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SUMMARY
Biomolecular condensates have been proposed to buffer intracellular concentrations and reduce noise.
However, concentrations need not be buffered in multicomponent systems, leading to a non-constant satu-
ration concentration ðcsatÞ when individual components are varied. Simplified equilibrium considerations
suggest that noise reduction might be closely related to concentration buffering and that a fixed saturation
concentration is required for noise reduction to be effective. Here, we present a theoretical analysis to
demonstrate that these suggestions do not apply to mesoscopic fluctuating systems. We show that concen-
tration buffering and noise reduction are distinct concepts, which cannot be used interchangeably. We
further demonstrate that concentration buffering and a constant csat are neither necessary nor sufficient
for noise reduction to be effective. Clarity about these concepts is important for studying the role of conden-
sates in controlling cellular noise and for the interpretation of concentration relationships in cells. A record of
this paper’s transparent peer review process is included in the supplemental information.
INTRODUCTION

Biomolecular condensates are membraneless compartments

that are segregated from the surrounding cytoplasm by phase

coexistence.1 The thermodynamic constraints of coexisting

phases restrict the potential concentration ranges of multicom-

ponent mixtures.2–8 This opens the possibility for cells to regu-

late concentrations by condensate formation. An important

question is how such physical processes can be utilized to con-

trol fluctuations and molecular noise.1,9,10

We have previously demonstrated noise reduction by conden-

sates theoretically as well as experimentally using engineered

and endogenous systems.11 Others have observed that the co-

existing concentrations of certain intracellular condensates are

not buffered when individual components are overexpressed.7

In other words, they do not exhibit a fixed saturation concentra-

tion csat.
7 Some studies have considered concentration buffering

and noise reduction as interchangeable,7,12,13 suggesting that

the absence of a fixed saturation concentration hampers noise

reduction. However, noise reduction has been demonstrated

for an endogenously labeled component of the nucleolus,11 an

intracellular condensate lacking a fixed saturation concentra-

tion.7 This raises the question in what situations do noise reduc-

tion and concentration buffering become related andwhen these

phenomena are clearly distinct.
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Here, we provide precise definitions of the concepts of con-

centration buffering and noise reduction and clarify if and how

they relate to each other. Since intracellular condensates are

exposed to active fluctuations, we develop a non-equilibrium

theory of multicomponent systems, which captures the stochas-

tic kinetics of material production and turnover, as well as ex-

change between phases. Our analysis shows that concentration

buffering and noise reduction are distinct phenomena and that a

fixed csat is neither necessary nor sufficient for noise reduction to

take place. This becomes particularly important in non-equilib-

rium conditions such as those found in the cell. To illustrate

our findings, we will discuss them in the context of previously

published data from synthetic and endogenous condensates in

cells.7,11

RESULTS AND DISCUSSION

Concentration buffering
We consider a multicomponent system with two coexisting

phases that differ in the concentrations of their components (Fig-

ure 1A). We focus on one component A that partitions between

the two phases and denote by c the total average concentration

c = a=V, i.e., the total copy number of molecules a per volume V

of both phases combined. The concentrations of the same

component in the coexisting phases are referred to as c1 and
ary 19, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Concentration buffering and noise reduction in phase-separating systems

(A) Scheme of a multicomponent system with two coexisting phases. Symbols c, c1, and c2 denote total-, dilute-, and dense phase concentrations of the

considered component A.

(B) Concentration buffering in the dilute phase can be quantified by the buffering strength L, which we define as the inverse relative sensitivity of the dilute phase

concentration c1 = gðcÞ with respect to changes in total concentration c, or equivalently, L = d log c=d log c1.

(C) Noise reduction G can be defined as the ratio of the relative variabilities s½:�=C:D in total- and dilute phase concentration.
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c2, respectively. We refer to c1 and c2 as dilute- and dense phase

concentration, where c2 >c1. The partitioning of the component

A is generally composition-dependent, and therefore, c1 and c2
depend on c and on the total concentrations of all other compo-

nents. In the following, we focus on the relationship between

dilute phase concentration c1 and total concentration c and

consider the total concentrations of all other components to be

fixed. When the system is in thermodynamic equilibrium and tak-

ing the thermodynamic limit, the dilute phase concentration c1 is

described by the binodal manifold in amulticomponent phase di-

agram. It can be formally expressed as a unique function c1 =

gðcÞ of composition where we omit the constant concentrations

of all other components. In the following, we refer to function g as

concentration dependence. Concentration buffering of the dilute

phase concentration c1 occurs when g is insensitive to changes

in c (Box 1). To quantify concentration buffering, we define the

buffering strength in the dilute phase

L =

����d log c1

d log c

�����1

=
1

c

gðcÞ
jg0 ðcÞj ; (Equation 1)

where g0 denotes the derivative of g with respect to c (Fig-

ure 1B). The buffering strength measures the logarithmic sensi-

tivity of the dilute phase concentration c1 with respect to

changes in total concentration c. We take the inverse to ensure

that low sensitivities correspond to large buffering strengths.

The logarithms imply that relative changes are considered. In

a binary mixture at equilibrium with segregated macroscopic

phases, c1 is constant when c increases, i.e., g0 = 0 and the

buffering strength L formally diverges. In this singular case,

c1 is perfectly buffered as it is constrained to a fixed saturation

concentration csat in the two-phase regime. In general, howev-

er, the buffering strength is a finite positive number, capturing

how strongly c1 varies with c. As an example, a buffering
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strength of L = 10 implies that when c changes by 10%, then

c1 changes by only 1%. Even though the saturation concentra-

tion in this system is not fixed, the dilute phase concentration

c1 is buffered effectively. The buffering strength can be gener-

alized to non-equilibrium steady states where g becomes a

non-equilibrium concentration dependence gNE . As we will

discuss below, concentration buffering is often reduced in

non-equilibrium conditions.

Noise reduction
We now consider a phase-separating system exhibiting concen-

tration fluctuations, which we refer to as noise. The presence of

noise renders both quantities, the total concentration c and the

dilute phase concentration c1 time-dependent. Moreover, the

relationship between c and c1 becomes stochastic as captured

by the joint probability distribution Pðc;c1Þ. In the following, we

consider the case where the statistics of the noise are stationary.

In order to quantify noise reduction, we compare the probability

distribution over total concentration PðcÞ = R
Pðc1; cÞdc1 to

the probability distribution over dilute phase concentration

Pðc1Þ =
R
Pðc1; cÞdc (Figure 1C and Box 1). A common dimen-

sionless measure for the magnitude of noise is the coefficient

of variation h½x� = s½x�=CxD, where s½x� and CxD are the standard

deviation andmean of random variable x, respectively. The coef-

ficient of variation measures the variability of x relative to its

mean, which is useful when comparing quantities of different

magnitude. Noise reduction in the dilute phase can then be

defined as the ratio of coefficients of variation of total- and dilute

phase concentration

G =
h½c�
h½c1� =

s½c�
s½c1�

Cc1D
CcD

; (Equation 2)

such that noise is reduced when G> 1 and h½c1�< h½c�.



Box 1. Definition of concentration buffering and noise reduction

Concentration buffering is the maintenance of concentration near a set value even if material is added or removed. In phase-

separating systems, concentration buffering may occur in both two- and multicomponent systems. Two-component systems

at equilibrium can exhibit a fixed saturation concentration csat, that is, the dilute phase concentration c1 remains virtually

constant at different total concentrations c. Multicomponent systems exhibit saturation concentrations that depend on the

concentration of all components. Therefore, multicomponent systems may show limited concentration buffering at equilibrium.

In non-equilibrium conditions, new behaviors can arise and even two-component systems may not exhibit a fixed csat.

However, systems lacking a fixed csat may still achieve substantial concentration buffering. In noisy systems, concentration

buffering may be defined using average concentrations CcD and Cc1D because concentrations fluctuate.

Noise reduction is a decrease of the variability of random fluctuations around an average. A phase-separating system exhibits

noise reduction in the dilute phase when fluctuations in the dilute phase concentration c1 are smaller than fluctuations in the

total concentration c. Fluctuations can be quantified by the coefficient of variation h½:� = s½:�=C:D, which is suitable for comparing

fluctuations of a random variable around its average. Noise reduction is different from concentration buffering. In a phase-

separating system, noise reduction is not directly linked to the existence of a fixed saturation concentration csat. Conversely, if

the average dilute phase concentration is buffered, noise is not necessarily reduced. In non-equilibrium systems, noise

reduction depends on the timescales of the underlying kinetic processes.
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Molecular noise in cells is dynamic and spans a spectrum of

timescales, ranging over orders of magnitude.14–16 How fluctua-

tions at different timescales are affected by a systemdepends on

how the timescales of the noise compare to the intrinsic time-

scales of that system. As an example, a system may effectively

suppress low-frequency fluctuations but fail to suppress or

even amplify high-frequency fluctuations. Similar to the buffering

strength, noise reduction is a quantitative property. In cells, a

reduction of noise by a factor of as little as 1:5 � 2 can already

be substantial and require high metabolic cost when realized

through active biochemical feedback.17,18
Concentration buffering and noise reduction are
distinct phenomena
Simple considerations suggest that concentration buffering and

noise reduction may be closely related concepts.2,7,12,13 This

viewpoint originates from the idea that when c1 is insensitive to c

(perfect buffering,L/N), it should buffer variations in c and leave

c1 moreor lessunaffectedeven ifcfluctuates.Comparingconcen-

tration buffering and noise reduction more closely, however, re-

veals that they are different and cannot be used synonymously.

Ingeneral, concentrationbufferingcannotbeused topredict noise

reduction, nor can it provide bounds on it as we will show below.

To better understand this, it is useful to first address the ques-

tion under what special conditions concentration buffering and

noise reduction do become similar. Consider an ensemble of

equilibrium systems, each being at the thermodynamic limit with

concentration relationshipgðcÞ. The systemsonly differ in the total

concentrations c, which are randomly distributed according to a

probability distribution PðcÞ. Physically, this corresponds to an

equilibrium ensemble or to a quasi-static system, where the

composition changes slowly compared with the relaxation to

equilibrium. Sincec varies, also c1 varies across the ensemble ac-

cording tosomeprobabilitydistributionPðc1Þ. Ifweconsider small

variations around the average total concentration CcD, the stan-

dard deviation of c1 becomes s½c1� x s½c�jg0ðCcDÞj. Using this

expression in the definition of noise reduction (Equation 2) yields

G =
1

CcD
gðCcDÞ
jg0 ðCcDÞj (Equation 3)
which is identical to the buffering strength (Equation 1) evaluated

at the average total concentration CcD. In other words, concentra-

tion buffering and noise reduction become similar for large equi-

librium systems with slowly fluctuating composition. Note, how-

ever, that this special case entails a strong simplification of the

concept of noise reduction, essentially reducing it to the transfor-

mation of the random variable c by a static nonlinearity g.

In the cell biological context, molecular noise is discussed in

the context of mesoscopic stochastic systems, whose degrees

of freedom fluctuate dynamically and which are out of equilib-

rium. While noise reduction as defined in Equation 2 is well

defined for such systems, the buffering strength defined in Equa-

tion 1 needs to be reconsidered. This is because the total- and

dilute phase concentrations are random variables, whose rela-

tionship cannot be expressed by a deterministic function. Alter-

natively, we can define the relationship between average con-

centrations Cc1D = gNEðCcDÞ and use this function gNE instead of

g in the definition of the buffering strength in Equation 1. Howev-

er, concentration buffering then becomes a property of average

concentrations, while noise reduction is concerned with fluctua-

tions around such averages. In general, these two quantities pro-

vide different information. In the following, we will use theory and

numerical analyses to probe the relationship between concen-

tration buffering and noise reduction inmesoscopic phase-sepa-

rating systems away from equilibrium.
Stochastic dynamics of phase-separating systems in
the presence of active synthesis and turnover of
molecules
We consider a three-component mixture consisting of two sol-

utes A and B and solvent S. While mixtures comprising more

than three components could be handled analogously, a ternary

mixture is sufficient for the following discussion. The copy

numbers of the components are denoted by a, b and s, respec-

tively. The solvent S is associated with a molecular volume v,

while the two solutes A and B are considered to have equal

molecular volume vA = vB = nv for simplicity. We describe the

composition of the mixture using volume fractions f = avA=V

and j = bvB=V, which are particle concentrations multiplied

by the respective molecular volumes vA and vB. We denote the
Cell Systems 16, 1–9, February 19, 2025 3
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volume fractions of solute molecules in the dilute- and dense

phase as fa = vAaa=Va and ja = vBba=Va for a˛ f1;2g, respec-
tively. Since volume fractions can be understood as rescaled

concentrations, we will refer to them as concentrations in the

following to simplify terminology. At equilibrium, this system

can be described by a free energy

F = V1fðf1;j1Þ + V2fðf2;j2Þ+gA2 (Equation 4)

with f as a ternary Flory-Huggins free energy density,19,20 g the

surface tension, V1 and V2 denoting the volumes of dilute and

dense phase and A2 � V
2=3
2 as the surface area of the dense

phase. The free energy density f is governed by three effective

interaction parameters cAS, cBS and cAB capturing effects of

pairwise interactions among A, B, and S. Considering incom-

pressibility (V = V1 +V2 = const.) and conserved copy numbers

a and b, the system can be described by three degrees of

freedom, e.g., the dilute phase copy numbers a1, b1, and s1.

The dependencies of dilute phase concentration on total con-

centration at equilibrium can be obtained by minimizing the

free energy (Equation 4) with respect to a1, b1, and s1 (STAR

Methods section ‘‘Equilibrium theory’’).

In the presence of molecular synthesis and degradation, the

solute copy numbers a and b are no longer conserved. In this

case, a, b, and also a1, b1, and s1 are stochastic degrees of

freedom.Wedescribe copy-number fluctuations of a and b using

birth-and-death processes with fluctuating birth-rate.21 In case

of a, for instance, we consider a stochastic time-dependent

birth-rate VkA1 rAðtÞ with rate constant kA1 and a dimensionless

stochastic process rAðtÞ. The process rAðtÞ can account for addi-

tional sources of randomness affecting the synthesis of compo-

nents A such as fluctuations in the number of messenger

RNA or extrinsic sources of variability.21,22 We consider rAðtÞ
to be at stationarity with mean CrAD and autocovariance

function kAðtÞ = CrAðtÞrAðt + tÞD � CrAD
2
, where t is the lag time.

Degradation of molecules A takes place with rate k2aðtÞ, where

1=k2 is the average lifetime of a molecule. For simplicity, the

same birth- and degradation rates are used in both phases.

We can now calculate the mean and the variance of total con-

centration f of solute A. The resulting stationary noise strength

of total concentration f reads

h2½f� =
1

V

k2
kA1 CrAD

+
k2

CrAD
2
bkAðk2Þ (Equation 5)

where bkAðuÞ is the Laplace transform of the autocovariance func-

tion kAðtÞ, which in Equation 5 is evaluated at the degradation

rate u = k2 (STAR Methods section ‘‘Accounting for non-equilib-

rium production and turnover of solutes’’). Fluctuations of the

second solute B are treated analogously. To study how fluctua-

tions in total concentration relate to fluctuations in the dilute (or

dense) phase, we have to account for the kinetics of material ex-

change between phases. Specifically, we consider diffusion-

limited exchange of solutes between dilute- and dense phase

as well as rapid relaxation of solvent to osmotic equilibrium.

The kinetics of these events are governed by differences in

chemical potentials, involving osmotic pressure and Laplace

pressure (STAR Methods sections ‘‘Kinetics of solute and sol-

vent partitioning’’ and ‘‘Droplet kinetics in the presence of non-
4 Cell Systems 16, 1–9, February 19, 2025
equilibrium production and turnover of solutes’’). The statistical

properties of this system can be described by amaster equation,

which we solve numerically using the linear noise approxima-

tion.23 The resulting statistics allow us to analyze both noise

reduction and concentration buffering for components A and B

in non-equilibrium conditions (STAR Methods section ‘‘Droplet

kinetics in the presence of non-equilibrium production and turn-

over of solutes’’).
Non-equilibrium systems lack fixed saturation
concentrations
We first consider concentration buffering and noise reduction in

a simple binary mixture with only solute A and solvent S (no

component B, j = 0). Attractive interactions among solute mol-

ecules A or repulsive interactions between A and S are captured

by a single interaction parameter cAS > 0. The total concentration

f of solutes A fluctuates due to synthesis and turnover as

specified above. The stochastic process rAðtÞ is chosen to be

a birth-and-death process with birth-rate l1 and death-

rate l2rAðtÞ mimicking for example stochastic synthesis and

degradation of messenger RNA. The stationary mean and auto-

covariance function of rAðtÞ are then given by CrAD = l1=l2 and

kAðtÞ = l1=l2e
� l2t.

To study concentration buffering in this system, we determine

the dependence of the average dilute phase concentration

on total concentration, Cf1D = gNEðCfDÞ and compare it to

the dilute phase concentration at equilibrium f1 = gðfÞ. For a
phase-separated two-component system at equilibrium, we

have gðfÞ x fsat, where fsat is the equilibrium saturation con-

centration in the thermodynamic limit (Figure 2A, black line).

This is no longer the case in non-equilibrium conditions, where

Cf1D = gNEðCfDÞ increases with average total concentration CfD
(Figures 2A blue line and S1). For the considered two-compo-

nent system, approximate expressions can be derived if dilute

phase concentrations f1 and droplet volumes V2 are small (dilute

approximation; see STAR Methods section ‘‘Analytical results

for the case of a two-component mixture’’). In the two-phase

regime, gNEðCfDÞ is given by

gNEðCfDÞx kD
k2+kD

fsat +
k2

k2+kD
CfD (Equation 6)

where kD � D=V2=3 is a kinetic coefficient that captures the

diffusion-limited exchange of molecules between dilute- and

dense phase with diffusion constant D. Equation 6 demon-

strates that the slope of gNEðCfDÞ depends on the relative time-

scale between molecular turnover and partitioning, whereas

perfect concentration buffering ðCf1D/fsatÞ is reached only

when kD is much larger than the degradation rate k2 and the

phases reach equilibrium. At finite degradation rate, the two

phases cannot equilibrate during the characteristic time of

diffusion. Because the dilute phase concentration is not fixed,

the apparent partition coefficient, which we define as

r = Cf2D=Cf1D is also not constant but decreases with increasing

CfD, i.e.,

r =
~f2ðk2+kDÞ

fsatkD+k2CfD
(Equation 7)
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Figure 2. Concentration buffering and noise reduction out of equilibrium

(A and B) Two-component system consisting of a solute A and solvent S. The total concentration of A is described by f = cvA. (A) Dilute phase concentration f1

as a function of total concentration f of solute A. Joint distributions over total- and dilute phase concentrations are illustrated as ellipses for two different average

total concentrations. Representative samples are shown as red dots. Insets show distributions over relative concentrations f=CfD and f1=Cf1D, illustrating relative

variability of f and f1, respectively.

(B) Comparison between buffering strength (blue) and noise reduction (red). The buffering strength and noise reduction under the dilute approximation are shown

as dashed lines. Inset: buffering strength and noise reduction for varying correlation times 1=l2 of the process rAðtÞ.
(C and D) Three-component system consisting of solutes A and B and solvent S. (C) Fluctuations in A and B are independent. (D) Fluctuations in A and B are

correlated. Insets: buffering strength and noise reduction for varying CfD. Black lines correspond to systems at equilibrium. Parameter values are provided in

Tables S1–S3.
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where ~f2 denotes the average dense phase concentration that is

approximately constant (STAR Methods section ‘‘Analytical re-

sults for the case of a two-component mixture’’). Even when so-

lute partitioning is around 2 � 3 orders of magnitude faster than

solute turnover, the apparent partition coefficient and average

dilute phase concentration change substantially with average

total concentration (Figure S1). Thus, while a fixed saturation

concentration and partition coefficient are hallmarks of binary
systems at equilibrium,7,12,24 these features are lost in non-equi-

librium steady states where material is subject to production and

turnover.

To compare these resultswith experiments,weusedpreviously

published data on the synthetic model protein 2NT-DDX4YFP.11

The 2NT-DDX4YFP construct was overexpressed in cells, which

generated large variability in expression levels below and above

the phase-separation threshold. Condensates began to form at
Cell Systems 16, 1–9, February 19, 2025 5
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around 7 mM, but average dilute phase concentrations did not

remain constant but tended to increase with average total con-

centration (Figure S2A). Fitting Equation 6 to the data, revealed

a slope of k2=ðk2 + kDÞ x 0:04, corresponding to a case where

protein partitioning is around 20 times faster than turnover

(STAR Methods section ‘‘Synthetic system’’). We further display

the partition coefficient for a smaller dataset from the same

study,11 where both dilute- and dense phase concentrations

were measured, revealing that the partition coefficient decreases

for increasing dilute phase concentration and hence total concen-

tration (Figure S2A, inset). Variable dilute phase concentrations

and partition coefficients have been previously associated with

condensates that rely on heterotypic interactions.7 While we do

not exclude a potential role of heterotypic interactions in the

2NT-DDX4YFP condensate, its variable average dilute phase con-

centration and partition coefficient are consistent even with a bi-

nary system with molecular synthesis and turnover. Therefore,

from observed variable compositions or partition coefficients in

a cell, one cannot infer that heterotypic interactions drive conden-

sate formation, in contrast to previous suggestions.5,7,24
A fixed saturation concentration is not required for
effective concentration buffering and noise reduction
We next analyzed how the absence of a fixed saturation concen-

tration affects concentration buffering and the reduction of noise.

To thisend,wedetermined thebufferingstrengthandnoise reduc-

tionof the non-equilibriumbinary system for different average total

concentrations CfD (Figures2Aand2B).Both thebufferingstrength

and noise reduction decrease with increasing average total con-

centration CfD, ranging from about 60- to 5- and 10- to 2-fold,

respectively (Figure 2B, blue and red lines). This demonstrates

that both quantities depend strongly on the systems’ setpoint

CfD and that they can attain very large values even when the

average dilute phase concentration Cf1D varies strongly.
This analysis further reveals that the buffering strength and

noise reduction can assume substantially different values for a

given average total concentration CfD (Figure 2B). To better un-

derstand this difference, we make use of the dilute approxima-

tion (STAR Methods section ‘‘Analytical results for the case of

a two-component mixture’’), for which the buffering strength is

L = 1+
kD
k2

fsat

CfD
(Equation 8)

Noise reduction, by contrast takes a more complex form G =

h½f�=h½f1� with h½f� =
ffiffiffiffiffiffiffiffiffiffiffi
h2½f�

p
given by Equation 5 and

h½f1� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nv

VCf1D
+

1

k2+kD

�
kA1nv

Cf1D

�2bkAðk2+kDÞ
s

(Equation 9)

with Cf1D = gNEðCfDÞ as defined in Equation 6 (STAR Methods

section ‘‘Analytical results for the case of a two-component

mixture’’). Comparing the buffering strength with noise reduc-

tion, we realize that the latter depends on the correlation functionbkA and the system size V, while the former does not. The size-

dependence of noise reduction originates from intrinsic fluctua-

tions of solute partitioning, synthesis, and turnover. The depen-

dence on bkA captures how temporal fluctuations of the birth-rate

rA propagate to f and f1, respectively. Noise reduction becomes
6 Cell Systems 16, 1–9, February 19, 2025
similar to the buffering strength in the limit of both large systems

ðV/NÞ and long correlation time of the birth-rate rA ðl2 /0Þ
while keeping kD fixed (STAR Methods section ‘‘Noise reduction

in the limit of large volumes and quasi-static birth-rates’’). How-

ever, cells do not typically operate close to these limits.14,22,25–27

As an example, in Figure 2B, we consider rA to have a

correlation time of 1=l2 x 3h (e.g., due to transcriptional fluctu-

ations15 or mRNA decay28) together with a solute lifetime of

1=k2 x 14 h28,29 and a partitioning time of 1=kD x 2:6 min. The

latter is comparable to the timescales observed in cells.11,30,31

Using kD = 6D=V2=3, this corresponds to e.g., Dx 0:2 mm2=s

and cell volume V x 3;000 mm3. In this case the buffering

strength differs from noise reduction by more than 2-fold (Fig-

ure 2B, red and blue dots and inset, red dot). Note that applying

our theory to in vivo situations,D is an effective diffusion constant

that may depend on more complex molecular kinetics than sim-

ple diffusion. In summary, concentration buffering and noise

reduction are distinct concepts, which become similar only in

the extreme case of a very large and slowly varying system.
Multicomponent systems can effectively buffer
concentration and reduce noise
To generalize our analysis, we consider a three-component sys-

tem, with both solutes A and B being present. For simplicity, we

focus on the extreme case of a purely heterotypic system, where

cAS = cBS = 0 and cAB < 0. The stochastic processes rA and rB
are considered to be independent but identical birth-and-death

processes with mean CrD = l1=l2 and autocovariance function

kðtÞ = l1=l2e
� l2t as before. In the following, we focus on noise

reduction and concentration buffering of solute A, but equivalent

analyses apply to the second soluteB. In linewith previous obser-

vations,2,5,7 this system displays a more complex concentration

dependence, such that even at equilibrium, the average dilute

phase concentration changes substantially with average total

concentration (Figure 2C, black line). The concentration depen-

dence is further affected by the presence of synthesis and turn-

over of solutes A and B (Figure 2C, blue line). As in the binary

case, the buffering strength varies across different CfD but in our

example takes large values overall. Also, noise is reduced for a

broad range of CfD, even though Cf1D varies substantially. These

results are in line with experimental measurements of nucleolar

component nucleophosmin (NPM1),7,11 where dilute phase

NPM1 concentration increased substantially upon overexpres-

sion,7 while endogenous labeling of NPM1 revealed that noise

reduction occurred at the physiological setpoint11 (Figure S2B).

We further considered the case, where fluctuations in compo-

nentsA andB are positively correlated (Figure 2D). This is inspired

by previous theoretical work showing that coexisting concentra-

tions ofmacroscopic systems are bufferedwhen the total concen-

trations CfD and CjD vary quasi-statically along tie lines.2 Tie lines

connect the coexisting compositions in a phase diagram. When

variations of total concentrations occur along a tie line, the coex-

isting compositions at equilibrium do not change, while they do

change if variations are not along a tie line.2,5 Our analysis extends

this concept tomesoscopic non-equilibrium systemswhere f and

j fluctuate on finite timescales. To account for correlations be-

tween f and j, we consider the case where the same birth-pro-

cess drives the synthesis of both components A and B, i.e.,
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rA = rB = r with mean and autocovariance function as defined

above. This leads to a positive correlation between f and j, which

can be alignedwith a tie line.While the predicted average concen-

trations CfD and Cf1D are not affected by the presence of correla-

tions between f and j (compare blue lines in Figures 2C and

2D), we find fluctuations of dilute phase concentration to depend

in a notable manner on such correlations. In our example, fluctu-

ations in total concentration f and dilute phase concentration f1

are positively correlated for small CfD, similarly to the case where

f and j are uncorrelated (Figure 2D). For larger CfD, however,

the correlations between f and f1 become negative, meaning

that at the level of individual realizations (e.g., cells in a popula-

tion), fluctuations leading to larger f are associated with smaller

f1. At the same time, the average concentrations show the oppo-

site behavior and Cf1D increases with increasing CfD (Figure 2D).

This difference in behavior arises because in the case of average

concentrations, buffering is characterized by the response of Cf1D
to changes in CfD, while noise in f1 is governed by correlated fluc-

tuations of several variables. The exact statistics of f1 depend on

the interplay between the thermodynamic and kinetic features

of the system. This demonstrates that buffering of averages and

the behavior of fluctuations around averages can show very

different behaviors. Moreover, while the buffering strength was

consistently larger than noise reduction in our previous examples

(Figures 2B and 2C, inset), this is no longer true when fluctuations

in f and j are correlated. In this example, noise reduction can be

smaller or larger than the buffering strength, depending on the set-

point CfD (Figure 2D, inset). This analysis further illustrates that

concentration buffering and noise reduction provide different in-

sights into phase-separating systems and that in general, one

cannot be inferred from the other.

A fixed saturation concentration implies effective
concentration buffering but not noise reduction
So far, we have demonstrated that a fixed saturation concentra-

tion is not necessary for noise reduction and concentration buff-

ering to occur. We next analyzed whether a fixed saturation con-

centration guarantees noise reduction and concentration

buffering. To do so, we considered an example of a two-compo-

nent system with fast phase-separation dynamics exhibiting a

weakdilutephasedependencegNE on total concentration, result-

ing in a large buffering strength (Figures S3A and S3B, blue lines).

Moreover, the parameters were chosen such that noise in total

concentrationwas smaller than in the examples discussed above

where noise reduction had been significant. In this case, even

thoughpartitioning is very fast on the timescale of solute turnover,

noise reduction fails (Figures S3A inset and S3B red line). This is

because noise reduction relies on partitioning noise to be weaker

than the non-equilibriumfluctuations arising fromprotein produc-

tion and degradation. As we have shown previously, partitioning

noise therefore forms a lower bound on noise in the considered

phase-separating systems.11 In summary, while a fixed satura-

tion concentration ensures effective concentration buffering, it

is not sufficient for noise reduction to take place.

Conclusions
Using a series of examples, we have clarified the relationship be-

tween concentration buffering and noise reduction by phase-

separated compartments. We show that these two concepts
are different and become similar only for large systems near ther-

modynamic equilibrium, i.e., if the composition varies slowly. In

this special case, noise reduction can be related to concentra-

tion buffering governed by equilibrium phase diagrams.2,13 As

we have shown, however, these concepts can be substantially

different when non-equilibrium fluctuations have a finite correla-

tion time and when the finite system size is taken into account. In

general, concentration buffering can neither predict noise reduc-

tion nor can it provide bounds on it.

Inspired by previous discussions,7,12,13 we have tested to

what extent a fixed saturation concentration is important for

noise reduction. We have shown that two-component and multi-

component systems lacking fixed saturation concentrations can

nevertheless reduce noise effectively. Conversely, we have

shown that systems exhibiting a fixed saturation concentration

may fail to suppress noise or may even increase it. Thus, a fixed

saturation concentration is neither necessary nor sufficient for

effective noise reduction to take place. If and to what extent a

phase-separated compartment reduces noise depends on the

interplay between the thermodynamic and kinetic properties of

that compartment.

Our results have broader implications for the analysis of intra-

cellular condensates. As an example, it has been suggested that

when the titration of a component leads to a change in dilute

phase concentration, or the partition coefficient, this points to-

ward heterotypic interactions governing the formation of these

condensates.5,7,24 This argument is based on equilibrium phase

diagrams of multicomponent mixtures. However, our analysis

shows that in the presence of non-equilibrium production and

turnover, variable dilute phase concentrations and variable parti-

tion coefficients arise generically, independent of the type of the

underlying interactions. Since in cells, material is subject to pro-

duction and turnover, inference of interactions based on equilib-

rium phase diagrams is thus unreliable.

An important challenge in the condensate field is to under-

stand how far traditional concepts from condensedmatter phys-

ics can take us in studying intracellular compartments andwhere

new concepts may be needed. Moving from simpler systems

comprising few components to systems with larger composi-

tional complexity is an important goal in this regard.2,7,24 At the

same time, we have to account for the dynamic complexity of

cellular systems arising from stochastic, non-equilibrium pro-

cesses.11,14,22,25 Developing theoretical and experimental

approaches to study noise and information processing in non-

equilibrium multicomponent condensates will remain an impor-

tant challenge in the future.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB source code This paper https://doi.org/10.5281/zenodo.14413285

2NT-DDX4YFP data Klosin et al.11 N/A

NPM1-NeonGreen data Klosin et al.11 N/A

NPM1-mCherry data Riback et al.7 N/A

MATLAB The MathWorks Inc., Natick, Massachusetts version 9.10.0.1602886 (R2021a)
METHOD DETAILS

Equilibrium theory
We consider a system comprising two solutes A and B and solvent S, which phase-separates into two phases of volumes V1 and V2,

where V2 is a droplet. The free energy of this system is written as

F = V1fðf1;j1Þ + V2fðf2;j2Þ+gA2; (Equation 10)

with A2 = ð36pÞ1=3V2=3
2 as the surface area of the droplet and g denoting surface tension. For the free energy density f of a homo-

geneous phase, we consider a ternary Flory-Huggins model

fðf;jÞ = kBT

v

�
cASfð1 � f � jÞ+cABfj+cBSjð1 � f � jÞ

+
f

n
log f+

j

n
log j+ ð1 � f � jÞlogð1 � f � jÞ

�
;

(Equation 11)

with effective interaction parameters cAS, cAB and cBS. For simplicity, we consider the case where the solutes A and B have identical

molecular volume nv with v denoting the molecular volume of solvent S and n as a positive number. We choose to describe

the system using the degrees of freedom a1, b1 and s1, corresponding to the copy numbers of A, B and S molecules in the dilute

phase of volume V1, respectively. We then have f1 = a1nv=V1, j1 = b1nv=V1, V1 = vða1n +b1n + s1Þ and we use a1 = a� a1, b2 =

b � b1 and V2 = V � V1 due to particle number conservation (a = a1 + a2 and b= b1 +b2) and incompressibility (V = V1 + V2 =

const.). In terms of the degrees of freedom a1, b1 and s1, the free energy reads

Fða1;b1; s1Þ = vða1n+b1n+ s1Þf
�

a1n

a1n+b1n+s1
;

b1n

a1n+b1n+s1

�
+ ½V � vða1n+b1n+ s1Þ �f

� ða � a1Þnv
V � vða1n+b1n+s1Þ;

ðb � b1Þnv
V � vða1n+b1n+s1Þ

�
+gð36pÞ1=3½V � vða1n+b1n+s1Þ �2=3:

(Equation 12)

At equilibrium, a1, b1 and s1 exhibit Boltzmann statistics

PEQða1;b1; s1ja;bÞ = 1

Z
e
� Fða1 ;b1 ;s1Þ

kBT ; (Equation 13)

where

Z =
X

ða1 ;b1 ;s1Þ˛S

e
� Fða1 ;b1 ;s1Þ

kBT (Equation 14)

is the partition function andS = ½0;a�3 ½0;b�3 ½0;V =v � nða +bÞ�. Equilibrium quantities can be determined by calculatingmoments

of the Boltzmann distribution as a function of a or b. In case of solute A, for instance, we define

Cf1jf;jD = Cf1ja;bD =
X

ða1 ;b1 ;s1Þ˛S

a1n

a1n+b1n+s1
PEQða1;b1; s1ja;bÞ: (Equation 15)

In Equation 15, the symbol Cf1jf;jD denotes the conditional expectation of f1 given a particular f and j. As we are interested in

how the dilute phase concentration of one component (e.g., f1) changes with total concentration of the same component (e.g., f) we
e1 Cell Systems 16, 1–9.e1–e11, February 19, 2025
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will drop the dependency on total concentration of the other component (e.g., j) in our notation. In case of component A, for instance,

we define

gðfÞ = Cf1jf;jD (Equation 16)

as j is fixed. For sufficiently abundant systems with approximately Gaussian fluctuations, the above expectation may be approxi-

mated by the minimum of the free energy, or equivalently, the mode of the underlying Boltzmann distribution and we will use this

approximation when calculating equilibrium concentration dependencies. Numerically, the minimum of the free energy was deter-

mined using the fmincon function of MATLAB (version 9.10.0.1602886 (R2021a), TheMathWorks Inc., Natick, Massachusetts), using

the interior-point algorithm under default settings.

Kinetics of solute and solvent partitioning
To study concentration fluctuations in non-equilibrium conditions (see STAR Methods section ‘‘Accounting for non-equilibrium pro-

duction and turnover of solutes’’), we require a kinetic description of the considered phase-separating system. To this end, we

consider three pairs of molecular exchange events

ða1;b1; s1Þ %
w�
A

w+
A

ða1 � 1;b1; s1 + nÞ (Equation 17)
ða1;b1; s1Þ %
w�
B

w+
B

ða1;b1 � 1; s1 + nÞ (Equation 18)
ða1;b1; s1Þ %
w�
S

w+
S

ða1;b1; s1 � 1Þ: (Equation 19)

The first two rows correspond to exchange of solutes A and B in and out of the dense phase, while the third row captures volume

fluctuations of the phases due to solvent exchange. These events are driven by generalized thermodynamic forces. Thermodynamics

requires the rates to obey the following conditions

log
w�

A ða1;b1; s1Þ
w+

Aða1 � 1;b1; s1+nÞ = � 1

kBT
½Fða1 � 1;b1; s1 + nÞ � Fða1;b1; s1Þ � (Equation 20)
log
w�

B ða1;b1; s1Þ
w+

Bða1;b1 � 1; s1+nÞ = � 1

kBT
½Fða1;b1 � 1; s1 + nÞ � Fða1;b1; s1Þ � (Equation 21)
log
w�

S ða1;b1; s1Þ
w+

Sða1;b1; s1 � 1Þ = � 1

kBT
½Fða1;b1; s1 � 1Þ � Fða1;b1; s1Þ �; (Equation 22)

where w
+=�
A , w

+=�
B and w

+=�
S are event probabilities per unit time. Considering copy numbers to be sufficiently large, the free energy

differences in Equations 20, 21, and 22 can be approximated as directional derivatives. More precisely, we approximate Fða1 + na;

b1 + nb;s1 + nsÞ � Fða1;b1;s1Þx ðna nb nsÞVFða1;b1;s1Þ, with VFða1;b1; s1Þ = ðva1 vb1
vs1 ÞTFða1;b1; s1Þ as the gradient of the free en-

ergy. This leads to

log
w�

A ða1;b1; s1Þ
w+

Aða1 � 1;b1; s1+nÞ = � ð� 1 0 n ÞVFða1;b1; s1Þ = � nv

kBT

�
mA
2 � mA

1

	
(Equation 23)
log
w�

B ða1;b1; s1Þ
w+

Bða1;b1 � 1; s1+nÞ = � ð0 � 1 n ÞVFða1;b1; s1Þ = � nv

kBT

�
mB
2 � mB

1

	
(Equation 24)
log
w�

S ða1;b1; s1Þ
w+

Sða1;b1; s1 � 1Þ = � ð0 0 � 1 ÞVFða1;b1; s1Þ = � v

kBT
½P2 � P1� � g

kBT
vs1A2; (Equation 25)

where mA
a = vfa

fðfa;jaÞ and mB
a = vja

fðfa;jaÞ are the exchange chemical potential of component A and B in phase a˛ f1;2g,P2 �
P1 is the osmotic pressure difference with Pa = fðfa;jaÞ � fmA

a � jmB
a and gvs1A2=v is the Laplace pressure.
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We choose the partitioning of solutes into the dense phase to be diffusion-limited with w+
Aða1;b1; s1Þ = 6D=V

2=3
1 a1 and w+

Bða1;b1;

s1Þ = 6D=V
2=3
1 b1, where we consider the two solutesA andB to have the same diffusion constantD for simplicity. The corresponding

reverse ratesw�
A andw�

B are then chosen to satisfy (Equation 23) and (Equation 24). Solvent exchange (Equation 19) is expected to be

fast on the timescale of solute exchange, effectively keeping the system close to osmotic equilibrium. We therefore consider the limit

where the kinetic coefficients associatedwithw+
S andw�

S are fast in comparison to solute exchange, effectively eliminating one kinetic

mode of this system. Practically, this was achieved by choosingw�
S ða1;b1;s1Þ = kS, determining the reverse ratew+

s to satisfy Equa-

tion 25 and setting the kinetic coefficient kS to large values (see Tables S1–S5).

Accounting for non-equilibrium production and turnover of solutes
In the presence of noise, the total concentrations f and j are no longer conserved. To describe solute fluctuations, we use stochastic

birth-and-death processes with fluctuating birth-rates.21,27,32,33 We describe synthesis and turnover of a component X ˛fA;Bg as

ðx; sÞ %
wb
X

wd
X

ðx + 1; s � nÞ; (Equation 26)

where whenever a molecule X is produced or degraded, n solvent molecules are removed or added to the system, leaving the total

volume conserved. We further setwb
X = VkX1 rXðtÞwhere kX1 is a birth-rate per volume and wd

X = k2xðtÞwith xðtÞ as the copy number of

molecule X. For simplicity we consider the case where both solutes A and B are degraded with the same rate constant k2. The sto-

chastic process rXðtÞ captures fluctuations in the synthesis rate, for instance due to transcriptional noise or extrinsic variability. We

consider rXðtÞ to be a stationary stochastic process with mean CrXD and autocovariance function kXðtÞ = CrXðtÞrXðt + tÞD � CrXD
2
for

X ˛ fA; Bg. In the presence of phase coexistence, both synthesis and turnover events can take place in both phases i = f1; 2g
with rates wb

X;i = Vik
X
1 rXðtÞ and wd

X;i = k2xiðtÞ, leaving the statistics of total concentration f and j unchanged. This choice is useful

to compare fluctuations in the presence and absence of phase coexistence. Note that in order to avoid negative solvent copy

numbers, we require wb
X;i = 0 if si < n. However, since we consider regimes where solvent molecules are much more abundant

than solutemolecules, we neglect this constraint in our calculations. In the following, we will denote byBDðwb
X ;w

d
XÞ a birth-and-death

process X with birth-rate wb
X and death-rate wd

X .

To derive the statistics of total solute concentration, we consider the birth-and-death process BDðVk1rðtÞ;k2xðtÞÞ. For a particular

realization of the process rðtÞ, the probability of having x molecules at time t can be described by a master equation

d

dt
Pðx; tÞ= Vk1rðtÞPðx � 1; tÞ+ k2ðx + 1ÞPðx + 1; tÞ

� ½Vk1rðtÞ+ k2x�Pðx; tÞ;
(Equation 27)

with Pðx; tÞ := PðxðtÞ��rt0Þ as the copy number distribution of molecules X at time t given a realization rt0 of the process rðtÞ. The con-

ditional mean and variance of x can be obtained from Equation 27 and are given by

CxðtÞ��rt0D = Var


xðtÞ��rt0 � = Vk1

Z t

0

e� k2ðt� tÞrðtÞdt; (Equation 28)

where we have chosen Cxð0Þjr0D = Var½xð0Þjr0� = 0 for convenience (the initial conditions are irrelevant since we are interested in the

long term behavior). The stationary mean of xðtÞ is readily obtained by taking the expectation of Equation 28 and letting t/N, which

yields

CxD =
Vk1CrD
k2

: (Equation 29)

For the variance of xðtÞ, we make use of the law of total variance, which states that

Var½xðtÞ� = CVar


xðtÞ��rt0�D+Var



CxðtÞ��rt0D�: (Equation 30)

The first term on the rhs of Equation 30 is the same as the stationary mean, i.e., CVar½xðtÞ��rt0�D/t/N
k1VCrD=k2. The second term on

the rhs of Equation 30 is given by

Var


CxðtÞ��rt0D � = Var

24Vk1 Z t

0

e� k2ðt� tÞrðtÞdt
35

= ðk1VÞ2e� 2k2tVar

24Z t

0

ek2trðtÞdt
35:

(Equation 31)

The variance of the integral can be rewritten as
e3 Cell Systems 16, 1–9.e1–e11, February 19, 2025
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Var

24Z t

0

ek2trðtÞdt
35 =

*0@Z t

0

ek2trðtÞdt
1A2+

�
0@Z t

0

ek2tCrðtÞDdt
1A2

=

Z t

0

Z t

0

ek2ðt+t0 ÞCrðtÞrðt0ÞDdtdt0 �
Z t

0

Z t

0

ek2ðt+t0 ÞCrðtÞDCrðt0ÞDdtdt0

=

Z t

0

Z t

0

ek2ðt+t0 Þkðt0 � tÞdtdt0:

(Equation 32)

Using the fact that the autcovariance kðtÞ= hrðtÞ rðt + tÞi � hri2 is time-symmetric, we can simplify this expression toZ t

0

Z t

0

ek2ðt+t0 Þkðt0 � tÞdtdt0

=

Z t

0

Z t

t0
ek2ðt+t0 Þkðt0 � tÞdtdt0 +

Z t

0

Z t0

0

ek2ðt+t0 Þkðt0 � tÞdtdt0

=

Z t

0

Z t

0

ek2ðt+t0 Þkðt � t0Þdt0dt +

Z t

0

Z t0

0

ek2ðt+t0 Þkðt0 � tÞdtdt0

= 2

Z t

0

Z t0

0

ek2ðt+t0 Þkðt0 � tÞdtdt0

(Equation 33)

The variance of the conditional mean is thus given by

Var


CxðtÞ��rt0D � = 2ðk1VÞ2e� 2k2t

Z t

0

Zt0
0

ek2ðt+t0Þkðt0 � tÞdtdt0: (Equation 34)

We next calculate the Laplace transform of this equation, which will allow us to determine a general expression for Var½CxðtÞ��rt0D� in
the limit of t/N. To this end, we first rewrite Equation 34 as

Var


CxðtÞ��rt0D � = 2ðk1VÞ2e� 2k2t

Z t

0

ek2t
0
Zt0
0

ek2tkðt0 � tÞdtdt0; (Equation 35)

such that the inner integral now has the form of a convolution integral. To calculate the Laplace transform of Equation 35, we make

use of the properties34

L

8<:
Z t

0

gðsÞfðt � sÞds
9=; = bgðuÞbf ðuÞ (Equation 36)
L
�
ebtgðtÞ = bgðu � bÞ (Equation 37)
L

8<:
Z t

0

gðsÞds
9=; =

1

u
bgðuÞ; (Equation 38)

where bgðuÞ = RN
0 gðtÞe� utdt and bf ðuÞ = RN

0 fðtÞe� utdt are the one-sided Laplace transforms of functions g and f, respectively and b is

a constant. Using these properties, we obtain

L
�
Var


CxðtÞ��rt0D� =

2ðk1VÞ2
uðu+2k2Þbkðu+ k2Þ; (Equation 39)

with bkðuÞ = RN0 kðtÞe� utdt as the Laplace transform of the autocovariance function k. Further using the property lim
t/N

gðtÞ =

lim
u/0

ubgðuÞ,34 we obtain for the long-term variance of the conditional mean (assuming that it exists)

lim
t/N

Var


CxðtÞ��rt0D � = lim

u/0

2ðk1VÞ2
u+2k2

bkðu+ k2Þ = ðk1VÞ2
k2

bkðk2Þ: (Equation 40)
Cell Systems 16, 1–9.e1–e11, February 19, 2025 e4



ll
OPEN ACCESS Brief report

Please cite this article in press as: Zechner and J€ulicher, Concentration buffering and noise reduction in non-equilibrium phase-separating systems,
Cell Systems (2025), https://doi.org/10.1016/j.cels.2025.101168
In total, we obtain for the stationary variance of xðtÞ

Var½x� = V
k1
k2

CrD+
ðk1VÞ2
k2

bkðk2Þ: (Equation 41)

The relative noise defined as the squared coefficient of variation h2½x� = Var½x�=CxD2 is given by

h2½x� =
1

V

k2
k1CrD

+
k2

CrD
2
bkðk2Þ: (Equation 42)

The first term on the right-hand side of Equation 42 can be identified as 1=CxD and thus exhibits Poissonian scaling. The second term

quantifies the amount of noise that propagates from rðtÞ to x, which depends on the timescales of rðtÞ through the autocovariance

function k.

Note that the noise strength h2½x� is invariant upon rescaling of x such that Equation 42 applies also to the concentration (and

volume fraction) of X. The noise strength of total concentrations f and j can be obtained by applying Equation 42 to the birth-

and-death processes BDðVkA1 rAðtÞ; k2aðtÞÞ and BDðVkB1 rBðtÞ;k2bðtÞÞ, i.e.,

h2½f� =
1

V

k2
kA1 CrAD

+
k2

CrAD
2
bkAðk2Þ (Equation 43)
and h2½j� =
1

V

k2
kB1 CrBD

+
k2

CrBD
2
bkBðk2Þ: (Equation 44)

Droplet kinetics in the presence of non-equilibrium production and turnover of solutes
To study how non-equilibrium fluctuations in total concentration are affected by phase coexistence, we consider a system that ac-

counts for solute and solvent partitioning as well as synthesis and degradation of molecules in each phase. The state of this system is

characterized by seven degrees of freedom ða1ðtÞ;b1ðtÞ;s1ðtÞ;aðtÞ;bðtÞ;rAðtÞ;rBðtÞÞ, where the first five evolve according to the events

ða1;b1; s1; a;bÞ %
w�
A

w+
A

ða1 � 1;b1; s1 + n; a;bÞ (Equation 45)
ða1;b1; s1; a;bÞ %
w�
B

w+
B

ða1;b1 � 1; s1 + n; a;bÞ (Equation 46)
ða1;b1; s1; a;bÞ %
w�
S

w+
S

ða1;b1; s1 � 1; a;bÞ (Equation 47)
ða1;b1; s1; a;bÞ %
wb
A;1

wd
A;1

ða1 + 1;b1; s1 � n; a+ 1;bÞ (Equation 48)
ða1;b1; s1; a;bÞ %
wb
A;2

wd
A;2

ða1;b1; s1; a+ 1;bÞ (Equation 49)
ða1;b1; s1; a;bÞ %
wb
B;1

wd
B;1

ða1;b1 + 1; s1 � n; a;b+ 1Þ (Equation 50)
ða1;b1; s1; a;bÞ %
wb
B;2

wd
B;2

ða1;b1; s1; a;b+ 1Þ; (Equation 51)

with rates as defined above. The statistics of the degrees of freedom can be described by a probability distribution Pða1;b1;s1;a;b;

rA; rB; tÞ. To study fluctuations in total- and dilute phase volume fractions, we calculated the first- and second-order moments of

this probability distribution. Since the system is nonlinear, however, we cannot calculate these moments exactly. Similarly to our
e5 Cell Systems 16, 1–9.e1–e11, February 19, 2025
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previous work,11 we address this problem by employing the linear noise approximation (LNA),23 which yields first- and second-

order moments consistent with a Gaussian approximation. In general, the LNA becomes accurate for large systems consisting

of sufficiently many particles. To apply the LNA to the considered system, we describe both rAðtÞ and rBðtÞ as birth-and-death

processes BDðl1; l2rXðtÞÞ for X ˛ fA;Bg, which can be used to represent stochastic mRNA synthesis and turnover,21 for instance.

In this case, the protein synthesis rate wb
X = VkX1 rXðtÞ depends on the number of mRNA molecules rXðtÞ. The corresponding first-

and second-order statistics of rXðtÞ at stationarity are given by

CrXD =
l1

l2
(Equation 52)
Var½rX � =
l1

l2
= s2

X (Equation 53)
kXðtÞ = s2
Xe

� l2t: (Equation 54)

Ordinary differential equations capturing the time-evolution of the approximate moments were obtained using custom-made code

inMATLAB (Version 9.10 (R2021a), TheMathWorks Inc., Natick,Massachusetts). Probability distributions over volume fractionswere

estimated by first sampling copy numbers ðN = 106Þ from amultivariate normal distribution parameterizied by themoments obtained

from the LNA, and subsequently transformed into volume fractions.

Analytical results for the case of a two-component mixture
In the case of a two-component mixture ðj = 0Þ, we obtain approximate closed-form expressions that allow us to study concen-

tration buffering and noise reduction analytically. This approximation considers small f1 and V2 and we refer to it as dilute approx-

imation. At equilibrium, the two-component system can be described by the free energy

Fða1; s1Þ = vða1n+ s1Þf
�

a1n

a1n+s1

�
+ ðV � vða1n+ s1Þ Þf

� ða � a1Þnv
V � vða1n+s1Þ

�
+ ð36pÞ1=3ðV � vða1n+s1Þ Þ2=3;

(Equation 55)

with

fðfÞ = kBT

v

�
cASfð1� fÞ+f

n
logf+ ð1� fÞlogð1� fÞ

�
: (Equation 56)

For simplicity, and because surface tensions tend to be low for biomolecular condensates,35 we focus on the limit of small surface

tension and set g = 0 in the following. The system exhibits two kinetic modes driven by the generalized thermodynamic forces that

impose conditions on the rates

log
w�

A ða1; s1Þ
w+

Aða1 � 1; s1+nÞ = � nv

kBT

�
mA
2 � mA

1

	
(Equation 57)
log
w�

S ða1; s1Þ
w+

Sða1; s1 � 1Þ = � v

kBT
½P2 � P1�; (Equation 58)

where mA
a = f 0ðfaÞ andPa = fðfaÞ � faf

0ðfaÞ. To simplify, we eliminate one of the two degrees of freedomby considering the system

to be in osmotic equilibrium, such that P1 = P2 is satisfied at all times. Expressing P1 = P2 in terms of f1 and f2 yields

ðf1 � f2Þ
n

ðn+ nðf1 +f2ÞcAS � 1 Þ+ logð1 � f1Þ � logð1 � f2Þ = 0: (Equation 59)

This equation defines a function ~f2 = uðf1Þ that describes osmotic equilibrium. Unfortunately, this function cannot be expressed

explicitly. We therefore focus on the dilute limit where f1 is small. Considering only leading order terms, the free energy density in the

dilute phase can be approximated as

fðf1Þx
kBT

v
f1ðlog f1 � 1+cASÞ (Equation 60)

and Equation 59 simplifies to

f1

n
+
f2

n
ðn+ nf2cAS � 1Þ+ logð1 � f2Þx 0: (Equation 61)
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For small f1, however, the terms independent of f1 will dominate such that ~f2 can be approximated by solving

f2

n
ðn+ nf2cAS � 1Þ+ logð1 � f2Þ = 0 (Equation 62)

with respect to f2. As a result of this approximation, dense phase concentrations will be fixed to a value ~f2 that is independent of f1.

Equation 62 is straightforward to solve numerically for a given set of parameters n and cAS. Once determined, we can express s1 as a

function of a1 by solving

~f2 =
ða � a1Þnv

V � vða1n+s1Þ ; (Equation 63)

with respect to s1, which yields

~s1 =
V

v
� n

a+a1
�
~f2 � 1

�
~f2

: (Equation 64)

Substituting this expression into the free energy Equation 55 with fðf1Þ approximated by Equation 60 and g = 0 yields

Fða1Þ = nv
~f2

f
�
~f2

�
ða � a1Þ+ kBTa1

264log
0B@ a1vn

V � nvða � a1Þ
�

~f2

1CA � n

375+ kBTcASa1n: (Equation 65)

Defining x = vf
�
~f2

�
=
�
kBT~f2

�
, we can write this more compactly as

Fða1Þ
kBT

= xða � a1Þn+ a1

264log
0B@ a1nv

V � nvða � a1Þ
�

~f2

1CA � n

375+cASa1n

= �mða � a1Þn+ a1

264log
0B@ a1nv

V � nvða � a1Þ
�

~f2

1CA � n

375+ const:; (Equation 66)

with m = cAS � x. Note that when n = 1 and ~f2, this reduced approximate system becomes equivalent to the binary system analyzed

in our previous work.11 This system can be further simplified in the case where the volume of the dense phase is small compared to

the total volume ðV2 � VÞ. In this case, the mixing entropy in Equation 66 simplifies and we get

Fða1Þ
kBT

x �mða � a1Þn+ a1

h
log
�a1nv

V

�
� n

i
: (Equation 67)

Equation 67 is the final form of the free energy that the dilute approximation is based on. Due to the simplifications made, only one

kinetic mode remains, associated with the thermodynamic force

log
w�

A ða1Þ
w+

Aða1 � 1Þ =
F

0 ða1Þ
kBT

= 1 � n+m+ log
�a1nv

V

�
:

(Equation 68)

This force is zero when

asat =
V

nv
e� 1+n�m (Equation 69)

or equivalently

fsat = e� 1+n�m; (Equation 70)

where we refer to asat and fsat as saturation copy number and saturation concentration, respectively. This terminology reflects

the fact that once the total volume fraction f exceeds fsat, the average dilute phase volume fraction Cf1D remains constant

at fsat. The volume fraction fsat thus marks the threshold above which the mixture is saturated and phase coexistence is

favorabe.

In the small droplet limit, we can use Equation 68 to express the partitioning rates as

w�
A ða1Þ = kDa1 (Equation 71)
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w+
Aða1 � 1Þ = w�

A ða1Þe� F0 ða1Þ
kBT = kD

V

nv
e1� n�m = kDasat; (Equation 72)

where we have used kD = 6D=V2=3. In the considered regime, the exchange of solutes from the dilute phase to the dense phase is

approximately linear, while the corresponding reverse rate becomes constant. In combination with solute synthesis and turnover, this

system has degrees of freedom ða1;aÞ, which evolve according to the events

ða1; aÞ %
w�
A

w+
A

ða1 � 1; aÞ (Equation 73)
ða1; aÞ %
wb
A;1

wd
A;1

ða1 + 1; a+ 1Þ (Equation 74)
ða1; aÞ %
wb
A;2

wd
A;2

ða1; a+ 1Þ: (Equation 75)

Consistent with the small droplet limit, the synthesis rates in the dilute- and dense phase become wb
A;1ða1; aÞ = VkA1 rAðtÞ and

wb
A;2ða1; aÞ = 0, which means that solute synthesis in the dense phase becomes negligible. The turnover rates are given by

wd
A;1ða1; aÞ = k2a1ðtÞ and wd

A;2ða1; aÞ = k2ðaðtÞ� a1ðtÞÞ. Notice that because the rate w+
A is independent of aðtÞ, we can describe

a1ðtÞ in isolation by the effective birth-and-death process

a1%
ðk2+kDÞa1

VkA
1
rAðtÞ+kDasat

a1 � 1; (Equation 76)

or equivalently, a1ðtÞ � BDðVkA1 rAðtÞ + kDasat; ðk2 + kDÞa1ðtÞÞ. Here we have made use of the fact that two event channels with the

same stoichiometric change can be summarized into a single one with their respective rates added. Using an analogous derivation

as for the generic birth-and-death process in STAR Methods section ‘‘Accounting for non-equilibrium production and turnover of

solutes,’’ we can write down the average solute copy number and noise strength at stationarity as

Ca1D =
VkA1 CrAD+kDasat

k2+kD
=

kD
k2+kD

asat +
k2

k2+kD
CaD (Equation 77)
h2½a1�= k2+kD
VkA1 CrAD+kDasat

+

 
VkA1

VkA1 CrAD+kDasat

!2

½k2 + kD�bkAðk2 + kDÞ

=
1

Ca1D
+

1

k2+kD

�
VkA1
Ca1D

�2bkAðk2 + kDÞ
(Equation 78)

Since V1/V in the limit of small droplets, the volume fraction f1 is just a1 times a constant, such that the statistics of Cf1D are readily
obtained as

Cf1D =
kD

k2+kD
fsat +

k2
k2+kD

CfD (Equation 79)
h2½f1� =
nv

V

1

Cf1D
+

1

k2+kD

�
kA1 nv

Cf1D

�2bkAðk2 + kDÞ; (Equation 80)

where Equation 80 is identical to Equation 78 but expressed in terms of Cf1D instead of Ca1D. Based on Equation 79, we can further

define the apparent partition coefficient

r =
Cf2D
Cf1D

x
~f2

Cf1D
=

~f2ð1+kD=k2Þ
fsatkD=k2+CfD

; (Equation 81)

which decreases with Cf1D and CfD.

Noise reduction in the limit of large volumes and quasi-static birth-rates
Based on the dilute approximation, noise reduction in the binary system is given by
Cell Systems 16, 1–9.e1–e11, February 19, 2025 e8
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G =
h½f�
h½f1�

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nv

V

1

CfD
+
1

k2

�
kA1nv

CfD

�2bkAðk2Þ
nv

V

1

Cf1D
+

1

k2+kD

�
kA1nv

Cf1D

�2bkAðk2+kDÞ

vuuuuuuut : (Equation 82)

To study how this relationship changes for macroscopic systems where intrinsic fluctuations of solute synthesis, turnover and par-

titioning become small, we take the large volume limit while keeping the diffusion rate kD constant. Fluctuations in the birth-rate rAðtÞ
are considered to be independent of volume such that its stationary mean CrAD and autocovariance function kAðtÞ remain unaffected

by volume scaling. If we now let V/N, Equation 82 becomes

lim
V/N

G =
Cf1D
CfD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2+kD
k2

bkAðk2ÞbkAðk2+kDÞ
s

=

�
1+

kD
k2

fsat

CfD

�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

= L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

k2+kD

bkAðk2ÞbkAðk2+kDÞ
s

;

(Equation 83)

where the first term in the second line is the buffering strength

L =

����d log Cf1D
d log CfD

�����1

= 1+
kD
k2

fsat

CfD
(Equation 84)

calculated using the concentration dependency Equation 79. Thus, noise reduction in the macroscopic limit can be approximated by

the buffering strength multiplied by a factor, which depends on the autocovariance function kA (or its Laplace transform bkA) and the

parameters k2 and kD. Due to this factor, the noise reduction G and the buffering strengthL can be substantially different, as reflected

by our results in themain text. In the limit where fluctuations in rAðtÞ decay infinitely slowly, we have kAðtÞ = s2A with sA as the standard

deviation of rAðtÞ. The corresponding Laplace transform becomes bkAðuÞ= s2Au
� 1. Only in this special case, the second factor in Equa-

tion 83 becomes equal to one such that noise reduction becomes equal to the buffering strength.

We remark that the analysis above focuses on noise reduction and concentration buffering within the dilute approximation, where

the systemdynamics are linear. For non-linear systems, equivalence between noise reduction and the buffering strength in the limit of

large volumes and quasi-static fluctuations rAðtÞ can be established only approximately. To see this, consider a system at a non-equi-

librium steady state with total- and dilute phase concentration f and f1. The dynamics of f and f1 are affected by a stationary sto-

chastic process rAðtÞ. The system is such that in the large volume limit ðV/NÞ, intrinsic fluctuations in f and f1 vanish. In this limit, all

fluctuations in f and f1 are due to fluctuations in rAðtÞ. If we further consider the case where rAðtÞ fluctuates very slowly on the time-

scale of f and f1, we can express the relationship between f and f1 as a function f1 = zðfðrAÞÞ, where rA is a constant random var-

iable. When variations in rA are small, we have approximately

fxfðCrADÞ+f0ðCrADÞðrA � CrADÞ (Equation 85)
f1 x zðfðCrADÞÞ+f0ðCrADÞz0ðfðCrADÞÞðrA � CrADÞ: (Equation 86)

Averaging over rA yields for the concentration dependency

Cf1D = gNEðCfDÞx zðfðCrADÞÞ: (Equation 87)

For the standard deviation of f and f1 we obtain

s½f�xsr jf0ðCrADÞj (Equation 88)
s½f1�x sr jf0ðCrADÞjjz0ðfðCrADÞÞj = s½f�jz0ðfðCrADÞÞj (Equation 89)

with sr as the standard deviation of rA. The noise reduction G can thus be approximated as

Gx
1

fðCrADÞ
zðfðCrADÞÞ
jz0ðfðCrADÞÞj : (Equation 90)

The buffering strength, is calculated as

L =

����d log ðCf1DÞ
d log ðCfDÞ

�����1

x
1

fðCrADÞ
zðfðCrADÞÞ
jz0 ðfðCrADÞÞj

; (Equation 91)
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which is identical to the approximate expression for noise reduction G in Equation 90. In this more general case, the noise reduction G

and the buffering strengthL are thus expected to become similar only in the limit where the system size V is very large, the correlation

time of the upstream fluctuations rAðtÞ diverges and additionally, variations in rAðtÞ are small. Beyond this limit, these two quantities

provide different insights and cannot be exchanged.

Example

To further illustrate the difference between concentration buffering and noise reduction, we analyze Equation 83 in the context of a

simple example. In particular, we choose kAðtÞ= s2Ae
� l2t, corresponding to a stochastic processwith a correlation time l� 1

2 . The Lap-

lace transform of kA is

bkAðuÞ =
s2
A

u+l2
(Equation 92)

and correspondingly, Equation 83 becomes

G =

�
1 +

kD
k2

fsat

CfD

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

k2+kD

k2+kD+l2
k2+l2

s
: (Equation 93)

As can be seen, noise reduction becomes identical to the buffering strength (Equation 84) only as l2/0.

QUANTIFICATION AND STATISTICAL ANALYSIS

Synthetic system
We analyzed experimental concentration measurements from the 2NT-DDX4YFP that we published previously using the theory out-

lined here.11 In particular, we focussed on two datasets, one where dilute- and total concentrations c1 and c were measured for a

large number of cells (Figure 2c in Klosin et al.11), and one for which dilute- and dense phase concentrations c1 and c2 weremeasured

for a smaller number of cells (Figure S22 in Klosin et al.11). We used the former one to estimate timescale ratios using the calculated

concentration dependency under the dilute approximation (Equation 79). To do so, we first estimated the relationship between Cc1D
and CcD from the experimental measurements. To select cells well within the regime of phase coexistence, we excluded cells that had

a total concentration below 12 mM.We divided the remainingmeasurements of total concentrations into K non-overlapping intervals.

The lower- and upper limit of the k th interval were determined as lk = qðk=KÞ and uk = qððk + 1Þ=KÞ where k = 0;.;K � 1 and qðxÞ
is the empirical x-quantile of the experimentally measured sample of total concentrations. As an example, qð0:5Þwould correspond to

the median total concentration. The rationale behind using (equally-spaced) quantiles as the interval boundaries is that we obtain an

approximately equal number of samples in each interval. Average total- and dilute phase concentrations for interval k, cðkÞ and c
ðkÞ
1 ,

were estimated using all cells i for which lk < cðiÞ %uk , where cðiÞ is the measured total concentration for cell i. The corresponding un-

certainties of cðkÞ and c
ðkÞ
1 were determined using bootstrapping.36 Assuming that the number of samples in each interval is sufficiently

large, we can make use of the central limit theorem and describe ðcðkÞ; cðkÞ1 ÞT as a Gaussian random vector such that 
cðkÞ

c
ðkÞ
1

!
=

�
CcD
Cc1D

�
+

 
DðkÞ

D
ðkÞ
1

!
with

 
DðkÞ

D
ðkÞ
1

!
� N

�
0;SðkÞ	 and SðkÞ =

0@S
ðkÞ
11 S

ðkÞ
12

S
ðkÞ
12 S

ðkÞ
22

1A; (Equation 94)

where SðkÞ are the empirical uncertainties of ðcðkÞ; cðkÞ1 ÞT obtained via bootstrapping. Reformulating Equation 79 in terms of concen-

trations (as opposed to volume fractions) and expressing CcD and Cc1D in terms of experimentally determined quantities cðkÞ and c
ðkÞ
1

yields

c
ðkÞ
1 =

kD
k2+kD

csat +
k2

k2+kD
cðkÞ � k2

k2+kD
DðkÞ +D

ðkÞ
1

=
kD

k2+kD
csat +

k2
k2+kD

cðkÞ + �DðkÞ;

(Equation 95)

with csat = fsat=ðnvÞ and �DðkÞ = D
ðkÞ
1 � k2=ðk2 + kDÞDðkÞ. Since �DðkÞ is a linear combination of two Gaussians, it is itself a Gaussian, i.e.,

�DðkÞ � Nð0;SðkÞÞ, with

SðkÞ =

�
� k2
k2+kD

1

�0B@S
ðkÞ
11 S

ðkÞ
12

S
ðkÞ
12 S

ðkÞ
22

1CA
0BB@� k2

k2+kD

1

1CCA
=

k22

ðk2+kDÞ2
S

ðkÞ
11 +S

ðkÞ
22 � 2

k2
k2+kD

S
ðkÞ
12 :

(Equation 96)
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Thus, fitting the analytical concentration dependency to the experimentally determined one is a regression problem with

parameter-dependent errors. Note that with k2, kD and csat, the model is overparameterized and thus, not all parameters

can be determined uniquely. However, we can reparameterize the model in terms of kD=k2 and csat and thereby eliminate

one unknown degree of freedom. The resulting two parameters and their uncertainties can be inferred using Bayes’ rule,

which reads

p
�
kD=k2; csat j �cð0Þ; cð0Þ

1

�
;.;

�
cðK� 1Þ; cðK� 1Þ

1

��
fpðkD=k2; csatÞ

YK� 1

k = 0

N

 
c
ðkÞ
1 � kD

k2+kD
csat � k2

k2+kD
cðkÞ

����� 0;SðkÞ
!
;

(Equation 97)

where we consider the prior distribution pðkD =k2; csatÞ to be flat in the log-domain. Posterior distributions where sampled over log-

arithmic parameters (i.e., log kD=k2 and log csat) using the Metropolis-Hastings algorithm.37 The proposal distribution was chosen to

be a bivariate normal distribution such that x� � Nðx; s2pI2Þwith x and x� as the current and proposed parameters, respectively and I2

as the 232 identity matrix. The standard deviation sp was chosen to be 0.1. The chain was simulated for M = 105 steps and the

first 104 samples were discarded to eliminate the initial burn-in period of the chain. Minimum mean squared error (MMSE) estimates

were determined by calculating the component-wise mean of the resulting samples. Corresponding uncertainties were

estimated as the component-wise standard deviations. When choosing the number of intervals to be K = 34, we estimated csat =

ð7:471 ±0:053Þ mM and kD=k2 = 21:569±1:426. Doubling the number of intervals to K = 68 only marginally affected the inferred pa-

rameters (csat = ð7:494±0:050Þ mM and kD=k2 = 22:560±1:4252), showing that the results are robust for varying K.

We further analyzed partition coefficients in the 2NT-DDX4YFP system using the data from Figure S22 in Klosin et al.11 Rewriting

Equation 81 in terms of concentrations yields for the apparent partition coefficient

r =
Cc2D
Cc1D

x
~c2ð1+kD=k2Þ
csatkD=k2+CcD

; (Equation 98)

where Cc2Dx ~c2 = ~f2=ðnvÞ under the dilute approximation. Thus, the partition coefficient is expected to decrease with average total

(and thus, dilute phase-) concentration as long as kD=k2 is finite. As kD=k2/N, the partition coefficient becomes ~c2=csat = const: as

the system approaches (quasi-)equilibrium. To compare these predictions to experiments, we calculated partition coefficients c2= c1
in individual cells. Since total concentrations were not quantified in this particular dataset, we plotted c2=c1 over c1 as was done also

in Riback et al.7 The resulting data is compared to the apparent partition coefficient r = ~c2=Cc1D, where ~c2 was determined as the

average dense phase concentration calculated over individual cells (Figure S22 in Klosin et al.11).

Endogenous system
The data in Figure S2B shows dilute- over total concentrations of fluorescently labelled NPM1 from two previously published

studies.7,11 The first one corresponds to endogenously labelled NPM1 (Figure 3F in Klosin et al.11). Total concentrations c were

measured duringmitosis, when the nucleolus is dissolved. Dilute phase concentrations c1 weremeasured ten hours later during inter-

phase, when the nucleolus coexists with nucleoplasmic NPM1. Note that since c and c1 were measured at different time points, the

resulting relationship between c and c1 is approximate. However, it nevertheless allows us to study concentration variability in the

presence and absence of the nucleolus. To approximately convert fluorescence intensities to molar concentrations, we rescaled in-

tensity values to achieve a mean total concentration of 7:7 mM as measured previously.38 The second dataset was obtained from

Riback et al.,7 where fluorescently labelled NPM1 was overexpressed on top of native, unlabelled NPM1 (Figure 1b in Riback

et al.7). These data were replotted as originally published and shown together with the calibrated, endogenous NPM1measurements

from our previous study11 in Figure S2B.
e11 Cell Systems 16, 1–9.e1–e11, February 19, 2025
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