present context, the coarse-grained observation of z through the data set, X[0,m], can
be either obtained directly, 〈z|X[0,m]〉, or passing through an intermediate version, 〈z|X[0,n]〉 with t > s. In
equation,

〈z|X[0,m]〉 = 〈 〈z|X[0,n]〉 |X[0,m]〉,

the martingale Mm = 〈Mn |X[0,m]〉 emerges if we regard Mn = 〈z|X[0,n]〉 as a process associated to the
process X[0,n].

B.3. Basics of stochastic calculus
Let Xt be a stochastic process that obeys a stochastic differential equation. What is the stochastic differential
equation of the process Yt = g(Xt), where g is a twice continuously, differentiable function? The rules of
stochastic calculus, which we review here, provide a solution to this problem.

We first review the rules of stochastic calculus for the simplest case of a one-dimensional Itô process in
Section B.3.1, and subsequently we consider the case of multi-dimensional Itô processes and semimartin-
gales, which is loosely defined as any stochastic process that is a good integrator for the Itô integral, in
Sections B.3.2 and B.3.3. Lastly, in Section B.3.4, we review how to express an Itô integral in terms of a
Stratonovich integral. We follow the references [64,70].

B.3.1. Itô’s formula
Let Xt ∈ R be a stochastic process that solves a stochastic differential equation of the form

Ẋt = bt(X[0,t]) + σt(X[0,t])Ḃt, (B10)
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where Bt is the one-dimensional Brownian motion, as defined in Section 2.2.2, and where

P
(∫ t

0
dsσ 2

s (X[0,s]) < ∞, ∀t ≥ 0

)
= 1 (B11)

and

P
(∫ t

0
ds|bs(X[0,s])| < ∞, ∀t ≥ 0

)
= 1. (B12)

Let g(t, x) be a twice continuously differentiable function in t ∈ R+ and x ∈ R, then the process

Yt = g(t, Xt) (B13)

solves the stochastic differential equation [64]

Ẏt = ∂g

∂t
(t, Xt) + ∂g

∂x
Ẋt + Dt(X[0,t])

∂2g

(∂x)2 (t, Xt), (B14)

where

Dt = σ 2
t

2
. (B15)

Itô’s formula can be understood from a Taylor expansion of g(t + dt, Xt+dt), viz.,

g(t + dt, Xt+dt) − g(t, Xt) = ∂g

∂t
dt + ∂g

∂x
dXt + 1

2

∂2g

∂t2
(dt)2 + 1

2

∂2g

(∂x)2 (dXt)
2 + 1

2

∂2g

∂t∂x
dtdXt + · · · ,

(B16)

Neglecting contributions of the order O((dt)2), and using dXt = Ẋtdt with Xt solving Equation (B10), we
obtain

g(t + dt, Xt+dt) − g(t, Xt) = ∂g

∂t
dt + ∂g

∂x
dXt + ∂2g

(∂x)2 btσtdtdBt + 1

2

∂2g

(∂x)2 σ 2
t (dBt)

2 + O((dt)2). (B17)

Using in Equation (B17) that dtdBt ∈ o(dt) and (dBt)
2 = dt, we readily obtain the Itô formula (B14) after

neglecting o(dt) terms.
To show that (dBt)

2 = dt, we determine the probability distribution of (dBt)
2, see also Ref. [272]. The

distribution of dBt is a normal distribution with zero mean and variance dt, i.e.,

ρdBt (x) = 1√
2πdt

exp

(
− x2

2dt

)
. (B18)

Consequently, we obtain for the distribution of (dBt)
2,

ρ(dBt)2(y) = 1√
2πdt

∫ ∞

−∞
dx exp

(
− x2

2dt

)
δ(y − x2) = 1√

2πdt

1√
y

exp
(
− y

2dt

)
. (B19)

In the limit of dt → 0 it holds that (dBt)
2 = dt. Indeed, the average 〈(dBt)

2〉 = dt and 〈(dBt)
4〉 = 3(dt)2, so

that its variance is negligible.

B.3.2. Multidimensional Itô formula
We review the generalization of the Itô formula Equation (B14) to the multidimensional case.

Consider now

Ẋt = bt(X[0,t]) + σt(X[0,t])Ḃt (B20)

where bt = (b1
t , b2

t , . . . , bd
t )† ∈ Rd , where σt ∈ Rd × Rm is a matrix with entries σ

ij
t where i = 1, 2, . . . , d

and j = 1, 2, . . . , m; and where Bt = (B1
t , B2

t , . . . , Bm
t ) is a vector of m independent Brownian motions.
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We require that each of the individual bi
t satisfy Equation (B12) and each of the individual σ

ij
t satisfy

Equation (B11).
Let

Yt = g(t, Xt), (B21)

where Yt ∈ R and where g is twice, continuously differentiable. It then holds that

Ẏt = ∂g

∂t
(t, Xt) +

d∑
i=1

∂g

∂xi
Ẋ i

t + 1

2

∑
i,j

∂2g

∂xi∂xj
Ẋ i

t Ẋ j
t , (B22)

where Ẋ i
t Ẋ j

t follows from applying the rules

ḂiḂj = δi,jdt, Ḃidt = 0, (dt)2 = 0 (B23)

to Equation (B20).

B.3.3. Meyer–Itô formula for semimartingales
We review the Itô formula for so-called semimartingales X, which are stochastic processes that form good
integrators of the Itô integral [70]. According to the Bichteler–Dellacherie theorem, a semimartingale can
be decomposed into a local martingale (L) and a finite variation process (A) [70], viz.,

Xt = At + Lt. (B24)

A process At is a finite variation process if with probability 1 the paths of A have a finite total variation
supP

∑n−1
i=0 |Ati − Ati−1 | on each compact interval [0, t], where P is a finite partition of [0, t], as defined in

Section 2.2.2. Note that differently from Itô processes, semi-martingales may contain jumps; examples of
semi-martingales are Itô processes, (inhomogeneous) Poisson processes, Lévy processes [273], and cádlág
(right-continuous in t and with existing left limits) martingales and submartingales. The fractional Brownian
motion is an example of a stochastic process that is not a semi-martingale, and hence the Itó integral does
not exist for the latter [274].

Let us assume for simplicity that X ∈ R, and let g be again a twice, continuously differentiable function,
and consider

Yt = g(t, Xt). (B25)

It then holds that

Yt − Y0 =
∫ t

0
(∂tg)(Xs)ds +

∫ t

0+

dg

dx
(Xs−)dXs + 1

2

∫ t

0

d2g

(dx)2 (Xs−)d[X , X ]c
s

+
Nt∑

j=1

(
g(XT +

j
) − g(XT −

j
) − dg

dx

(
XT −

j

) (
XT +

j
− XT −

j

))
, (B26)

where [X , X ]c
s is the continuous part of the quadratic variation [X , X ], defined in Equation (2.71), Nt denotes

the number of jumps in the interval [0, t], and Tj are the jump times (this is the same notation as used for
Markov jump processes in Section 3.2.2).

In the particular case of an Itô process of the form (B10), Nt = 0 and

[X , X ]c
t =

∫ t

0
Dsds, (B27)

and we recover Itô’s formula (B14).
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On the other hand, for a pure jump process,

[X , X ]c
t = 0, (B28)

and ∫ t

0+

dg

dx
(Xs−)dXs =

Nt∑
j=1

dg

dx

(
XT −

j

) (
XT +

j
− XT −

j

)
(B29)

so that

Yt − Y0 =
∫ t

0
(∂tg)(Xs)ds +

Nt∑
j=1

(
g(XT +

j
) − g(XT −

j
)
)

. (B30)

B.3.4. Stratonovich integrals
We revise here a generalization of Theorem 1 to semimartingales. Let Yt ∈ R and Zt ∈ R represent two
semimartingales. Then, the following conversion formula holds [70]:∫ t

0
Zs− ◦ dYs =

∫ t

0
Zs−dYs + 1

2
[Z, Y ]c

t , (B31)

where the left-hand side contains a Stratonovich integral and the right-hand side an Itô integral, see
Equations (2.83) and (2.69) for definitions, and where [X , Y ]c

t is the continuous part of the covariation

[Zt, Yt] ≡ lim
‖P‖→0

n−1∑
i=0

(
Zti − Zti−1

) (
Yti − Yti−1

)
. (B32)

Let us consider the example for which Y and Z are Itô processes of the form

Ẏ = b(Y )
t (X[0,t]) + σ (Y )(X[0,t])Ḃt (B33)

and

Ż = b(Z)
t (X[0,t]) + σ (Z)(X[0,t])Ḃt, (B34)

where X solves Equation (B10). In this case, we obtain the quadratic covariation process by using the rules
(dBt)

2 = dt, dtdBt = 0, and (dt)2 = 0, yielding

[Yt, Zt]
c = [Yt, Zt] =

∫ t

0
σ (Y )(X[0,s])σ

(Z)(X[0,s])ds. (B35)

On the other hand, if Y and Z are pure jump processes, then

[Yt, Zt]
c = 0 (B36)

and the Stratonovich integral equals the Itô integral.

B.4. Stochastic exponential for a simple random walk
We show that the process equations (2.23) and (2.59) are martingales.

B.4.1. Discrete time
To show that the process En(z) given by Equation (2.23) is a martingale, we use that En(z) is a ratio of two
probability densities Rn of the form (2.18).
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The probability density of a trajectory X[0,n] is given by

P(X[0,n]) =
n∏

i=1

(
(1 − q)δXi−Xi−1,−1 + qδXi−Xi−1,1

)
. (B37)

Analogously, we can define the density

Q(X[0,n]) =
n∏

i=1

(
(1 − q̃)δXi−Xi−1,−1 + q̃δXi−Xi−1,1

)
. (B38)

Hence, the ratio of P(X[0,n]) and Q(X[0,n]) is given by

Rn = Q(X[0,n])

P(X[0,n])
= exp(y(q, q̃)Xn + z(q, q̃)n), (B39)

with

y(q, q̃) ≡ 1

2
ln

(
(1 − q)q̃

q(1 − q̃)

)
, z(q, q̃) ≡ 1

2
ln

(
q̃(1 − q̃)

q(1 − q)

)
. (B40)

Solving the first equation towards q̃, we obtain

q̃ = q exp(2y)

1 − q + q exp(2y)
, (B41)

and thus

z(q, q̃(y)) = 1

2
ln

(
exp(2y)

[(1 − q) + q exp(2y)]2

)
= y − ln[(1 − q) + exp(2y)q]. (B42)

Substituting z in (B39) and writing everything as a function of y we obtain (2.23).

B.4.2. Continuous time
Using that

〈exp(z(Bt − Bs))|B[0,s]〉 = 〈exp(z(Bt − Bs))〉 = exp

(
z2

2
(t − s)

)
, (B43)

we obtain 〈
exp

(
zBt − z2t

2

)∣∣∣∣∣B[0,s]

〉
= exp

(
zBs − z2s

2

)
. (B44)

Appendix C. Appendix to Chapter 5

C.1. Derivation of Equation (5.26)
The stochastic differential equation for Ṡtot

t , given by Equation (5.20), contains the Stratonovich integral St
that solves

Ṡt = Jt,ρ(Xt)

μTρt (Xt)
◦ Ẋt, (C1)

where Ẋt solves Equation (5.3), and thus

Ṡt = Ft(Xt)Jt,ρ(Xt)

Tρt (Xt)
+
(√

2

μT

Jt,ρ(Xt)

ρt (Xt)

)
◦ Ḃt, (C2)

where Ft is the total force, as defined in Equation (5.9).
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Using equations (B31), (C2) can be expressed as an Itô stochastic differential equation,

Ṡt = Ft(Xt)Jt,ρ(Xt)

Tρt (Xt)
+
(√

2

μT

Jt,ρ(Xt)

ρt (Xt)

)
Ḃt + 1

2

d

dt
[Z, B]t, (C3)

where

Zt =
√

2

μT

Jt,ρ(Xt)

ρt (Xt)
, (C4)

and we have used that for a continuous process [Z, B]c
t = [Z, B]t. The quadratic covariation is given in

Equation (B35), where σ
(B)
t = 1 and σ

(Z)
t is the coefficient in front of the noise term of Żt. We obtain Żt by

applying Itô’s formula (B14) to Z, yielding

Żt =
√

2

μT

(
∂xJt,ρ

)
(Xt)

ρt (Xt)
Ẋ −

√
2

μT

(∂xρt) (Xt)Jt,ρ(Xt)

ρ2
t (Xt)

Ẋ + · · · , (C5)

where we omitted the ∂tg and D∂2
x g terms in Itô’s formula as they do not contain a noise term and hence do

not contribute to σ
(Z)
t . Using Equation (5.3) in Equation (C5), we find

Żt = 2

((
∂xJt,ρ

)
(Xt)

ρt (Xt)
− (∂xρt) (Xt)Jt,ρ(Xt)

ρ2
t (Xt)

)
Ḃt + · · · , (C6)

where we identify

σ
(Z)
t = 2

((
∂xJt,ρ

)
(Xt)

ρt (Xt)
− (∂xρt) (Xt)Jt,ρ(Xt)

ρ2
t (Xt)

)
. (C7)

Further using Equations (5.12) and (5.13), this yields

σ
(Z)
t = 2

(
− (∂tρt) (Xt)

ρt (Xt)
+ J2

t,ρ(Xt)

μTρ2
t (Xt)

− Ft(Xt)Jt,ρ(Xt)

Tρt (Xt)

)
. (C8)

Hence,

1

2

d

dt
[Z, B]t = − (∂tρt) (Xt)

ρt (Xt)
+ J2

t,ρ(Xt)

μTρ2
t (Xt)

− Ft(Xt)Jt,ρ(Xt)

Tρt (Xt)
(C9)

and substituting in Equation (C3) gives

Ṡt = Jt,ρ(Xt)

μTρt (Xt)
◦ Ẋt = − (∂tρt) (Xt)

ρt (Xt)
+ J2

t,ρ(Xt)

μTρ2
t (Xt)

+
(√

2

μT

Jt,ρ(Xt)

ρt(Xt)

)
Ḃt. (C10)

Using Equation (C10) in Equation (5.20), we readily obtain Equation (5.26).

C.2. Derivation of the inequality in Equation (5.90)
We derive the inequality in Equation (5.90), namely, we show that∑

(x,y)∈X 2

ρt(x)ωt(x, y) ln

(
ρt(x)ωt(x, y)

ρt(y)ωt(y, x)

)
≥ 0. (C11)

The inequality follows from the nonnegativity of the Kullback–Leibler divergence

D(p||q) =
∑
x∈S

p(x) ln
p(x)

q(x)
≥ 0, (C12)

where q(x), p(x) ≥ 0, ∑
x∈X

p(x) =
∑
x∈X

q(x) = 1, (C13)

and X is a finite set, see, for example Ref. [142].



Advances in Physics 249

Defining

N =
∑

(x′,y′)∈X 2

ρt(x
′)ωt(x

′, y′) > 0, (C14)

the left-hand side of Equation (C15) can be written as∑
(x,y)∈X 2

ρt(x)ωt(x, y) ln

(
ρt(x)ωt(x, y)

ρt(y)ωt(y, x)

)
= N

∑
(x,y)∈X 2

ρt(x)ω(x, y)

N ln

(
ρt(x)ωt(x, y)/N
ρt(y)ωt(y, x)/N

)
. (C15)

Identifying the two functions

p(x, y) = ρt(x)ωt(x, y)

N and q(x, y) = ρt(y)ωt(y, x)

N , (C16)

equation (C15) reads ∑
(x,y)∈X 2

ρt(x)ωt(x, y) ln

(
ρt(x)ωt(x, y)

ρt(y)ωt(y, x)

)
= ND(p||q) ≥ 0. (C17)

C.3. Time independence of the time-reversed Lagrangian in the case of Markov jump
processes

We complete the derivation of the martingale property of exp(−Stot
t ) in Section 5.4.1.2 by showing that

P[�t(X[0,t])] is not explicitly dependent on time, and hence we can write P[�t(X[0,t])] = Q[X[0,t]] for a
certain measure Q. To this purpose, we show that the Lagrangian of P[�t(X[0,t])] contains no explicit time
dependency on t – see Equation (3.97) for the definition of a Lagrangian.

Indeed, Equation (5.98) can be written as

P
(
�t
(
X[0,t]

)) = 1

N ρst (Xt) exp

( Nt∑
i=1

ln
(

w
(

XT +
i

, XT −
i

))
−
∫ t

0
λ(Xs)ds

)

= 1

N ρst (X0) exp

⎛⎝ Nt∑
i=1

ln

⎛⎝ρst

(
XT +

i

)
w
(

XT +
i

, XT −
i

)
ρst

(
XT −

i

)
⎞⎠−

∫ t

0
λ(Xs)ds

⎞⎠
= 1

N ρst (X0) exp

⎛⎝−
∫ t

0

⎧⎨⎩−
∑
x,y

ln

(
ρst (y) w (y, x)

ρst (x)

)
Ṅs(x, y) + λ(Xs)

⎫⎬⎭ ds

⎞⎠ ,

where in the last line we have used Ṅs(x, y) to denote the rate of change of the jump process, as defined in
Equation (3.50).

Then, the Lagrangian transforms under time reversal as

(�tL)
[
Xs, Ṅs

] = −
∑
x,y

ln

(
ρst (y) w (y, x)

ρst (x)

)
Ṅs(x, y) + λ(Xs).

The absence of an explicit t-dependence in the right-hand side of the last relation implies that the measure
P ◦ θt has no explicit t-dependency.

C.4. Exponentiated negative entropy production as an Itô integral for stationary Markov
jump processes

We derive the stochastic differential Equation (5.100) presented in Section 5.4.1.3 that describes the
evolution in time of exp(−Stot

t ), with Mt given by Equation (5.101).
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Since X is a jump process, the rules for stochastic calculus as discussed in Appendix B.3 apply, in
particular Equation (B30) implies in a differential form that

d exp(−Stot
t )

dt
=

∑
x∈X \{Xt−}

(
exp(−Stot

t ) − exp(−Stot
t−)
)

Ṅt(Xt− , x)

= exp(−Stot
t−)

∑
x∈X \{Xt−}

(
ρst(x)ω(x, Xt−)

ρst(Xt−)ω(Xt− , x)
− 1

)
Ṅt(Xt− , x). (C18)

Subsequently, we write the stationarity condition (5.93) as∑
x∈X ;x�=y

(ρst(x)ω(x, y) − ρst(y)ω(y, x)) = ρst(y)
∑

x∈X ;x�=y

(
ρst(x)ω(x, y)

ρst(y)ω(y, x)
− 1

)
ω(y, x) = 0. (C19)

Using the latter equation for y = Xt− , and subtracting it from Equation (C18), we get

d exp(−Stot
t )

dt
= exp(−Stot

t−)
∑

x∈X \{Xt−}

(
ρst(x)ω(x, Xt−)

ρst(Xt−)ω(Xt− , x)
− 1

) (
Ṅt(Xt− , x) − ω(Xt− , x)

)
, (C20)

which can also be written as

d exp(−Stot
t )

dt

= exp(−Stot
t−)

∑
x∈X \{Xt−}

(
ρst(x)ω(x, Xt−)

ρst(Xt−)ω(Xt− , x)
− 1

) (
Ṅt(Xt− , x) − τ̇ (Xt−)ω(Xt− , x)

)
. (C21)

Integrating over t, we obtain Equations (5.100) and (5.101) in Section 5.4.1.3, which we were meant to
show.

C.5. Novikov’s condition for Markov jump processes
We derive Novikov’s condition (5.102) in Section 5.4.1.4 for the exponentiated negative entropy production
of a Markov jump process.

We use Novikov’s condition for Markov jump processes [135], viz.,〈
exp

(
1

2
〈M c, M c〉t + 〈M d , M d 〉t

)〉
< ∞, ∀t ≥ 0, (C22)

and where for our purpose here M is the martingale of Equation (5.101), i.e.,

Mt =
∑

x,y∈X 2

(
ρst(y)ω(y, x)

ρst(x)ω(x, y)
− 1

)
(Nt(x, y) − τt(x)ω(x, y)). (C23)

The predictable quadratic variation 〈M c, M c〉t of the continuous part M c of M equals zero, as also
[M c, M c] = 0. Let us therefore determine the predictable quadratic variation 〈M d , M d 〉t of the discontinu-
ous component

M d =
∑

x,y∈X 2

(
ρst(y)ω(y, x)

ρst(x)ω(x, y)
− 1

)
Nt(x, y). (C24)

The quadratic variation of M d is the process

[M d , M d ] =
∑

x,y∈X 2

(
ρst(y)ω(y, x)

ρst(x)ω(x, y)
− 1

)2

Nt(x, y) (C25)

and its compensator

〈M d , M d 〉 =
∑

x,y∈X 2

(
ρst(y)ω(y, x)

ρst(x)ω(x, y)
− 1

)2

ω(x, y)τt(x). (C26)

Substituting Equation (C26) in Equation (C22), we get Equation (5.102) that we were meant to show.
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Appendix D. Appendix to Chapter 6
We give here explicit expressions to the excess stochastic entropy production (6.64) and explicit expressions
for the housekeeping stochastic entropy production (6.68), by restricting ourselves the class of Markov
process.

(1) For a pure jump process given by transition rates ωt(x, y), we obtain from the generic for-
mulae (6.64) the alternative expression for the excess stochastic entropy production [164,275]
:

Sex
t = − ln (ρt(Xt)) + ln (ρ0(X0)) +

Nt∑
j=1

ln

[
πTj(XT +

j
)

πTj(XT −
j

)

]
. (D1)

Moreover, the process with path probability Pex in the relation (6.64), or equivalently with Marko-
vian generator given by the dual generator Lex (6.65), is the pure jump process given by the
transition rates

ωex
s (x, y) ≡ ωt−s(y, x)πt−s(y)

πt−s(x)
.

On the other hand, we have the following explicit expression for the housekeeping stochastic
entropy production [164,275]:

Shk
t =

Nt∑
j=1

ln

[
πTj(XT −

j
)ωTj(XT −

j
, XT +

j
)

πTj(XT +
j

)ωTj(Xs+ , Xs−)

]
.

These last expressions can be obtained from the generic formula (6.68) or, more simply, directly
from the explicit expressions given before (6.36), (D1) and the Oono–Paniconi decomposi-
tion (6.63). Similarly of the total �-entropic functional, Shk

t is finite only if for all x, y, ωt(x, y) > 0
implies ωt(y, x) > 0, condition which is sometimes call microreversibilty. Moreover, the process
with path probability Phk in the relation (6.68), or equivalently with Markovian generator given by
the dual generator Lhk (6.69), is the pure jump process given by the transition rates

ωhk
s (x, y) ≡ ωs(y, x)πs(y)

πs(x)
.

(2) For multidimensional Langevin equation (3.65) (even without Einstein relation (3.69)), we obtain
from (6.64) the explicit expression for the excess stochastic entropy production [138,151,165] :

Sex
t = − ln (ρt(Xt)) + ln (ρ0(X0)) +

∫ t

0
[∇ ln (πs)](Xs) ◦ Ẋsds. (D2)

Moreover, the process with path probability Pex in the relation (6.64), or equivalently with
Markovian generator given by the dual generator Lex (6.65), is the Langevin equation in the Itô
convention

dX ex
s

ds
= (−μt−sFt−s + 2Dt−s∇ (ln πt−s))(X

ex
s ) + (∇ Dt−s) (X ex

s ) +√2Dt−s(X ex
s )Ḃs. (D3)

on the other hand side, Shk
t exists only if the diffusion matrix Dt is invertible and is given by the

explicit expression [138,151]:

Shk
t =

∫ t

0

((
μsFs

)
D−1

s −∇ ln πs

)
(Xs) ◦ Ẋsds.

Again, these expressions can be obtained from the generic formula (6.68) or, more simply, directly
from the explicit expressions given before, (D2) and the Oono–Paniconi decomposition (6.63).
Moreover, the process with path probability Phk in the relation (6.68), or equivalently with
Markovian generator given by the dual generator Lhk (6.69), is the Langevin equation in the Itô
convention

dX hk
s

ds
= (−μsFs + 2Ds∇ (ln πs))(X

hk
s ) + (∇ Ds) (X hk

s ) +
√

2Ds(X hk
s )Ḃs. (D4)
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Appendix E. Appendix to Chapter 7

E.1. Modified fluctuation relation and second law when exp(−Stot
t ) is a strict local martingale

As mentioned in Section 5.2.2, we cannot exclude the possibility that there exist processes X[0,t] for which
exp(−Stot

t ) is a strict local martingale, i.e., a local martingale that is not a martingales.
Therefore, we analyze here the implication of local martingality on the properties of Stot

t .

Since exp(−Stot
t ) is bounded from below, it is a supermartingale (see in Ref. [70]), yielding the

following modified martingale fluctuation relation:

〈exp(−Stot
t )|X[0,s]〉 ≤ exp(−Stot

s ) (E1)

for all t > s > 0.

Note that for a supermartingale with Stot
0 = 0,

〈exp(−Stot
t )〉 ≤ 1 (E2)

and the equality is attained when exp(−Stot
t ) is a martingale.

Using Jensen’s inequality exp(−〈x〉) ≤ 〈exp(−x)〉 together with Stot
0 = 0, we obtain

〈Stot
t |X[0,s]〉 ≥ 0 (E3)

which is the martingale version of the second law of thermodynamics. Hence, strict local martingales
exp(−Stot

t ) are compatible with the second law of thermodynamics, which is one more indication that strict
local martingales exp(−Stot

t ) are physical admissible.
Since the random time transformation of Section 5.2.3 applies to strict local martingales, also the uni-

versal properties of entropy production, such as the infimum law equation (5.79) and the universal splitting
probabilities equations (7.19)–(7.20), hold for processes exp(−Stot

t ) that are strict local martingales and
continuous.

Although the above arguments show that local martingales are compatible with physical laws, it will be
interesting to find concrete examples of processes X for which exp(−Stot

t ) is a local martingale. A possible
example are absolutely irreversible processes [276], as such processes obey a modified integral fluctuation
relation of the form Equation (E2), although this possible connection between absolute irreversibility and
local martingales requires a more careful study, see e.g. [277].

E.2. Evaluation of the estimators ŝFPR and ŝTUR for a random walk on a two-dimensional
lattice

We derive Equations (7.69) and (7.71) for the estimators ŝFPR and ŝTUR, respectively, of the random walk
process on the two-dimensional lattice, as illustrated in Figure 7.11. To this purpose, we derive an explicit
expression for the quantities P−, 〈T 〉, and 〈T 2〉 appearing in the definitions of ŝFPR and ŝTUR in (7.60). The
expressions we require are first-passage quantities associated with the first-passage time T of the current Jt,
as defined in Equations (7.55) and (7.66), respectively.

As will become soon evident, we can use the martingale theory of Section 4.1.5 to derive expressions
for first-passage quantities associated with T . In this appendix, we sketch this approach, and we refer for
details to Appendices D and E of Ref. [35].

E.2.1. A martingale in the 2D random walk process

The key insight of the present derivations for 〈T 〉, 〈T 2〉 and P− is that the process

Zt = exp (zJt + tf (z)) , (E4)

where

f (z) ≡ [1 − exp (z(1 − �))] ω+
1 + [1 − exp (−z(1 − �))] ω−

1

+ [1 − exp (z(1 + �))] ω+
2 + [1 − exp (−z(1 + �))] ω−

2 , (E5)
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Figure E1. Plot of the function of f, as defined in Equation (E5), for � = 0.6, and parame-
ters ω+

1 = exp(ν/2)/(4 cosh(ν/2)), ω−
1 = exp(−ν/2)/(4 cosh(ν/2)), ω+

2 = exp(νρ/2)/(4 cosh(ν/2)), and
ω−

2 = exp(−νρ/2)/(4 cosh(ν/2)) with ρ = 2 and ν = 5, as in Panel (c) of Figure 7.11.

is a martingale for all values of z ∈ R.
We plot the function f in Figure E1 for the same parameters as in Panel (c) of Figure 7.11. Observe that

f has two roots, the trivial root z = 0 and a nontrivial root z∗ that solves

f (z∗) = 0. (E6)

The nontrivial root is negative when 〈Jt〉 > 0 and is positive when 〈Jt〉 < 0. In what follows, we assume
that 〈Jt〉 > 0 and hence z∗ < 0.

Using Equation (4.51) from Doob’s optional stopping theorem, we obtain that for all values z ∈ R for
which f (z) < 0 (see Ref. [35]),

1 = 〈1JT ≥�+ exp
(
z�+[1 + o�min(1)] + T f (z)

)+ 1J(T )≤−�− exp
(−z�−[1 + o�min(1)] + T f (z)

)〉, (E7)

where the factors (1 + o�min(1)) take care of the overshoot JT − �±.
Equation (E7) is central in the following derivations. Indeed, we obtain from this equation the splitting

probabilities P− and P+, and the moments 〈T 〉 and 〈T 2〉.

E.2.2. Splitting probabilities
Using Equation (E7) for the nonzero value of z∗ that solves Equation (E6), together with

P− + P+ = 1, (E8)

we obtain, see also Appendix E of Ref. [35],

P+ = 1 − exp
(−�−|z∗| [1 + o�min(1)]

)
1 − exp

(−(�− + �+)|z∗| [1 + o�min(1)]
) (E9)

and

P− = exp
(−�−|z∗| [1 + o�min(1)]

) 1 − exp
(−�+|z∗| [1 + o�min(1)]

)
1 − exp

(−(�− + �+)|z∗| [1 + o�min(1)]
) . (E10)

Again, we used the factors [1 + o�min(1)] in the exponentials, as in general JT is not equal to either �+ or
�− when Jt crosses one of the two threshold.

Hence, in the limit of �min → ∞, we get

P− = exp
(−�−|z∗| [1 + o�min(1)]

)
. (E11)
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E.2.3. Generating function of T
The generating function is defined as

g(y) ≡ 〈exp (−yT )〉 = P+g+(y) + P−g−(y), (E12)

where

g+(y) ≡ 〈exp (−yT ) |T ≥ �+〉 and g−(y) ≡ 〈exp (−yT ) |T ≤ −�−〉. (E13)

To obtain an expression for g+(y) and g−(y), we use the central equation (E7). In the range z /∈ [z∗, 0], for
which f (z) < 0, we set

y = −f (z). (E14)

Taking the functional inverse of f, we obtain two solution branches,

z+(y) ∈ (−∞, z∗] and z−(y) ∈ [0,∞), (E15)

so that

f (z±(y)) = y. (E16)

Selecting these two solution in Equation (E7), we obtain the equations

1 = P+ exp
(
z+(y)�+ [1 + o�min(1)]

)
g+(y) + P− exp

(−z+(y)�− [1 + o�min(1)]
)

g−(y) (E17)

and

1 = P+ exp
(
z−(y)�+ [1 + o�min(1)]

)
g+(y) + P− exp

(−z−(y)�− [1 + o�min(1)]
)

g−(y), (E18)

respectively. Solving the above two equations towards g+(y) and g−(y), we obtain

g+(y) = 1

P+
1 − exp

(−[z+(y) − z−(y)]�− [1 + o�min(1)]
)

exp
(
z+(y)�+ [1 + o�min(1)]

)− exp
(−[z+(y)�− − z−(y)(�− + �+)] [1 + o�min(1)]

) (E19)

and

g−(y) = 1

P−
1 − exp

(−[z−(y) − z+(y)]�+[1 + o�min(1)]
)

exp
(−z+(y)�−[1 + o�min(1)]

)− exp
(−[z−(y)(�− + �+) − z+(y)�+] [1 + o�min(1)]

) .

(E20)

Taking the limit �min → ∞, it follows from Equations (E9), (E10), (E12), (E19) and (E20) that the
generating function of T is given by

g(y) = g+(y)(1 + O(exp
(
�−z∗

)
)) (E21)

with

g+(y) = exp
(−z−(y)�+ [1 + o�min(1)]

)
, (E22)

and where we have used that z+ < 0 and z− > 0.

E.2.4. First moment and second moment of T
Equations (E21) and (E22) determine the generating function g of T in terms of the function z−(y) that
solves Equation (E16) for z−(y) ∈ [0,∞). Solving Equation (E16) is not an easy task, but since we only
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need the first two moments of T , we can simplify the problem further. Indeed, expanding g in small values
of y we obtain up to second order in y,

g(y) = 1 − y〈T 〉 + y2

2
〈T 2〉 + O(y3), (E23)

and hence it is sufficient to solve Equation (E16) up to second order in y. In addition, using that z−(y) ≈ 0
for y ≈ 0 and expanding Equation (E16) up to second order yields the equation[

z(1 − �) + z2(1 − �)2

2

]
ω+

1 −
[

z(1 − �) − z2(1 − �)2

2

]
ω−

1

+
[

z(1 + �) + z2(1 + �)2

2

]
ω+

2 −
[

z(1 + �) − z2(1 + �)2

2

]
ω−

2 + O(z3) = y, (E24)

whose positive solution determines z−.

Mean first-passage time 〈T 〉. The solution of Equation (E24) up to linear order in y is

z− = y

(1 − �)(ω+
1 − ω−

1 ) + (1 + �)(ω+
2 − ω−

2 )
+ O(y2). (E25)

Substituting Equation (E25) in Equations (E21) and (E22) gives

g(y) = exp

(
− �+

(
y + O(y2)

)
(1 − �)(k+1 − k−1 ) + (1 + �)(k+2 − k−2 )

(1 + o�min(1))

)
. (E26)

Expanding the latter equation up to linear order in y and comparing with Equation (E23) gives

〈T 〉 = �+
(1 − �)(ω+

1 − ω−
1 ) + (1 + �)(ω+

2 − ω−
2 )

(1 + o�min(1)). (E27)

Second moment 〈T 2〉. Solving Equation (E24) up to quadratic order yields the solution

z− = y

(1 − �)(ω+
1 − ω−

1 ) + (1 + �)(ω+
2 − ω−

2 )

− y2

2

[
(1 − �)2

(
ω+

1 + ω−
1

)+ (1 + �)2
(
ω+

2 + ω−
2

)(
(1 − �)(ω+

1 − ω−
1 ) + (1 + �)(ω+

2 − ω−
2 )
)3
]
+ O(y3). (E28)

Substituting Equation (E28) in Equations (E21) and (E22) and expanding up to second order in y gives

g+(y) = exp

(
− �+y

(1 − �)(ω+
1 − ω−

1 ) + (1 + �)(ω+
2 − ω−

2 )
(1 + o�min(1))

)

× exp

(
y2�+ + O(y3)

2

[
(1 − �)2

(
ω+

1 + ω−
1

)+ (1 + �)2
(
ω+

2 + ω−
2

)(
(1 − �)(ω+

1 − ω−
1 ) + (1 + �)(ω+

2 − ω−
2 )
)3
]

(1 + o�min(1))

)
.

(E29)

Expanding the latter equation up to second order in y, and comparing with Equation (E23), we obtain

〈T 2〉 = �2+[
(1 − �)(ω+

1 − ω−
1 ) + (1 + �)(ω+

2 − ω−
2 )
]2

+ �+
(1 − �)2

(
ω+

1 + ω−
1

)+ (1 + �)2
(
ω+

2 + ω−
2

)[
(1 − �)(ω+

1 − ω−
1 ) + (1 + �)(ω+

2 − ω−
2 )
]3 , (E30)

and thus

〈T 2〉 − 〈T 〉2 = (1 − �)2
(
ω+

1 + ω−
1

)+ (1 + �)2
(
ω+

2 + ω−
2

)[
(1 − �)(ω+

1 − ω−
1 ) + (1 + �)(ω+

2 − ω−
2 )
]3 . (E31)
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E.2.5. Estimators ŝFPR and ŝTUR

Using the expressions (E11) and (E27) for P− and 〈T 〉, respectively, in the definition of ŝFPR,
Equation (7.60), we obtain

ŝFPR = |z∗| ((1 − �)(ω+
1 − ω−

1 ) + (1 + �)(ω+
2 − ω−

2 )
)
(1 + o�min(1)), (E32)

which is Equation (7.69) we were meant to derive.
Analogously, using the expressions (E27) and (E31) for 〈T 〉 and 〈T 2〉 − 〈T 〉2, respectively, in the

definition of ŝTUR, Equation (7.60), we obtain

ŝTUR = 2〈T〉
〈T 2〉 − 〈T 〉2 = 2

[
(1 − �)(ω+

1 − ω−
1 ) + (1 + �)(ω+

2 − ω−
2 )
]2

(1 − �)2
(
ω+

1 + ω−
1

)+ (1 + �)2
(
ω+

2 + ω−
2

) (1 + o�min(1)), (E33)

which is Equation (7.71) that we were meant to derive.

Appendix F. Appendix to Chapter 8

F.1. Derivation of Equation (8.16) demonstrating the exponential martingale for
nonstationary processes

The derivation of Equation (8.16) is similar to the derivation of Equation (5.42) in Chapter 5.
First, we use the definition of ρ̃ as the solution to the Fokker–Planck equation given by Equations (8.11)–

(8.12) to write,

d (− ln (ρ̃τ−s (Xs)))

ds
(F1)

= − (∂sρ̃τ−s) (Xs)

ρ̃τ−s (Xs)
− (∂xρ̃τ−s) (Xs)

ρ̃τ−s (Xs)
◦ Ẋs (F2)

= − (∂sρ̃τ−s) (Xs)

ρ̃τ−s (Xs)
+ J̃τ−s,ρ̃ (Xs)

μT ρ̃τ−s (Xs)
◦ Ẋs︸ ︷︷ ︸

d�̂s

ds

− ∂xV (Xs; λ̃τ−s)

T
◦ Ẋs︸ ︷︷ ︸

Q̇s/T

, (F3)

where we have used that λ̃τ−s = λs.
Hence, in Stratonovich convention

d�̂s

ds
= − (∂sρ̃τ−s) (Xs)

ρ̃τ−s (Xs)
+ 1

μT

J̃τ−s,ρ̃ (Xs)

ρ̃τ−s (Xs)
◦ Ẋs. (F4)

Substituting Ẋs, given in Equation (8.4), in Equation (F4), and using

∂xV (x, λs) = ∂xV (x, λ̃τ−s) = − J̃τ−s,ρ̃

μρ̃τ−s
− T

∂xρ̃τ−s

ρ̃τ−s
, (F5)

we get

d�̂s

ds
= − (∂sρ̃τ−s) (Xs)

ρ̃τ−s (Xs)
+ J̃τ−s,ρ̃ (Xs) (∂xρ̃τ−s) (Xs)

(ρ̃τ−s (Xs))
2 + vS

s +
√

2vS
s ◦ Ḃs, (F6)

where we have used Equation (8.17) to identify vS
s . Next, we use Theorem 1 to write the last term in the

latter equation in the Itô convention, obtaining√
vS

s ◦ Ḃs =
√

vS
s Ḃt +

(
∂xJ̃τ−s,ρ̃

)
(Xs)

ρ̃τ−s(Xs)
− J̃τ−s,ρ̃ (Xs) (∂xρ̃τ−s) (Xs)

(ρ̃τ−s (Xs))
2 . (F7)
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Lastly, using Equation (F7) into Equation (F6) together with

∂sρ̃τ−s = −∂xJ̃τ−s,ρ̃ , (F8)

we obtain

d�̂s

ds
= vS

s +
√

2vS
s Ḃs, (F9)

which is Equation (8.16) that we were meant to derive.

F.2. Origin of time reversal in the definition of �̂s

In the definition Equation (8.9) of �̂s we have set t/2, the origin of time reversal, equal to τ/2. Here, we
show that the process �̂s is independent of the choice t/2 for the origin of time-reversal.

Let us therefore define the stochastic process

�̂(t)
s ≡ −Qs

T
+ ln ρeq(X0; λi) − ln ρ̃

(t)
t−s(Xs), (F10)

where Q̇s is the heat equation (8.10) as before, and where ρ̃
(t)
t−s is the solution to the Fokker–Planck equation

∂sρ̃
(t)
s + ∂xJ̃ (t)

s,ρ̃ = 0, (F11)

with

J̃ (t)
s,ρ̃ = −μ∂xV (x; λ̃(t)

s )ρ̃(t)
s (x) − μT∂xρ̃

(t)
s (x), (F12)

and with

λ̃(t)
s ≡

⎧⎨⎩λf if s ≤ t − τ ,
λt−s if s ∈ [t − τ , t],
λi if s ≥ t,

(F13)

the time-reversed protocol. Note that in the time-reversed protocol λ̃
(t)
s the time-reversal reflection point is

t/2, and not τ/2 as in Equation (8.13). To complete the definition of ρ̃
(t)
s we specify the initial state of the

time-reversal dynamics, which for t ≥ τ given by

ρ̃
(t)
0 (x) = ρeq(x; λf), (F14)

and for t ∈ [0, τ ] by

ρ̃
(t)
0 = ρ̃

(τ )
τ−t. (F15)

Note that in the case t = τ , it holds that �̂
(t)
s , as defined in Equation (8.9), equals �̂s, as defined in

Equation (F10).
It follows from the definition equations (F11)–(F12) for the Fokker–Planck equation with initial

condition equations (F14) or (F15) that

ρ̃
(t)
t−s = ρ̃

(τ )
τ−s, (F16)

and hence

�̂(t)
s = �̂(τ)

s . (F17)

In other words, the origin t/2 of time reversal is not relevant in the definition of �̂
(t)
s , as all processes are the

same. For this reason, we have set t = τ as in Ref. [14], and we removed the index (τ ) from the definition
�̂

(τ)
s in Equation (8.9).
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Appendix G. Appendix to Chapter 12

G.1. Derivation of Equation (12.26) from Equation (12.21)
We start with considering the transformation (12.25) that implies the following identities:

α + β = 2r

σ 2 , α + 1 = β. (G1)

Using C(St, t) = Ku(x, τ) exp(−αx − β2τ) and ∂τ/∂t = −σ 2/2, we get

∂C

∂t
= −σ 2

2
K exp(−αx − β2τ)

(
∂u

∂τ
− β2u

)
. (G2)

Next, using ∂x/∂St = 1/St, we get

∂C

∂St
= K

St
exp(−αx − β2τ)

(
∂u

∂x
− uα

)
, (G3)

so that r = (α + β)σ 2/2 yields

rSt
∂C

∂St
= (α + β)σ 2

2
K exp(−αx − β2τ)

(
∂u

∂x
− uα

)
. (G4)

Using Equation (G3) and K/St = exp(−x), we get

∂2C

∂S2
t

= 1

St
exp(−(α + 1)x − β2τ)

[
−(2α + 1)

∂u

∂x
+ ∂2u

∂x2 + α(α + 1)u

]
. (G5)

It then follows that

σ 2S2
t

2

∂2C

∂S2
t

= σ 2K

2
exp(−αx − β2τ)

[
−(2α + 1)

∂u

∂x
+ ∂2u

∂x2 + α(α + 1)u

]
. (G6)

Finally, we have

rC = (α + β)σ 2Ku

2
exp(−αx − β2τ). (G7)

We now substitute Equations (G2), (G4), (G6), and (G7) in Equation (12.21), and use

β2 + αβ − (α + β)α − (α + β) = β(α + 1) + αβ − (α + β)(α + 1) = 0, (G8)

where we have used the result α + 1 = β; we finally get our desired result, namely, Equation (12.26):

∂u

∂τ
= ∂2u

∂x2 . (G9)
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