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Chemical reactions regulated by phase-separated condensates
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Phase-separated liquid condensates can spatially organize and thereby regulate chemical processes. However,
the physicochemical mechanisms underlying such regulation remain elusive as the intramolecular interactions
responsible for phase separation give rise to a coupling between diffusion and chemical reactions at nondilute
conditions. Here, we derive a theoretical framework that decouples the phase separation of scaffold molecules
from the reaction kinetics of diluted clients. As a result, phase volume and client partitioning coefficients
become control parameters, which enables us to dissect the impact of phase-separated condensates on chemical
reactions. We apply this framework to two chemical processes and show how condensates affect the yield of
reversible chemical reactions and the initial rate of a simple assembly process. In both cases, we find an optimal
condensate volume at which the respective chemical reaction property is maximal. Our work can be applied
to experimentally quantify how condensed phases alter chemical processes in systems biology and unravel the
mechanisms of how biomolecular condensates regulate biochemistry in living cells.
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I. INTRODUCTION

Living cells are spatially organized by compartments such
as organelles [1] and protein-RNA condensates [2,3]. While
organelles such as mitochondria are enclosed by membranes,
protein-RNA condensates lack a membrane. The latter are
understood as liquid phases (biomolecular condensates) that
coexist with the cyto- or nucleoplasm [4–7]. Both types
of compartments provide specific physicochemical environ-
ments that are required for the occurrence of various chemical
reactions and related biological functions [8,22]. While
membrane-bound compartments use active membrane pumps
to create such specific environments [9–11], phase-separated
condensates differ in their composition to the outside already
at phase equilibrium [2,12]. Owing to this composition dif-
ference, reacting components partition differently between
the phases [13–15]. As a result, diffusion coefficients and
reaction rate coefficients of components are distinct to each
phase [16,17]. Phase coexistence between a liquid condensate
and its surrounding phase was suggested to regulate various
chemical reactions [18,19], such as protein aggregation and
phosphorylation [20–27].
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When chemical reactions occur, they can give rise to dif-
fusive fluxes through the condensate interface separating the
phases of different composition [28–32]. Such diffusive fluxes
affect phase coexistence, i.e., their volumes and compositions.
These changes, in turn, create feedback on the kinetics of
chemical reactions. This mutual coupling between chemical
and diffusive fluxes makes it difficult to dissect the effects
of phase-separated condensates on chemical reactions and to
identify generic underlying principles.

In cell biology, specific terminology has been introduced to
describe proteins that form biomolecular condensates within
living cells [8,12,33]. Such proteins were assigned to two
classes: scaffolds or clients. The scaffold components are
thought to be the main components that form the condensates,
while the clients can simply partition into the condensate with-
out significantly affecting the properties of the condensate.
Clients typically participate in chemical processes that are
associated with biological functions [8,34,35]. Strictly speak-
ing, this class assignment is a simplification due to the mutual
coupling between phase separation and chemical processes.
However, it provides a very useful simplification for the study
of biological processes, where condensates are dominantly
formed by scaffold components hosting biochemical reaction
of client components.

To make use of this simplification, we developed a the-
oretical framework to describe the chemical reactions of
diluted clients within phase-separated condensates. Diluted
clients interact with nondilute scaffolds and solvents that
phase separate into a condensate rich in scaffolds that coexist
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FIG. 1. Schematic representation of a system with dilute reacting
clients in the presence of a single spherical condensate. (a) The
nondilute scaffold component can form a spherical condensate
(phase I). The dilute clients (reactant and product) partition between
the condensed, scaffold-rich phase and the scaffold-poor phase and
undergo chemical reactions in each phase indicated as I and II. In
addition, clients are exchanged between two phases via diffusion,
maintaining the partition equilibrium of clients. (b) Overview of the
different considered chemical processes. We study the kinetics of
each reaction with and without a condensate to decipher how phase
coexistence affects chemical reactions. We distinguish between re-
actions that can relax toward chemical equilibrium and reactions that
are driven out of equilibrium by the continuous supply of fuel energy,
indicated by star symbols in (a) and (b).

with its surrounding scaffold-poor phase. However, consis-
tent with the class assignment used in cell biology, the
clients cannot affect the properties of the condensates. To
illustrate the effects of condensates on chemical processes,
we consider simple chemical processes. In particular, we
calculate the yield of reversible chemical reactions and the
initial rates of a simple assembly process [see Figs. 1(a)
and 1(b)]. Our key finding is that reaction yields and initial
rates can be maximal for distinct condensate volumes. The
possibility of tuning the system to this maximum suggests
the relevance of condensate size for the control of specific
chemical reactions in living cells.

II. THEORETICAL FRAMEWORK FOR REACTING
CLIENTS IN COEXISTING PHASES

In this section, we discuss a general theoretical frame-
work for chemical reactions regulated by liquidlike, phase-
separated condensates in an incompressible system [31,32].
This framework is derived for diluted components that can
undergo chemical reactions, which we refer to as clients in
the following. These clients are diluted relative to a scaffold
component and the solvent. The client volume fractions are
nonzero such that chemical reactions among clients can occur
but are small compared to the volume fractions of the scaffold
and the solvent. The scaffold and solvent are not diluted
and considered not to participate in the chemical reactions
with the clients; for simplicity, we neglect chemical reactions
between scaffold and solvent. The condensate is rich in this

FIG. 2. Schematic representation of the system to study how
phase coexistence affects chemical reactions of dilute clients. (a) We
consider a spherical, condensate of radius R, which is rich in scaffold
components (phase I) coexisting with a scaffold-poor phase (phase
II). The system is also spherical with radius L. (b) Stationary spatial
profiles of the scaffold φ1(r) in the dilute limit of clients; continuum
model (gray dotted) and thin interface model (solid orange).

scaffold component and labeled by I. The condensate phase
coexists with the scaffold-poor phase II. For simplicity, we
focus on one spherical condensate embedded in a spherically
symmetric finite system; see Fig. 2(a). Using our framework,
we will learn that clients’ kinetics depend on the coexisting
phases, while the latter remains unaffected by the clients.

A. General theoretical framework

We consider an incompressible mixture of (N + 2) compo-
nents including a nonreacting solvent (i = 0), a nonreacting
scaffold (i = 1), and N reacting clients. Incompressibility
corresponds to the case where each molecular volume νi

is constant. It implies that we can describe the mixture’s
composition by (N + 2) volume fraction fields φi(x, t ) with
i = 0, . . . , (N + 1), where x denotes position and t time.
Such volume fraction fields obey φ0 = 1 −∑N+1

i=1 φi, which
allows us to substitute the solvent volume fraction φ0 in
the following framework. The time evolution of the volume
fraction fields φi(x, t ) of the remaining (N + 1) components
[i = 1, . . . , (N + 1)] reads:

∂tφi = −∇ · ji + si, (1a)

with the diffusive fluxes using linear response [36]:

ji = −
N+1∑
k=1

Mik∇μ̄k . (1b)

Here, μ̄i is the exchange chemical potential of component
i, each calculated relative to the solvent. Moreover, Mik is
the volume fraction-dependent, nondiagonal, and, in general,
nonsymmetric mobility matrix. The nondiagonal terms in Mik

are called cross-coupling coefficients. Since the concentration
of component i, ci = φi/νi, with νi denoting its molecular
volume is the conjugate thermodynamic quantities to the
exchange chemical potential μ̄i, the symmetric Onsager ma-
trix is Mik/νi with Onsager’s reciprocal relationship Mikνk =
Mkiνi.
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The exchange chemical potentials can be expressed as fol-
lows [32]:

μ̄i({φ j}) = μ̄0
i + kBT log(γ̄i({φ j})φi ) − κi∇2φi, (2)

where μ̄0
i (T ) is the exchange reference chemical potential,

γ̄i({φ j}, T ) denotes the exchange activity coefficient, and T is
temperature. The term proportional to log φi originates from
the mixing entropy (Appendix A 1). While μ̄0

i (T ) includes
component-specific internal free energies and a shift with
respect to normal conditions, the exchange activity coefficient
γ̄i({φ j}, T ) contains the interactions between component i and
j. These exchange activity coefficients describe how phase
separation of the scaffold component affects the chemical
kinetics and the difference to the dilute mass action law in
homogeneous systems. Moreover, κi characterizes the free en-
ergy penalties for gradients in volume fractions φi, where we
have omitted cross couplings for simplicity; see Appendix A 1
for a more detailed discussion.

The form of the mobility matrix Mik in Eq. (1b) can
be obtained by the following argument: In the dilute limit
of all components i = 1, . . . , (N + 1) relative to solvent
i = 0, the diffusion matrix Dil =∑k Mik∂μ̄k/∂φl in ji =
−∑l Dil∇φl + Miiκi∇∇2φi is independent of composition.
Thus, the mobility matrix Mik has to cancel the composi-
tion dependence arising from the entropic contribution of
the exchange chemical potential gradient, −T ∂ (log φi )/∂φi

[Eq. (2)]. If we additionally aim for a diagonal diffusion
matrix without any cross diffusion in the dilute limit of all
components i = 1, . . . , (N + 1), i.e., Dii = m0ikBT , we can
choose the following form for the mobility matrix [29]:

Mii = m0iφi

(
1 − φ1 −

N+1∑
i=2

φi

)
+

N+1∑
k �=i,
k=1

mikφiφk,

Mik = −mikφiφk, ∀i �= k, (3)

with mik being mobility coefficients that obey the Onsager
reciprocal relationship, mikνk = mkiνi.

The general reaction scheme between the chemical compo-
nents Ci can be written as

N+1∑
i=2

σ+
iαCi �

N+1∑
i=2

σ−
iαCi, (4)

where σ±
iα are the stoichiometric coefficients for the reactants

and the products, respectively. Moreover, α = 1, . . . , R labels
the chemical reaction, and R is the total number of chemical
reactions in the system. The chemical reaction rates for the
reactive clients, si, is given as follows [32]:

si = νi

R∑
α=1

kασiαHα, (5a)

where σiα = σ−
iα − σ+

iα , kα is the composition-dependent reac-
tion rate coefficient of reaction α, which can differ between
the phases I/II, νi is the molecular volume of component i. As
the system is incompressible, the chemical reactions have to
conserve volume, i.e.,

∑
i si = 0 implying that

∑
i σiανi = 0

for each chemical reaction α. Moreover, Hα is the reaction

force, which can be expressed as follows:

Hα =
N+1∏
i=2

[
exp

(
μ̄0

i + μ̃+
F − κi∇2φi

kBT

)
γ̄iφi

]σ+
iα

−
N+1∏
i=2

[
exp

(
μ̄0

i + μ̃−
F − κi∇2φi

kBT

)
γ̄iφi

]σ−
iα

. (5b)

Here, the first terms correspond to the gain contributions for
the products, while the second terms are the product’s loss
terms. Moreover, μ̃±

F denotes a fuel energy supply that main-
tains the system away from equilibrium. This can be achieved
by differing μ̃±

F , between the phases I/II. Such a case could
be realized by chemostats for fuel components and their waste
to which the fuel turns over; see Ref. [32] for a more detailed
discussion. Without fuel energy supply (μ̃±

F = 0) and when
the system is at phase equilibrium (μ̄I

i = μ̄II
i ), the reaction

force H I/II
α is phase independent [31].

B. Theoretical framework for diluted clients

1. Continuum description

When all clients i = 2, . . . , (N + 1) are diluted relative
to the solvent (i = 0) and scaffold (i = 1) components, their
exchange activity coefficients, defined in Eq. (2), approach
constant values for small client volume fractions. Such values
solely depend on the scaffold equilibrium volume fraction φ1

but not on the volume fraction of other clients {φ j}. For a
mean-field free energy including a mixing entropy and in-
teractions up to second order in volume fractions [Eq. (A3)],
the exchange activity coefficients defined via Eq. (2) read for
diluted clients (derivation see Appendix A):

γ̄i = 1

(1 − φ1)ri
exp [riφ1(χ1i − χ0i − χ01)], (6)

where ri = νi/ν0 denotes the ratio of the ith component’s
molecule volume νi relative to the solvent molecular volume
ν0. Moreover, the strength of molecular interactions among
the components is characterized by interaction parameters,
i.e., between scaffold and solvent χ01, scaffold with clients
χ1i, and solvent with clients χ0i. The client-client interactions
do not appear in Eq. (6) since clients are dilute with respect to
solvent and scaffold. In addition to the above conditions, when
the volume fraction of the scaffold becomes small [φ1 → 0 in
Eq. (6)], all exchange activity coefficients of clients approach
unity. Note that Eq. (6) is also valid when considering free
energies beyond mean-field with interaction terms beyond
second order in volume fractions. The reason is that it already
captures the leading-order coupling between clients with scaf-
fold and solvent components (see Appendix A).

For diluted clients in a system with nondilute scaffold
and solvent,

∑N+1
i=2 φi � φ1, cross couplings between clients

and scaffolds/solvent vanish (M1i = 0, i > 1), and the cross
couplings between clients are negligible (Mi j = 0, i, j > 1).
Thus, the mobility matrix [Eq. (3)] becomes for diluted
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clients (i > 1):

M11 = m01φ1(1 − φ1), (7a)

M1i = 0, (7b)

Mii = m0iφi(1 − φ1) + m1iφiφ1, (7c)

Mi1 = 0, (7d)

Mi j = 0, i �= j > 1. (7e)

Using Eq. (1), the time evolution of the scaffold volume
fraction follows a Cahn-Hilliard equation for a binary mixture
[37]:

∂tφ1 = ∇ ·
[

m01φ1(1 − φ1)

(
kBT

(
1

φ1
+ 1

γ̄1

∂γ̄1

∂φ1

)
∇φ1

− κ1∇∇2φ1

)]
. (8)

The kinetic equations for the clients i = 2, . . . , (N + 1) are
given by:

∂tφi = −∇ · ji + si({φ j}), (9a)

with the reaction rate si({φ j}) and the client flux

ji = −vi(φ1,∇φ1)φi − Di(φ1)∇φi. (9b)

We have neglected the contribution to the client flux κi∇∇2φi

as the spatial transport of clients is well captured by the
leading-order diffusive flux that is proportional to ∇φi; see
Appendix B for more details. Note that Eq. (9) can be also ex-
pressed in terms of the number concentration of components
i, ci = φi/νi, by dividing with the molecular volume νi.

Due to phase separation between scaffold components
and solvent, clients are effectively subject to a drift velocity
vi(φ1,∇φ1). This effective drift arises from cross diffusion
where clients are driven by gradients in scaffold components,
∇φ1 [29]. Moreover, clients diffuse with diffusion coefficients
Di(φ1) that is set by the local scaffold volume fraction (deriva-
tion see Appendix B):

vi(φ1,∇φ1) = Di(φ1)
1

γ̄i

∂γ̄i

∂φ1
∇φ1, (9c)

Di(φ1) = kBT [m0i(1 − φ1) + m1iφ1]. (9d)

The effective drift velocities vi depend on the local diffusion
coefficients Di(φ1) highlighting once more their origin in
cross diffusion. The effective drift velocities also depend on
the thermodynamic parameters such as molecular volumes νi,
encoded in the fraction ri = νi/ν0, and the interaction param-
eters χ1i and χ0i. These dependencies come from the activity
coefficients in Eq. (9c) via:

1

γ̄i

∂γ̄i

∂φ1
= ri(χ1i − χ0i − χ01) + ri

(1 − φ1)
. (10)

Note that the limit φ1 → 1 does not lead to a divergence of
the drift velocity because the system becomes homogeneous
and ∇φ1 vanishes.

Our derivation shows that the time-dependent spatial pro-
files of the scaffold φ1(x, t ) determine a spatiotemporal
environment for clients undergoing diffusion and chemical
reactions. Note that the chemical reaction rates si for diluted

clients are given by Eq. (5) with the exchange activity coeffi-
cients γ̄i shown in Eq. (6) that solely depend on the scaffold
volume fraction. The term κi∇2φi in the reaction force Hα

can be neglected as it solely creates a positive upshift of
the diffusion coefficient [to lowest order when expanding the
exponential in Eq. (5b)].

A key hallmark of the chemical kinetics in a mixture that
is composed of the scaffold, solvent, and diluted clients is
that the scaffold volume fraction evolves according to Eq. (8)
completely independent of the client volume fraction. In other
words, the clients do not affect the phase separation between
the scaffold component and solvent. However, the dynamic
equations (9) for the clients depend on the scaffold volume
fraction. Once the scaffold volume fraction has settled in
a stationary state [∂tφ1 = 0 in Eq. (8)], it exhibits a sig-
moidal profile with the plateaus equal to the scaffold volume
fractions at phase equilibrium φ

I/II
1 ; see Fig. 2(b). The re-

spective plateau values determine the kinetic coefficients of
clients, such as reaction rate coefficients and diffusivities,
in phase I and II. For a radially symmetric system with the
radial position r, this stationary profile is approximately given
as [28]

φint
1 (r) � 1

2

(
φI

1 + φII
1

)− 1
2

(
φI

1 − φII
1

)
tanh[(r − R)/λint )],

(11)

where the interface width is

λint =
√

κ1

(χ01 − 2)kBT ν0r1
. (12)

For simplicity, we considered the limit λint � R, allowing us
to neglect the effects related to the Laplace pressure and the
curvature of the condensate [37].

2. Stationary scaffold in thin interface model

Here, we discuss an approximation of the continuous
model for a scaffold volume fraction profile that is stationary
[∂tφ1 = 0 in Eq. (8)] with an interface width that is thin
compared to the scaffold-rich and scaffold-poor bulk phases,
respectively, i.e., λint/R → 0. In this limit, the continuous
profile given by Eq. (11) becomes a step profile that jumps
at the interface (Fig. 2(b); [38]). Stationarity of the scaffold
profile that is independent of the dilute clients implies that
φ1 is constant in each phase. Thus, the effective drift velocity
vi(φ1,∇φ1) and higher-order contributions to the client flux,
∇∇2φ1, vanish in Eq. (9b). In the following, we consider a
single, spherical condensate of radius R in a radially symmet-
rical, spherical domain of diameter 2L [r = (r, θ, ϕ) denote
the spherical coordinates]. Note that this single condensate
model can also be extended to multiple condensates with
chemical reactions undergoing Ostwald ripening or active
emulsions with complex morphological dynamics.

Away from the interface and for a stationary scaffold pro-
file φ1(r), the dynamical equations for the dilute reacting
clients in both phases I/II correspond to reaction-diffusion
equations:

∂tφi(r, t ) = DI/II
i ∇2φi(r, t ) + sI/II

i ({φ j (r, t )}), (13a)

where index i = 2, . . . , (N + 1), represents the individual
clients in the system. Here, phase I is located in 0 < r < R,
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while phase II extends in the range, R < r < L. Moreover,
sI/II

i are the chemical reaction rates for the ith client, which
is given in Eq. (5) with reaction rate coefficients kI/II

α and
fuel energy supply μ̃

±,I/II
F being phase dependent. Note that

Eq. (13a) is obtained without expanding around the phase
equilibrium volume fractions [28,32]. Client diffusion follow-
ing Fick’s law combined with, in general, nonlinear chemical
reaction rates is a consequence of clients being diluted with
respect to the phase-separated scaffold and solvent compo-
nents. Furthermore, since the scaffold volume fraction φ

I/II
1

is homogeneous in each phase, the diffusion coefficients of
clients are constants that solely differ among the phases:

DI/II
i =

{
kBT

(
m0i
(
1 − φI

1

)+ m1iφ
I
1

)
for 0 < r < R ,

kBT
(
m0i
(
1 − φII

1

)+ m1iφ
II
1

)
for R < r < L.

(13b)

Note that the client diffusion coefficients Dα
i are independent

of client concentrations. Thus, they remain constant during the
chemical reaction kinetics of the clients, while client profiles
vary in time and space. The dynamic equations for the clients
for a thin interface can be also expressed in terms of the
number concentration of components i, ci = φi/νi.

The reaction-diffusion equations of each component i
[Eq. (13a)] are coupled via the boundary conditions at the in-
terface. At the interface r = R and the system boundary r = L
[Fig. 2(a)], we can write the following boundary conditions
for the dynamic equations of clients, Eq. (13a):

(i) Volume conservation of clients across the interface im-
plies that the radial fluxes across the interface, er · ji, inside
(r = R−) and outside (r = R+) of the interface are equal,

er · ji|r=R− = er · ji|r=R+ , (13c)

where ji = −er Dα
i ∂rφi is the flux and er denotes the radial

unit vector.
(ii) Local phase equilibrium at the interface leads to client

volume fractions inside and outside of the interface that satisfy
the partition coefficient,

Pi = φi|r=R−

φi|r=R+
. (13d)

For diluted clients, the partition coefficients are constant and
are determined by the interaction strength of clients with scaf-
fold and solvent components, as well as the volume fraction
difference of scaffold between inside and outside.

(iii) For a system boundary at r = L that is impermeable
for the clients, the diffusive flux of clients vanishes:

er · ji|r=L = 0. (13e)

(iv) In the center of the spherical condensate at r = 0, the
flux has to vanish for each client:

er · ji|r=0 = 0. (13f)

A solution of the volume fraction profile of a client at
different time points is shown in Fig. 4(a), where the jump
at the interface is set by its partition coefficient. The details of
the considered chemical processes are discussed in Sec. III.

3. Model at phase equilibrium

In this section, we discuss the case when clients diffuse
fast compared to their reaction, i.e., the reaction rate coeffi-
cients corresponding to the linearized reaction rates are small
compared to the system’s slowest diffusion rates, DI/II

i /L2.
In this case, the phases are homogeneous and at phase equi-
librium with respect to each other at all times during the
chemical kinetics. This limiting case reduces the mathemat-
ical complexity of the theoretical description significantly,
and chemical kinetics is governed by ordinary differential
equations [31,39,40], similar to the classical mass action law
kinetics in homogeneous systems.

At phase equilibrium, the client volume fractions φ
I/II
i in

each phase I/II are homogeneous and satisfy the partition
coefficient,

Pi = φI
i

φII
i

. (14)

Using the exchange chemical potential [Eq. (2)], the parti-
tioning coefficients can be expressed at phase equilibrium in
terms of exchange activity coefficients, Pi = γ̄ II

i /γ̄ I
i . For the

discussed case of diluted clients [Eq. (6)], the client partition-
ing coefficients are constants and, thus, control parameters.

At phase equilibrium, the volume fractions of the clients in
the two phases I and II,

φI
i (t ) = Pi ζi φ̄i(t ), (15a)

φII
i (t ) = ζi φ̄i(t ), (15b)

where

ζi(Pi,V I ) = 1

1 + (Pi − 1)V I

V

(15c)

is the partitioning degree. The volume fractions of the clients
in the two phases can be expressed in terms of the average
client volume fraction as

φ̄i(t ) = 1

V

(
V IφI

i (t ) + V IIφII
i (t )

)
, (16)

where V I/II denotes the respective phase volumes, and V =
V I + V II is the total system volume. At phase equilibrium, the
phase volume V I = V (φ̄1 − φII

1 )/(φI
1 − φII

1 ) is constant and
set by the average scaffold volume fraction, φ̄1. Thus, for the
client dynamics, V I is a control parameter.

The chemical reactions among clients change the average
volume fractions of clients in time:

d

dt
φ̄i(t ) = s̄i({φ̄ j (t )}), (17)

where s̄i(t ) = (V IsI
i + V IIsII

i )/V are the average chemical re-
action rates with the phase-dependent reaction rates sI/II

i given
in Eq. (5). Note that φ

I/II
i in sI/II

i can be substituted by the
average volume fractions {φ̄ j (t )} using Eqs. (15). Thus the
average reaction rates s̄i solely depend on the average volume
fractions {φ̄ j (t )}. To recast Eq. (17) in terms of the average
number concentration, c̄i = φ̄i/νi, it solely needs to be divided
by the molecular volume νi.

Equation (17) governs the chemical reaction of client i
at phase equilibrium. Compared to the thin interface model
(Sec. II B 2), the chemical kinetics is governed by ordinary
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FIG. 3. Condensates strongly affect the steady state of bi-molecular reactions (A1 + A2 � B). (a) Spatiotemporal profiles of the product
component, φB(r, t ), relative to the conserved quantity ψ1 = (φ̄A1 + φ̄A2 + φ̄B). The system initialized at phase equilibrium (light gray)
approaches a nonequilibrium steady state (blue, μ̃I

F /kBT = 5). Dark gray depicts the profile at an intermediate time t = 1. Time is rescaled
by t → t kI, where kI is the reaction rate coefficient in phase I defined in Eq. (20). (b) The spatial volume fraction profiles of the product at
steady state for finite diffusivity values. When chemical reactions are maintained away from equilibrium (solid, μ̃I

F /kBT = 5), the profiles
are spatially heterogeneous, while product volume fractions are at thermodynamic equilibrium (dashed blue line, μ̃I

F /kBT = 0). (c), (d) The
yield Y relative to the case without condensate is maximal at a finite volume V I,∗. The maximal yield Y∗ increases with increasing fuel energy
supply μ̃I

F and the faster diffusion compared to the chemical reactions (D̃i → ∞). (e), (f) The maximal yield Y∗ increases when more substrate
partitions into the condensate and the faster the reactions are in the scaffold-rich condensate compared to the scaffold-poor phase (kII/kI � 1).
In this limit, the corresponding condensate volume decreases.

differential equations, and the diffusion coefficients no longer
determine the dynamics of the client volume fractions. The
remaining parameters at phase equilibrium are the reaction
rate coefficients kI/II

α , the fuel energies μ̃
I/II
F , the partition coef-

ficients Pi, and the phase volumes V I/II. Note that Eq. (17) can
describe chemical kinetics maintained away from chemical
equilibrium by fuel energy μ̃

I/II
F .

III. APPLICATION OF THEORETICAL FRAMEWORK

In the following two sections, we apply the theoretical
framework discussed in Sec. II to reacting diluted clients in
two coexisting scaffold-rich and poor phases to two different
types of chemical reactions [see Fig. 1(b) for an overview].
We determine the quantities relevant for each chemical kinet-
ics, such as stationary yields and initial rates. We compare
such quantities with and without condensates and distinguish
systems that are maintained away from chemical equilibrium
by the fuel energy μ̃

I/II
F and that can relax toward chemical

equilibrium (μ̃I/II
F = 0).

In Sec. III A, we ask how coexisting phases alter the sta-
tionary states of reversible chemical reactions [41,42], while
in Sec. III B, we analyze the effects of coexisting phases on
initial rates of irreversible assembly processes [43,44]. To il-
lustrate the effects of coexisting phases on chemical reactions,
we focus on a single scaffold-rich condensate phase of radius

R that is located in the center of a finite spherical symmetric
container of radius L [Fig. 2(a)].

A. Reversible chemical reactions controlled by a scaffold-rich
condensate

Here, we study reversible two-state transitions between g
deactivated reactants Ai (substrate) and the activated product
B with the reaction scheme

g∑
i=1

Ai

μ̄F
I/II

−−−−−−⇀↽−−−−−−
spontaneous

B, (18)

where, for simplicity, we choose all stoichiometric coef-
ficients equal to one. Moreover, μ̃

I/II
F is the fuel energy

that maintains the forward reaction continuously away from
chemical equilibrium, while the backward reaction can re-
lax spontaneously toward chemical equilibrium. Maintaining
away from chemical equilibrium is realized by considering
different values of the fuel energy μ̃

I/II
F in each of the phases.

Special cases of the reaction scheme (18) are the unimolecular
reaction for g = 1 and the bimolecular reaction for g = 2.
For simplicity, we consider a single product. Below, we will
discuss and compare the results obtained for bi-molecular
reactions (Fig. 3) to unimolecular (Fig. 4).

The bi-molecular reaction with equal stoichiometric co-
efficients (g = 2) has two conserved quantities, which we
choose as ψ1 = (φ̄A1 + φ̄A2 + φ̄B) and ψ2 = (φ̄A1 − φ̄A2 ). In
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FIG. 4. Condensates affect the steady-state turnover of uni-molecular reactions (A1 � B). (a) Spatiotemporal profile of the product
component, φB, relative to the conserved quantity, ψ = (φA1 + φB ). The system initialized at phase equilibrium (light gray) approaches a
nonequilibrium steady state (blue, μ̃I

F /kBT = 5). Dark gray depicts the profile at an intermediate time t = 0.075, where time is rescaled
by t → t kI with kI being the reaction rate coefficient in phase I. (b) The spatial volume fraction profiles of the clients at steady state for
a finite diffusivity value, D̃B = 0.01. When chemical reactions are maintained away from equilibrium (solid, μ̃I

F /kBT = 5), the profiles are
spatially heterogeneous, while client volume fractions are homogeneous at thermodynamic equilibrium (dashed, μ̃I

F /kBT = 0). (c), (d) The
yield Y relative to the case without condensate is maximal at a finite volume V I,∗. The maximal yield Y∗ increases with increasing fuel energy
supply μ̃I

F and the faster diffusivity (black dotted) compared to the chemical reactions. Importantly, there is no maximum for the passive case
corresponding to μ̃I

F = 0 for unimolecular reactions [black dashed in (c)] and the limit of no diffusivity [black solid in (d)]. (e), (f) The maximal
yield Y∗ increases when less substrate A1 partitions and the larger the reaction rate coefficient in the condensate relative to the scaffold-poor
phase, kII/kI � 1. The condensate volume corresponding to maximal yield gets smaller for decreasing kII/kI and partition coefficient PA1 .

our work, we consider incompressible systems and thereby
restrict ourselves to volume-conserving chemical reactions,
requiring that the chemical reaction rates obey:

sI/II
A1

= sI/II
A2

, (19a)

sI/II
A1

+ sI/II
A2

= −sI/II
B . (19b)

For diluted clients Ai (substrates) and B (product) at phase
equilibrium and for g = 2, the chemical reaction rate of the
product B reads

sI/II
B = kI/II νB

νAi

[
− exp

(
μ̄0

B

kBT

)
(γ̄BφB)I/II

+ exp

(
μ̄0

A1
+ μ̄0

A2
+ μ̃

I/II
F

kBT

)
(γ̄A1φA1 )I/II(γ̄A2φA2 )I/II

]
,

(20)

where the molecular volumes obey νAi/νB = 1/2 for i = 1, 2
and kI/II denote the reaction rate coefficients in phase I and
II. Moreover, γ̄

I/II
i are the constant exchange activity coeffi-

cients of the clients Ai and B, which depends on the constant
scaffold volume fraction φ

I/II
1 in the respective phases. Note

that at phase equilibrium (Sec. II B 3), the activity coeffi-
cients of the two phases are coupled to each other via the
partitioning coefficients Pi = γ̄ II

i /γ̄ I
i (i = A1, A2, B) that are

independent of client volume fraction for diluted clients. In

the case of the thin interface model (Sec. II B 2), the position
and time-dependent client fields φi(r, t ) satisfy partitioning at
the interface [Eq. (13d)] but not necessarily inside the phases.

Using the thin interface model for steplike and station-
ary scaffold profile, we numerically calculated the volume
fraction profiles of the activated product φB(r, t ). The results
are shown in Figs. 3(a), 3(b) for g = 2 and in Figs. 4(a),
4(b) for g = 1. We could also derive analytic solutions for
unimolecular reactions (g = 1); see Appendix D for details.
Initializing the concentrations in each phase at phase equi-
librium, the chemical kinetics gives rise to spatial gradients
in each phase over time. For systems that are maintained
away from chemical equilibrium (μ̃I/II

F �= 0), gradients in the
phases and, thereby, fluxes between the phases persist in the
nonequilibrium steady state.

1. Condensates and nonequilibrium driving strongly enhance
the yield of reversible reactions

To characterize the effects of phase-separated condensates
on chemical kinetics, we consider the yield at steady state
(t → ∞) of the average volume fraction of the activated prod-
uct, φ̄B(∞). We define the relative yield as the ratio of the
yield in the presence of a condensate of volume V I to the yield
without a condensate (V I = 0):

Y = φ̄B(∞)

φ̄B(∞)|V I=0
. (21)
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The average volume fraction of each diluted client φ̄i(∞)
at steady state is given by Eq. (16) at phase equilib-
rium, and for the thin interface and continuum model,
it is given by φ̄i(∞) = V −14π

∫ L
0 dr r2φi(r,∞) and V =

(4/3)πL3 [Fig. 2(a)]. In summary, the relative yield char-
acterizes how much the compartment volume V I, which is
controlled by the amount of scaffold φ̄1, regulates the steady-
state volume fraction of the product.

We find that for the passive case (μ̃I/II
F = 0) and the case

with fuel energy supply (μ̃I/II
F �= 0), the relative yield Y can

increase due to the presence of a phase-separated condensate,
i.e., Y > 1; see Fig. 3(c). An exception is the unimolecu-
lar reaction (g = 1), where Y monotonously decreases with
increasing condensate volume for μ̃

I/II
F = 0 [dashed line in

Fig. 4(c)]. The increase of the relative yield depends on the
value of fuel energy μ̃F > 0. While the yield for passive
systems with bimolecular reactions increases only weakly by
having a condensate [black dashed line in Fig. 3(c)], chemical
reactions maintained away from equilibrium give rise to a
significantly more pronounced increase of the relative yield
Y . Specifically, the yield can increase by 100-fold already for
a fuel energy supply inside the condensate μ̃I

F (μ̃II
F = 0) that

is a few kBT . For example, such an amount of free energy can
be provided by the hydrolysis of ATP [45].

2. Maximal yield in reversible reactions mediated by condensates

A hallmark feature of our framework where clients are
diluted relative to scaffold and solvent components is that the
condensate volume V I is a control parameter. This means that
V I can be varied without being altered by the clients’ chem-
ical kinetics. Most importantly, we expect that the chemical
kinetics of clients is affected when varying the condensate
volumes V I. When increasing V I, we find a maximum in the
relative yield [Figs. 3(c), 3(d) and Figs. 4(c), 4(d)]. The yield
maximum Y∗ corresponds to a specific optimal condensate
volume V I,∗ at which Y ′(V I )|V I,∗ = 0. The existence of such
a maximum requires that the slope of the yield is positive at
V I = 0, and negative when the condensate volume is equal
to the system volume, V I = V . These conditions are sufficient
for a unimolecular reaction (g = 1) and a bimolecular reaction
(g = 2) since there is at most one maximum in the interval
V I/V ∈ (0, 1). The conditions for both cases are given in the
Appendix C 1 and C 2.

For passive (μ̃I
F = 0), unimolecular (g = 1) reactions [see

Fig. 4(c)], we find that there cannot be a maximum in yield.
The yield monotonously increases or decreases with conden-
sate volume V I. The reason for this behavior is related to the
linearity of the unimolecular reactions among diluted clients.
Although partitioning of a reactant from one to the other phase
can alter the chemical kinetics in each phase, there is no effect
on the kinetics of the average composition and thereby on the
relative yield [Eq. (21)]. This is because the average compo-
sitions are proportional to the volume-weighted reaction rate
coefficient, (V IkI + V IIkII )/V , that changes monotonously
with condensate volume V I.

A maximum exists when unimolecular (g = 1) reactions
are maintained away from equilibrium [μ̃I

F �= 0 in Fig. 4(c)],
or when considering bimolecular reactions (g = 2) [Fig. 3(c)].
In both cases, a nonlinear volume dependence is introduced,

giving rise to two competing effects that lead to a maximum
in the yield as a function of condensate volume. To understand
this competition, we discuss the effects of introducing a small
scaffold-rich condensate of volume V I/V � 1. To obtain a
maximum in the relative yield, the tiny condensate has to
promote the formation of product B for which we evaluate the
yield Y [Eq. (21)]. Product formation is promoted by a con-
densate when the reaction rate coefficients satisfy kI/kII � 1.
Thus, increasing condensate volume also increases the prod-
uct yield in the entire system. However, increasing condensate
volume V I further toward V I/V = 1 leads to a decrease in
the relative yield Y at some point. This decrease in Y results
from a decrease in the rate of product formation sB due to a
generic dilution effect inside the condensates when increasing
the condensate volume V I from a tiny volume to the volume
of the system V . Dilution arises from a decrease in substrate
volume fraction inside the condensate from PAi φ̄Ai → φ̄Ai for
V I/V → 1. This effect is characterized by the partitioning
degree [Eq. (15c)] that decreases from 1 to P−1

Ai
at V I/V = 1.

We further observe that the relative yield Y is most pro-
nounced in the limit when client diffusion rates are fast
compared to reaction rate coefficients among clients [Fig. 3(d)
and Fig. 4(d)]. This case corresponds to clients being at phase
equilibrium during the reaction kinetics and is well fulfilled
when the system size is smaller than the reaction diffusion
length scales (see Sec. III for a more detailed discussion).
The reason why the yield is largest at phase equilibrium can
be understood by considering the opposite limit, i.e., when
client reactions become fast compared to diffusion of clients
[black solid line in Fig. 3(d) and Fig. 4(d)]. In this case, there
are still two phases with different reaction rate coefficients kI

and kII because the scaffold component is phase separated,
providing distinct domains for chemical reactions. However,
as clients diffuse slowly compared to their reactions, the bulk
phases cannot follow the relative partitioning at the interface.
Thus, introducing a condensate is of no benefit except for the
differences in the reaction rate coefficients. This can only lead
to a monotonous increase in yield with condensate volume
(for kI > kII). Consistently, yields become equal in both limits
V I/V = 0, 1, since there is no partitioning when there is no
condensate or when it occupies the full system volume V .

Our studies show that tiny condensates are optimal biore-
actors. The volume corresponding to maximal yield, V I,∗
decreases and value of the maximal yield Y increases
when condensates favor more the formation of the product
[kII/kI → 0 in Figs. 3(e), 3(f) and 4(e), 4(f)]. We also find that
the larger the partitioning coefficients of the substrate Ai, the
smaller the volume at maximal yield, V I,∗. Both trends support
the idea that biomolecular condensates in living cells, which
are usually much smaller than the system volume, can have
significant effects on the yield of reversible chemical reactions
that are maintained away from chemical equilibrium.

B. Assembly processes controlled by a scaffold-rich condensate

In this section, we use the framework developed in Sec. III
to study a simple model for the assembly of monomers to
a nucleus composed of many monomers. Such a process is
abundant in living cells. Examples are the polymerization
of biofilaments and the aberrant aggregation of misfolded
proteins. Condensates were suggested to control the formation
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FIG. 5. Condensates can speed up assembly processes. The temporal evolution of the average volume fraction of the monomer A is shown
for different assembly reaction orders, (a) n = 2 and (b) n = 3, for passive systems (μ̃I

F = 0) and assembly processes promoted by a fuel energy
supply (μ̃I

F �= 0) (dashed and solid lines, respectively). Gray lines indicate the initial decay of components A, φ̄A(t ) = t ˙̄φA(t = 0). The initial
rate ˙̄φA(t = 0) is analyzed in more detail in the following figure panels. For both plots (a) and (b), V I = 0.008V . Time is rescaled by t → t kI,
where kI is the reaction rate coefficient in phase I defined in Eq. (23). (c) The relative initial rate of assembly R [Eq. (24)] exhibits a maximum
with condensate volume V I, for n = 2 and n = 3. The maximum results from a competition between the condensate-mediated promotion of
assembly and a dilution effect for very large condensate volumes; see Sec. III A 2 for details. (d) Acceleration of the assembly process is
most pronounced at phase equilibrium (dotted line) where diffusion rates are fast compared to reaction rate coefficients. This is evident in the
slope of φ̄A(t ) at early times t . (e) The condensate volume corresponding to maximal assembly rates decreases for larger partitioning of the
monomer, PA, while the ratio of reaction rate coefficients, kII/kI, has almost no impact. The assembly reaction order in (e) and (f) is n = 2. (f)
The maximum amplification in assembly rates increases with decreasing ratio of reaction rate coefficients, kII/kI. Partitioning of monomers in
the condensate phase does not necessarily imply a higher value of R.

of such nuclei. Here, we study how the initial assembly rate
of nucleus formation is affected by a condensate of volume
V I. We distinguish between a reversible assembly process
that can relax towards thermodynamic equilibrium and that
is maintained away by the fuel energy μ̃F . We choose the
internal energy of the nucleating components higher such that
the backward pathway of the assembly process is slow. In
particular, at early times, this pathway is negligible. We only
include this pathway to obtain a stationary state at long times
that is consistent with thermodynamics, i.e., a state with a
nonvanishing volume fraction of assembly-prone monomers.

In this simple model for an assembly process, n identical
monomeric components A reversibly form a nucleus An com-
posed of n monomers, where n is the assembly reaction order.
The corresponding reaction scheme is

n A
μ̄F

I/II

−−−⇀↽−−−
slow

An, (22)

where μ̃
I/II
F is the phase-dependent fuel energy maintaining

the assembly process away from equilibrium. At phase equi-
librium, the corresponding chemical reaction rates are

sI/II
A = −sI/II

An

= kI/II νAn

νA

[
exp

(
μ̄An

kBT

)
− exp

(
nμ̄A + μ̃

I/II
F

kBT

)]
, (23)

where due to incompressibility the fraction of molecular vol-
umes, νAn/νA, is chosen to be equal to the assembly reaction
order n. The conserved quantity of this assembly process is
ψ = (φ̄A + φ̄An ). Using Eq. (23) in Eq. (13a), we proceed
to solve the system numerically. As initial condition, we use
φ̄An (t ) = 0.01ψ .

1. Condensates and nonequilibrium driving can strongly
accelerate assembly processes

To characterize the effects of phase-separated condensates
on the formation of assemblies, we consider the initial (at time
t = 0) assembly rate of the monomeric component A relative
to the case without condensates (V I = 0):

R =
˙̄φA(0)

˙̄φA(0)|V I=0

, (24)

where · = d/dt denotes time derivative. We compare initial
assembly rates for different assembly reaction orders n = 2
and n = 3, respectively. We find that the initial rate of assem-
bly increases with assembly reaction order n [Figs. 5(a)–5(c)].
This trend applies to the case with and without condensates.
We can calculate the dynamics of the monomer volume frac-
tion for intermediate time scales, i.e., for timescales when
a significant fraction of monomers have assembled but the
system has not yet reached the stationary state. We find that at
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such intermediate times the monomer volume fraction decays
algebraically, i.e., φ̄A(t ) ∝ t1/(1−n), where the exponent of the
power law is set by the assembly reaction order [inset of
Figs. 5(a) and 5(b)]; details see Appendix E).

A key finding is that the presence of a fuel energy supply
μ̃I

F strongly accelerates the assembly process; see Figs. 5(a),
5(b), and 5(d). To show this, we distinguish the case when
assembly is maintained away from equilibrium (μ̃I

F �= 0) and
when assembly occurs in a passive system (μ̃I

F = 0). Since the
backward pathway is suppressed, in particular at early times,
the acceleration of assembly is a result of an effective increase
of the monomer chemical potential by the fuel energy μ̃I

F in-
side the condensates. These effects are most pronounced when
diffusion is fast compared to the assembly process [Fig. 5(d)].

2. Maximal acceleration of assembly processes mediated
by condensates

The acceleration of the assembly rate depends on conden-
sate volume [Fig. 5(c)]. The acceleration relative to the case
without condensate is maximal at a specific, optimal volume
V I,∗. At this volume, the relative increase in assembly rate
can be significant compared to the case without condensates.
This acceleration can be amplified even further to more than
100-fold if the system is maintained away from equilibrium
(μ̃I

F > 0).
The condensate volume at which the assembly rate is max-

imal, V I,∗, and the corresponding assembly rate R∗ depend on
the relative assembly rate constants kII/kI and the partition co-
efficient of the monomers PA [Figs. 5(e) and 5(f)]. We find that
the optimal volume V I,∗ is mostly determined by monomer
partitioning PA and that V I,∗ decreases with increasing PA. The
maximal assembly rate R∗ is, however, strongly affected by
both PA and kII/kI. It is larger the higher the assembly rate
constant inside, kI, compared to outside, kII, and the smaller
the partition coefficient of monomers PA. We note that similar
effects can also occur via other mechanisms in the absence
of condensates. For example, accelerated assembly and the
existence of an optimal volume in the processing of interme-
diates have been found by coclustering multiple enzymes into
compact agglomerates [46].

IV. CONCLUSION

Unraveling the physicochemical principles of how conden-
sates regulate chemical processes is challenging due to the
interplay between chemical reactions and phase separation.
To dissect the effects of condensates on chemical kinetics,
we developed a general theoretical framework for diluted
clients undergoing chemical reactions in a phase-separated
environment where scaffold and solvent components form
a condensate. We derived the equations governing chemical
kinetics for diluted clients and showed that they undergo
chemical reactions in a spatially heterogeneous environment
determined by the phase-separated scaffold component. This
environment gives rise to an effective drift that originates
from cross diffusion. This drift drives the diffusive exchange
through the condensate interface while the clients follow
reaction-diffusion kinetics with phase-dependent transport

coefficients. In the thin interface limit, the drift gives rise
to distinct boundary conditions at the condensate interface.
These boundary conditions entail the effects of how a con-
densate affects chemical kinetics.

We illustrate the effects of a condensate on chemical
processes by considering two examples of experimental rele-
vance: a reversible reaction between a substrate and product
and an assembly process from a substrate to a product.
We determined the product yield for the reversible reactions
and initial rates for the assembly process. A key finding is
that both quantities can be maximal at a specific conden-
sate volume. This maximum results from a competition of
the condensate promoting the formation of products and a
dilution effect of the substrate inside the condensate. We
also found that when diffusion is fast compared to chemi-
cal processes (i.e., the system is at phase equilibrium) and
when maintaining chemical processes away from chemical
equilibrium, the effects of condensates on chemical kinetics
can be amplified significantly. To scrutinize the existence
of an optimal condensate volume for regulating chemical
processes, we propose considering in vitro systems such as
those studied in Refs. [47,48]. These predictions can be
tested experimentally by varying the volume of the condensed
phase and measuring the resulting product yields and reaction
rates. Our framework can also be used in practice to ex-
tract reaction rate coefficients in phase-separated systems with
chemical reactions. Applying this approach can illuminate
general principles in other fields, such as biology and the ori-
gin of life, where reactions coupled to phase separation play a
critical role.

Regulating yields and initial speeds of chemical processes
is key in biological systems. For example, cells have to silence
expression upon stress [49] or control the formation of biofil-
aments [50] and aberrant aggregates [43,51]. From a physical
chemistry perspective, condensates have a great propensity to
provide switchlike mechanisms between regimes strongly dif-
fering in the properties of chemical processes. This switch can
for example be achieved by cycles of condensate formation
and dissolution. In particular, since chemical processes in cells
are maintained away from equilibrium, such switches can
be extraordinarily pronounced, according to our theoretical
studies.

Condensate-mediated switches may have also played an
important role in the molecular origin of life. The nondilute
environments leading to condensed phases should have been
abundant at early earth, as nondilute conditions can be easily
created through drying [52–54] or freezing processes [55].
In particular, in the presence of cycles (temperature, salt,
etc.), switching the speed of chemical processes could have
provided selection mechanisms for specific molecules that are
based on the physical nonequilibrium conditions [56].

Future applications of our theoretical framework might ad-
dress questions in systems with extremely many components,
such as mixtures composed of DNA and RNA differing in
their sequences [57]. In such systems, most sequences are
diluted enabling to describe the reaction kinetics among se-
quences as diluted clients. Moreover, our framework could
be used to systematically study the Turing patterns [58,59] in
systems with coexisting phases [60].
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APPENDIX A: DILUTED CLIENTS IN A
PHASE-SEPARATED SYSTEM

In this section, we derive the conditions for phase equilib-
rium for a mixture composed of nondilute scaffold and solvent
components, and diluted clients that undergo chemical reac-
tions. Conceptually, it is key to define the meaning of client
components being diluted in a chemically reactive mixture.

1. Thermodynamics and phase equilibrium
of a (N + 2)-component mixture

Due to the incompressibility condition
∑N+1

i=0 φi = 1, the
(N + 2)-component mixture can be described by (N + 2)
volume fractions φi, whereby i = 0 denotes the solvent,
i = 1 denotes the scaffold, and i = 2, . . . , (N + 1) label the
N dilute clients components. The solvent volume fraction
can be substituted by the relationship, φ0 = 1 −∑N+1

i=1 φi,
leading to (N + 1) independent volume fractions. The
thermodynamics of this (N + 2)-component mixture is gov-
erned by the Helmholtz free energy density of the form:

f = f0 +
N+1∑
i, j=0

κ̃i j

2
∇φi · ∇φ j, (A1)

where f0 is the homogeneous Helmholtz free energy density
that solely depends on the volume fractions of all components,
φi. The term κ̃i j in Eq. (A1) characterizes the free energy
costs due to gradients in volume fractions. For simplicity, we
neglect cross couplings, i.e., κ̃i j = 0 for i �= j, using κ̃i j =
δi jκi. Note that the free energy costs κi also contribute to the
chemical reaction rates si [Eq. (5)]. However, since κi > 0,
this contribution solely shifts up the diffusion coefficient Di =
Mii
∑

i ∂μ̄i/∂φi → Di + κi, and can thus be neglected in the
following.

Phase equilibrium between two homogeneous phases I and
II (in the thermodynamic limit) in the (N + 2)-component
mixture are governed by the balance of the exchange chem-
ical potentials μ̄I/II

i and the osmotic pressures �I/II between

the phases:

μ̄I
i

({
φI

j

}) = μ̄II
i

({
φII

j

})
, (A2a)

�I = �II. (A2b)

The homogeneity of phases implies that the gradient-free en-
ergy cost vanishes and thus the exchange chemical potential
can be calculated via μ̄i = νi∂ f0/∂φi, and the osmotic pres-
sure is given by � = − f0 +∑N+1

i=1 φiμ̄i/νi. Here, νi is the
molecular volume of component i. The replacement of the
solvent volume fraction implies (N + 1) balance equations for
the exchange chemical potentials μ̄i with i = 1, . . . , (N +
1) [Eq. (A2a)]. Moreover, the exchange chemical poten-
tial measures the chemical potentials relative to the solvent
component, i = 0. The volume of phase I is set by the av-
erage volume fractions φ̄i by the relationship V I/V = (φ̄i −
φII

i )/(φI
i − φII

i ), with V II/V = 1 − V I/V , where V is the sys-
tem volume.

To illustrate the implications when N reacting clients are
diluted, we consider the following mean-field, homogeneous
free energy density of the form:

f0 = kBT

ν0

[
N+1∑
i=0

φi

ri
log(φi ) +

N+1∑
i, j=0

χi j

2
φiφ j +

N+1∑
i=0

ωiφi

]
,

(A3)

where ri = νi/ν0 is the fraction of molecular volumes νi.
Moreover, the first term represents the entropic contribution
of all components. The second term describes the mutual
interactions among all components with pairwise interaction
parameter, χi j . Moreover, ωi denote the internal free energies
in units of kBT . The homogeneous free energy density f0 does
not depend on the solvent volume fraction φ0 due to φ0 =
1 −∑N+1

i=1 φi. Note that φ0 has not been explicitly replaced
in Eq. (A3) for presentation purposes. We remark that our
framework for diluted and reacting clients is also valid for free
energies that take into account interactions beyond mean field;
the mean-field free energy above is only chosen for simplicity.

Using Eq. (A3), the exchange chemical potentials read

νi∂ f0/∂φi = kBT [1 − ri+ri(ωi−ω0+χ0i )] + kBT log(γ̄iφi ).

(A4)

Moreover, the exchange activity coefficients have the follow-
ing form:

γ̄i = 1(
1 −∑N+1

j=1 φ j
)ri

exp

⎡
⎣N+1∑

j=1

ri(χi j − χ0i − χ0 j )φ j

⎤
⎦.

(A5)

Comparing the two relationships above with the general form
of the exchange chemical potential Eq. (2), noting that the
exchange chemical potential for spatially heterogeneous sys-
tem reads μ̄i = νi∂ f0/∂φi − κi∇2φi, the reference chemical
potentials are μ̄0

i = kBT [1 − ri + ri(ωi − ω0 + χ0i )].
For an ideal solution and components having a nonzero

molecular volume, χi j = 0, and thus, the exchange activity
coefficient γ̄i = (1 −∑N+1

j=1 φ j )−ri . Note that only for ideal
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mixtures composed of point particles where all volume frac-
tions except the one of the solvent vanish to zero, γ̄i = 1.

2. Thermodynamics of N diluted clients

In this section, we derive approximate conditions for phase
equilibrium [Eq. (A2)] and approximate expressions for the
exchange activity coefficient [Eq. (A5)] when the N reacting
clients (i = 2, . . . , N + 1) are diluted compared to scaffold
component (i = 1) and solvent (i = 0). Diluted means that the
client volume fractions φi are much smaller than the volume
fractions of scaffold and solvent, φ1 and φ0, respectively:

φi � φ0, φ1, i = 2, . . . , (N + 1). (A6)

a. Limit of vanishing client volume fractions

We first discuss the limit of zero volume fraction of the
client components, i.e., φi/φ1 → 0 for i = 2, . . . , (N + 1),
and where the volume fraction of the scaffold approaches
φ1 → (1 − φ0). From Eq. (A5), the client exchange activities
for vanishing client volume fractions become:

γ̄i|{φ j=0} = 1

(1 − φ1)ri
exp [ri(χ1i − χ0i − χ01)φ1], (A7)

where {φ j = 0} is an abbreviation for all client volume frac-
tions being zero, {φ2 = 0, . . . , φN+1 = 0}. Moreover, ri =
νi/ν0, where νi are molecular volume of component i.

At phase equilibrium [Eq. (A2a)], the definition of the par-
titioning coefficients, Pi ≡ φI

i /φ
II
i , can be expressed in terms

of the exchange activity coefficients, Pi = γ̄ II
i /γ̄ I

i [31]. For
vanishing client volume fraction, the partitioning coefficients
solely depend on the scaffold volume fraction φ

I/II
1 and read:

Pi|{φI/II
j =0}

=
(

1 − φI,0
1

1 − φII,0
1

)ri

exp
[
ri
(
φI,0

1 − φII,0
1

)
(χ01 + χ0i − χ1i )

]
.

(A8)

This expression can be rewritten using the phase equilibrium
condition for the scaffold component (μ̄I

1 = μ̄II
1 ):

Pi|{φI/II
j =0} =

(
1 − φI,0

1

1 − φII,0
1

)ri−ri/r1

exp
[
ri
(
φI,0

1 −φII,0
1

)
(χ0i−χ1i )

+ 1 − r−1
1

]
. (A9)

For equal molecular volumes of scaffold and solvent (ν0 =
ν1, implying r1 = 1, the partitioning coefficients in the dilute
limit were derived recently [39,61]:

Pi|{φI/II
j =0} = exp

[
ri
(
φI,0

1 − φII,0
1

)
(χ0i − χ1i )

]
. (A10)

In summary, the exchange activity coefficients and the parti-
tioning coefficients each approach constant values for φi → 0
(i = 2, . . . , N + 1) that are independent of the client volume
fractions {φi}.

b. Phase equilibrium conditions for small client volume fractions:
Systematic expansion

Before we perform a systematic expansion, we shortly
review the physical and mathematical reasoning of what equa-

tions should be expanded. A first choice could be the dynamic
equations governing diffusive transport and chemical reac-
tions [Eq. (1)]. Expanding such equations is always possible
around any set of volume fractions. Expanding up to the
nth order, one obtains a set of coupled partial differential
equations of order n in the volume fractions. In particular, an
expansion up to the first of the dynamic equations would also
linearize chemical reactions. The validity of this linearization
is restricted to spatial variations of client volume fractions that
are small deviations from the expansion point. Larger devia-
tion from the expansion point may lead to nonphysical results
such as negative volume fractions. Another reason against
the expansion of the dynamic equations is that the effects of
clients being diluted should already be accessible on the level
of the thermodynamic conditions. Note that the conditions for
phase equilibrium govern the boundary conditions in the thin
interface model (Sec. II B 2) and the dynamics of the average
volume fractions when diffusion is fast compared to chemical
rates (Sec. II B 3).

An alternative could be the expansion of the chemical
potentials since their spatial gradients drive diffusive fluxes
and their differences between chemical states drive chemical
reactions. However, once the expansion point in volume frac-
tions approaches zero, each chemical potential diverges due
to the logarithmic dependence in φi [Eq. (2)]. In other words,
an expansion of the chemical potentials around zero volume
fraction is not defined. Expanding only the nondiverging in-
teraction terms remains conceptually unsatisfactory [39].

Another possibility is to expand the phase equilibrium
conditions around zero client volume fractions. At phase
equilibrium, the equality of chemical potentials cancels the di-
vergence. Using Eq. (2) and the equilibrium conditions (A2a),
one gets log(φI

i /φ
II
i ) = log(γ̄ II

i /γ̄ I
i ), which has no divergence

for vanishing average client volume fraction (φ̄i → 0) since
φI

i ∼ φ̄i and φII
i ∼ φ̄i. In particular, for the client volume

fractions φi → 0 with i = 2, . . . , (N + 1), γ̄ II
i /γ̄ I

i become the
constant partition coefficients Pi|{φ̄ j=0} [Eq. (A8)] that do not
depend on the client volume fractions.

In summary, expanding the equilibrium conditions (A2)
or, equivalently, the partitioning coefficients Pi(φ1, φ2, . . . ,

φN+1) for small average client volume fractions φ̄i appears
as the most general procedure. For clients i = 2, . . . , (N + 1)
with φi → 0, not only the partition coefficient approaches a
constant, but also the exchange activity coefficients become
constants in this limit [Eq. (A7)]. Thus, equivalently, ex-
change activity coefficients can be expanded systematically.

Now we continue with the systematic expansion by ex-
pressing the equilibrium volume fractions in each phase φ

I/II
i

and the phase volume V I as a function of the average volume
fractions for the scaffold φ̄1, and the clients φ̄i [Eq. (16)]:

φ
I/II
i = hI/II

i (φ̄1, φ̄2, .., φ̄N+1),

V I

V
= g(φ̄1, φ̄2, .., φ̄N+1). (A11)

In the following, we expand the client average volume frac-
tion {φ̄i} around zero average volume fraction {φ̄i = 0} (i =
2, .., N + 1). Consistently, the zeroth order of this expansion
will lead to the results discussed in Appendix A 2 a.
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FIG. 6. Deviations to dilute limit of clients. We quantify the effects of a nondiluted client component (i = 2) on the equilibrium volume
fractions of scaffold φ

I/II
1 . (a), (b) The zeroth order φ

I/II,0
1 (dilute limit) is shown by the horizontal dotted line, while the dashed line is the

linear order correction φ
I/II,1
1 . The orange line corresponds to the full numerical solution to Eq. (A2), indicating a good agreement of the

linear order correction up to volume fraction around 0.1. For the shown curves, the zeroth order becomes a good approximation for a client
volume fraction below 0.01. (c) We show the relative difference in the client’s exchange activity coefficient, �γ̄2 [Eq. (A18a)], as a function
of client volume fraction φ2. The dashed line shows the relative linear correction, φ2/(φ∗

2 γ̄
0
2 ) [Eq. (A18b)], and the blue solid line results from

numerically solving Eq. (A2). The parameters are: χ01 = 3, χ02 = −1, χ12 = 0, φ0
1 = 0.05. The volume fraction scale [Eq. (A19)] obtained

for these parameters is φ∗
2 = 0.344 and γ̄ 0

2 = 0.95246. �γ̄2 = 1% for φ̄2 = 3.27 · 10−3.

In linear order, the scaffold equilibrium volume fraction
can be written as

φ
I/II
1 = φ

I/II,0
1 +

N+1∑
i=2

α
I/II
i φ̄i + O(φ̄i )

2, (A12a)

where we abbreviated the zeroth order φ
I/II,0
1 , and the linear

expansion coefficients are defined as α
I/II
i = ∂hI/II

1 /∂φ̄i|{φ̄ j=0}.
The coefficients α

I/II
i are derived by linearizing both sides

of Eq. (A2b). Moreover, we use the chemical potential balance
[Eq. (A2a)], and express changes of the scaffold volume frac-
tions φ

I/II
1 with client volume fractions φ

I/II
i in terms of φ̄i by

utilizing the zeroth order partition coefficients P0
i ≡ Pi|{φ̄ j=0}

(i = 2, . . . , N + 1) [62]:

αI
i

(
φ̄0

1 , {φ̄i} = 0
) = aI

i

P0
i

1 + (P0
i − 1

)
V I,0/V

,

(A12b)

αII
i

(
φ̄0

1 , {φ̄i} = 0
) = aII

i

1

1 + (P0
i − 1

)
V I,0/V

,

where the coefficients

aI
i = −φI,0

1

1 + (�χi + 1−1/P0
i

ri (φ
I,0
1 −φ

II,0
1 )

)(
1 − φI,0

1

)
(1−φI,0

1 )
r1

+ φI,0
1 − 2χ01φ

I,0
1

(
1 − φI,0

1

) , (A12c)

aII
i = −φII,0

1

1 + (�χi + P0
i −1

ri (φ
I,0
1 −φII,0

1 )

)(
1 − φII,0

1

)
(1−φ

II,0
1 )

r1
+ φII,0

1 − 2χ01φ
II,0
1

(
1 − φII,0

1

) .
(A12d)

In the equations above, we abbreviate

�χi = χ1i − χ0i − χ01. (A13)

Figures 6(a) and 6(b) show how the volume fraction of the
scaffold component in each phase, φ

I/II
1 , behaves for increas-

ing average client volume fraction φ̄2. The horizontal dotted
line is the zeroth order φ

I/II,0
1 , the dashed line the linear order

φ
I/II,1
1 , and the orange line is the full numerical solution to

Eq. (A2).

The client equilibrium volume fractions (i = 2, . . . , N +
1) can be expanded as follows:

φ
I/II
i =

N+1∑
j=2

∂hI/II
i

∂φ̄ j

∣∣∣∣∣
{φ̄l =0}

φ̄ j

+ 1

2

N+1∑
j,k=2

∂2hI/II
i

∂φ̄ j∂φ̄k

∣∣∣∣∣{φ̄l =0}
l �=i

φ̄ j φ̄k + O(φ̄i )
3, (A14)

where the zeroth order vanishes, i.e., hI/II
i (φ̄0

1 , {φ̄i = 0}). Thus,
we introduce the fraction φ

I/II
i /φ̄i that is finite when evaluating

the limit of zero client volume fractions:

φ
I/II
i

φ̄i
= ∂hI/II

i

∂φ̄i
+ 1

2

N+1∑
j=2

∂2hI/II
i

∂φ̄i∂φ̄ j

∣∣∣∣∣
{φ̄l }=0

φ̄ j + O(φ̄i )
2. (A15)

We see that the zeroth order in the expansion in client volume
fractions gives a linear order leading term. In other words,
there is an order shift due to exclusively expanding around
zero client volume fractions. Thus, the nth order for the scaf-
fold expansion [Eq. (A12a)] corresponds to a (n + 1)th order
in the client expansion.

The expansion of the condensate phase volume V I can be
written as:

V I

V
= V I,0

V
+

N+1∑
i=2

∂g

∂φ̄i

∣∣∣∣
{φ̄i}=0

φ̄i + O(φ̄i )
2

= φ̄0
1 − φII,0

1

φI,0
1 − φII,0

1

+
N+1∑
i=2

ηiφ̄i + O(φ̄i )
2, (A16a)

where the coefficients

ηi = −
(
φ̄0

1 − φII,0
1

)
(
φI,0

1 − φII,0
1

)2 αI
i

+
[ (

φ̄0
1 − φII,0

1

)
(
φI,0

1 − φII,0
1

)2 − 1(
φI,0

1 − φII,0
1

)]αII
i . (A16b)

The expressions of α
I/II
i are obtained from Eq. (A12b).
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The exchange activity coefficient of all components can be
expanded up to the first order around {φi = 0}:

γ̄1 = 1(
1 − φ0

1

)r1
exp
(− 2r1χ01φ

0
1

)

+
N+1∑
i=2

r1
exp
(− 2r1χ01φ

0
1

)
(
1 − φ0

1

)r1+1

(
1 + (1 − φ0

1

)
�χi

)
φi

+O
(
φ2

i

)
, (A17a)

γ̄i = 1(
1 − φ0

1

)ri
exp
(
riφ

0
1�χi

)

+
N+1∑
j=2

r j
exp
(
r jφ

0
1�χ j

)
(
1 − φ0

1

)r j+1

(
1 − 2

(
1 − φ0

1

)
χ0 j
)
φ j

+O
(
φ2

j

)
, (A17b)

with clients labeled by i = 2, . . . , (N + 1).
To illustrate the validity of the expansion, we consider one

client (i = 2) in a homogeneous mixture that is also composed
of solvent (i = 0) and scaffold (i = 1). To access when the
zeroth order in the average client volume fraction (φ̄2 = 0;
see Appendix A 2 a) is a good approximation, we define the
linearly approximated exchange activity coefficient relative to
its zeroth order:

�γ̄2 = γ̄ 1
2 − γ̄ 0

2

γ̄ 0
2

, (A18a)

where the first order of the client exchange activity coefficient
is

γ̄ 1
2 = γ̄ 0

2 + φ̄2/φ
∗
2 (A18b)

with γ̄ 0
2 = (1 − φ0

1 )−r2 exp (r2φ
0
1�χ2) being the the zeroth

order according to Eq. (A17b). Note that �χ2 is given in
Eq. (A13). When decreasing the client volume fraction below
the volume fraction scale,

φ∗
2 =

[
r2

exp
(
r2φ

0
1�χ2

)
(
1 − φ0

1

)r2+1

(
1 − 2

(
1 − φ0

1

)
χ02
)]−1

(A19)

taking the zeroth order of the client activity coefficient be-
comes a good approximation, i.e., γ̄2 � γ̄ 0

2 for φ̄2 � φ∗
2 ,

respectively. In this case, the activity coefficient is constant
and equal to Eq. (A7). Moreover, the partition coefficient is
also constant and equal to Eq. (A8). Figure 6(c) confirms that
below the volume scale, φ̄2 < φ∗

2 , the relative deviation of the
client activity coefficient becomes negligible, i.e., �γ̄2 = 1%
for φ̄2 = (γ̄ 0

2 φ∗
2 )/100.

APPENDIX B: CONTINUUM MODEL
FOR DILUTED CLIENTS

Using linear response for the diffusive fluxes [Eq. (1b)] and
the mobility matrix [Eq. (7)], the fluxes of the scaffold (i = 1)
and the clients i = 2, . . . , (N + 1) are

j1 = −m01φ1(1 − φ1)∇μ̄1,

ji = −[m0iφi(1 − φ1) + m1iφiφ1]∇μ̄i. (B1)

We express the exchange chemical potentials for scaffold μ̄1

and client μ̄i in terms of the exchange activity coefficients in
the limit of vanishing client volume fraction [Eq. (A7)], which
solely depends on the scaffold volume fraction φ1:

∇μ̄1 = kBT

[
1

φ1
+ 1

γ̄1

∂γ̄1

∂φ1

]
∇φ1 − κ1∇∇2φ1, (B2)

∇μ̄i = kBT

[
1

γ̄i

∂γ̄i

∂φ1
∇φ1 + 1

φi
∇φi

]
, (B3)

where we have dropped the higher-order gradient contribu-
tion to the client flux, −κi∇∇2φi. This contribution can be
neglected since the diluted clients i = 2, . . . , (N + 1) cannot
phase separate and do not form an interface. Thus, the spa-
tial transport of clients is well captured by the leading order
diffusive flux that is proportional to ∇φi. Using Eq. (A7), we
obtain Eqs. (8) and (9) in the main text.

APPENDIX C: CONDITION FOR MAXIMAL YIELD
FOR REVERSIBLE CHEMICAL REACTIONS

Here we give the solutions for reversible chemical reac-
tions controlled by a scaffold-rich condensate and the system
being at phase equilibrium. We determine the average product
client volume fraction φ̄B(∞) in the stationary state (t → ∞)
and compare it to the average volume fraction of the homo-
geneous reference system where the compartment volume is
zero (V I = 0). We use such averages to obtain conditions for
when the relative yield is maximal.

1. Unimolecular scheme

For an unimolecular reaction (g = 1) the average product client volume fraction reads:

φ̄B(∞) = exp
( μ̄0

A1
kBT

)
γ̄ I

A1
PA1ζA1

[∑
α V αkα exp

( μ̃α
F

kBT

)]
exp
( μ̄0

A1
kBT

)
γ̄ I

A1
PA1ζA1

[∑
α V αkα exp

( μ̃α
F

kBT

)]+ exp
( μ̄0

B
kBT

)
γ̄ I

BPBζB
[∑

α V αkα
]ψ1, (C1)

where ψ1 = (φ̄A1 + φ̄B) is the conserved quantity of the unimolecular reaction. For vanishing condensate volume (V I = 0), the
equation above simplifies:

φ̄B(∞)|V I=0 = exp
( μ̄0

A1
+μ̃F

kBT

)
γ̄A1

exp
( μ̄0

A1
+μ̃F

kBT

)
γ̄A1 + exp

( μ̄0
B

kBT

)
γ̄B

ψ1. (C2)
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FIG. 7. Graphical representation of the conditions for a max-
imum in product yield Y . The conditions are shown for (a) the
unimolecular reaction (g = 1) and (b) the bimolecular reaction (g =
2). We vary the fraction of the reaction rate coefficients kII/kI and
fuel supply energy μ̃I

F . A yield maximum exits only in the orange
shaded domain where both conditions [Eqs. (C4) for g = 1 and
Eqs. (C11) for g = 2] are satisfied.

To obtain conditions for the existence of a maximum in the
relative yield Y (V I ) [Eq. (21)] as a function of the condensate
volume V I, we consider the slope of the relative field, Y ′. We
evaluate this slope at the limits, V I/V − > 0 and V I/V − > 1,
respectively. If the relative yield does not have multiple ex-
trema, the conditions of a maximum is given as:

Y ′(V I/V ) > 0 for V I/V → 0,

Y ′(V I/V ) < 0 for V I/V → 1. (C3)

These conditions can be expressed as:

kII

kI
<

(
exp
( μ̃I

F
kBT

)− 1
)

(PA1 − PB)
for V I/V → 0,

kII

kI
<

exp
( μ̃I

F
kBT

)
(PA1 − PB)

PA1 PB
(

exp
( μ̃I

F
kBT

)− 1
) for V I/V → 1. (C4)

A graphical illustration of these conditions for a varying
fraction of the reaction rate coefficients kII/kI and fuel supply
energy μ̃I

F is shown in Fig. 7(a). If such conditions are satis-
fied, a maximum in relative yield exists at a particular value
of the relative condensate volume V I/V . When chemical reac-
tions are not maintained away from equilibrium (μ̃I

F = 0), the
conditions reduce to kII(PA1 − PB) < 0 and kI(PA1 − PB) > 0.
Both conditions cannot be satisfied simultaneously. This im-

plies that for a unimolecular reaction (g = 1) at equilibrium,
there are no maxima in the relative yield as a function of
relative condensate volume V I/V [see Fig. 4(c)]. However, for
nonvanishing fuel energy supply μ̃I

F , the yield as a function of
V I/V can develop a pronounced maximum. This maximum
already occurs at smaller volumes if more substrate A1 parti-
tions into the condensate and if the condensate phase I favors
the production of the product (kII/kI decreases) compared to
phase II [see Figs. 4(c)–4(f)].

2. Bimolecular scheme

For the second case of a fuel-driven bimolecular reaction
(g = 2), the reaction rates for the substrates Ai read

sα
Ai

(r, t ) = − sα
B(r, t )

2

= kα

[
exp

(
μ̄B

kBT

)
− exp

(
μ̄A1 + μ̄A2 + μ̃α

F

kBT

)]
.

(C5)

There are two conserved quantities, i.e., ψ1 = (φ̄A1 + φ̄A2 +
φ̄B) and ψ2 = (φ̄A1 − φ̄A2 ). The solution at steady state φ̄B(∞)
obeys the condition

∑2
i=1 μ̄Ai + μ̃F = μ̄B. Using the con-

served quantities, this condition can be written as:

φ̄B(∞) = exp

(
μ̄0

A1
+ μ̄0

A2
− μ̄0

B

kBT

)(
ψ1 + ψ2 − φ̄B(∞)

2

)

×
(

ψ1 − ψ2 − φ̄B(∞)

2

)
. (C6)

The root where 0 < φ̄B(∞) < 1 is

φ̄B(∞) = 2C + ψ1 −
√

4C2 + 4Cψ1 + ψ2
2 , (C7)

where the coefficient

C = exp

(
μ̄0

A1
+ μ̄0

A2
− μ̄0

B

kBT

)
γ̄ I

BPBζB∏2
i=1 γ̄ I

Ai
PAiζAi

×
⎡
⎣ ∑

α V αkα∑
α V αkα exp

( μ̃α
F

kBT

)
⎤
⎦. (C8)

To solve for the existence of a maximum in the relative yield,
we determine the slope of the Eq. (C7). When evaluating at,

V I/V → 0, we find:

[
kI

(
exp

(
μ̃I

F

kBT

)
− 1

)
+ kII

(
1 −

∑
i

PAi + PB

)]⎡⎢⎣2 exp

(
μ̄0

B

kBT

)
PBγ̄ I

B +
2∏

i=1

exp

(
μ̄0

Ai

kBT

)
PAi γ̄

I
Ai

×

⎛
⎜⎝ψ1 −

√√√√4 exp
( μ̄0

B−2
∑

i μ̄
0
Ai

kBT

)(
exp
( μ̄0

B
kBT

)
PBγ̄ I

B +∏2
i=1 exp

( μ̄0
Ai

kBT

)
PAi γ̄Aiψ1

)
PBγ̄ I

B∏
i(PAi γ̄

I
Ai

)2
+ ψ2

2

⎞
⎟⎠
⎤
⎥⎦ > 0, (C9)
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while when calculating at V I/V → 1, we obtain:[
kI exp

(
μ̃I

F

kBT

)((
PA1

(
PA2 + PB

(
PA2 − 1

)))− PA2 PB
)+ kIIPA1 PA2 PB

(
1 − exp

(
μ̃I

F

kBT

))]

×

⎡
⎢⎢⎢⎣−2 exp

(
μ̄0

B

kBT

)
γ̄ I

B + exp

(
μ̃I

F

kBT

) 2∏
i=1

exp

(
μ̄0

Ai

kBT

)
γ̄Ai

×

⎛
⎜⎜⎜⎝−ψ1 +

√√√√√4 exp
(

μ̄0
B−2

∑
i μ̄

0
Ai

−μ̃I
F

kBT

)(
exp
(

μ̄0
B−2

∑
i μ̄

0
Ai

−μ̃I
F

kBT

)
γ̄ I

B +∏2
i=1 γ̄ I

Ai

)
γ̄ I

B∏
i(γ̄

I
Ai

)2
+ ψ2

2

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ < 0. (C10)

For the present choice of parameters, the terms within the second round brackets in Eq. (C9) and Eq. (C10), respectively, is
always positive. Thus, the sufficient conditions for the existence of a maximum reduce to:

kI

(
exp

(
μ̃I

F

kBT

)
− 1

)
> kII

(∑
i

PAi − PB − 1

)
at V I/V → 0, (C11a)

kI exp

(
μ̃I

F

kBT

)((
PA1

(
PA2 + PB

(
PA2 − 1

)))− PA2 PB
)

> kII

(
exp

(
μ̃I

F

kBT

)
− 1

)
at V I/V → 1. (C11b)

In summary, if the conditions above are satisfied, then a
maximum exists as a function of condensate volume V I. See
Fig. 7(b) for a graphical illustration of these conditions for
varying fraction of the reaction rate coefficients, kII/kI, and
fuel supply energy μ̃I

F . Interestingly, when μ̃I
F = 0, the con-

ditions above can still be satisfied for the considered case of a
bimolecular reaction (g = 2).

APPENDIX D: ANALYTIC SOLUTIONS OF THIN
INTERFACE MODEL FOR REVERSIBLE

UNIMOLECULAR CHEMICAL REACTIONS

Here, we provide analytical solutions for the stationary
concentration fields of diffusive clients undergoing unimolec-
ular reactions, with the results shown in Figs. 4(a)–4(d). From
the stationary case of Eq. (13), we can derive radial symmetric
volume fractions for A1 and B in three spatial dimensions as

φI
A1

(r) = β
(
DI

A1
C1 + DI

BC2
)

(
αDI

B exp
(
μ̃I

F /kBT
)+ βDI

A1

)
+ DI

B

(
αC1 exp

(
μ̃I

F /kBT
)− βC2

)
(
αDI

B exp
(
μ̃I

F /kBT
)+ βDI

A1

) sinh(r/l I )

r/l I
,

(D1a)

φI
B(r) = α exp

(
μ̃I

F /kBT
)(

DI
A1

C1 + DI
BC2
)

(
αDI

B exp
(
μ̃I

F /kBT
)+ βDI

A1

)
− DI

A1

(
αC1 exp

(
μ̃I

F /kBT
)− βC2

)
(
αDI

B exp
(
μ̃I

F /kBT
)+ βDI

A1

) sinh(r/l I )

r/l I
,

(D1b)

φII
A1

(r) = PBβ
(
DII

A1
(C3 + rC4) + DII

B (C5 + rC6)
)

r
(
PA1αDII

B + PBβDII
A1

)
+ DII

B

(
PA1αC3 − PBβC5

)
(
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) exp(−r/l II )

r

+ DII
B

(
PA1αC4 − PBβC6

)
(
PA1αDII

B + PBβDII
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) sinh(r/l II )

r/l II
, (D1c)

φII
B (r) = PA1α

(
DII

A1
(C3 + rC4) + DII

B (C5 + rC6)
)

r
(
PA1αDII

B + PBβDII
A1

)
− DII

B

(
PA1αC3 − PBβC5

)
(
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) exp(−r/l II )
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PA1αC4 − PBβC6

)
(
PA1αDII

B + PBβDII
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) sinh(r/l II )

r/l II
, (D1d)

where α = exp(μ̄0
A1

/kBT )γ̄ I
A1

and β = exp(μ̄0
B/kBT )γ̄ I

B. Fur-
thermore, we have introduced the reaction-diffusion length
scales

lα =
√√√√ Dα

A1
Dα

B

kα
[
Dα

A1
exp
( μ̄0

B
kBT

)
γ̄ α

B + Dα
B exp

( μ̄0
A1

+μ̃α
F

kBT

)
γ̄ α

A1

] .
(D2)
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TABLE I. Parameter choices.

Quantities Values

Fig. 2(b) :
r0, r1

χ01

κ1L/(kBT )

1, 1
3
15 × 10−2

Fig. 3 :
r0, r1, rA1/A2 , rB

ψ1, ψ2

χ01, χ0A1 , χ0A2 , χ0B

PA1 , PA2 , PB

ωA1 , ωA2 , ωB[in(kBT)]
kII/kI

φ̄B(t = 0)
D̃I

B, D̃I
Ai

, D̃II
Ai

1, 1, 1, 2
1, 0.2
3, 2.5, 2, 0
10, 10, 200
−3.5, −3.5, 1
0.01
0.01ψ1
D̃II

B
10 ,

D̃II
B

10 ,
D̃II

B
10 , D̃II

B

Fig. 4 :
r0, r1, rA1/B

ψ

χ01, χ0A1 , χ0B

PA1 , PB

ωA1 , ωA2 , ωB[in(kBT )]
kII/kI

φ̄B(t = 0)
D̃I

B, D̃I
A1

, D̃II
A1

1, 1, 1
1
3, 2.5, 2
500, 2
−4, 0
0.01
10−4ψ
D̃II

B
10 , 3

10 D̃II
B , 3D̃II

B

Fig. 5 :
r0, r1, rA, rA2 , rA3

ψ

χ01, χ0A, χ0A2 , χ0A3

PA, PA2 , PA3

ωA, ωA2 , ωA3 [in(kBT )]
kII/kI

φ̄A2/3 (t = 0)
D̃I

A2
, D̃I

A, D̃II
A

1, 1, 1, 2, 3
10−4

3, 2.5, 2, 2
10, 10, 10
5.5, −7, −5
0.01
10−2ψ
D̃II

A2
10 ,

D̃II
A2
5 , 2D̃II

A2

Fig. 6 :
r0, r1, r2

χ01, χ02, χ12

1, 1, 1
3, −1, 0

Fig. 7 :
Parameters

Same as Figs. 4 and 3, respectively

Fig. 8 :
Parameters

Same as Figs. 5(a) and 5(b)

Due to the linearity of Eq. (13), we can find these solutions as
linear combinations of solutions of the Laplace equation and
the radial symmetric spherical Bessel problem, leading in
principle to eight coefficients Ci, which have to be determined
via boundary conditions. However, to avoid any singulari-
ties at the droplet center, thereby fulfilling Eq. (13f), we
have omitted the 1/r solution of the Laplace equation and
the spherical Bessel function of the second kind and zeroth
order (∝ exp(−r)/r) in phase I. The remanding coefficients
C1, . . . ,C6 are determined by the conditions Eq. (13c)–(13e).

APPENDIX E: SCALING LAWS OF MONOMER
ASSEMBLY KINETIC

The generic form of the dynamic equation of an irreversible
assembly process with assembly order n reads for the average
volume fractions [definition see Eq. (16)] of the assembly An

and the monomers A:

˙̄φAn (t ) = keff [ψ − φ̄An (t )]n = − ˙̄φA(t ). (E1)

For the case when the scaffold component phase separates
with a nonzero fuel energy μ̃I

F in phase I, we can use the
assembly rate given in Eq. (23) and write the effective rate
at phase equilibrium as:

keff = νAn

νA
(γ̄ I

APAζA)n exp(μ̄0
A/kBT )

×
[

V I

V
kI exp(μ̃I

F /kBT ) +
(

1 − V I

V

)
kII

]
, (E2)

where ζi is the partitioning degree defined in Eq. (15c). In
a homogeneous system that can be achieved in our model
by V I = 0 (implying that the partitioning degree ζi = 1),
keff = [(νAn/νA)(γA(φ1)]n exp(μ̄0

A/kBT )k, where k denotes the
assembly rate coefficient in the homogeneous system.

The solution of the generic dynamic equation [Eq. (E1)] is
given as:

φ̄A(t ) =
(

(n − 1)

(
keff t + ψ

n − 1

))− 1
(n−1)

, (E3)

where the conserved quantity of the assembly process is ψ =
(φ̄A + φ̄An ).

On long time scales, we see that the average monomer
volume fraction decays as φ̄A(t ) � t−1/(n−1). Specifically, for
n = 2, φ̄A(t ) � t−1 while for n = 3, φ̄A(t ) � t−1/2. These

FIG. 8. Long-time behavior in assembly reactions. The long-
time of the decreasing monomer volume fraction φA(t ) is shown for
the assembly orders n = 2 and 3. To illustrate the power-law decay,
we use a log-log representation, confirming the respective power
laws of t−1 and t−1/2. We use μ̃I

F /kBT = 5 as in Figs. 5(a) and 5(b)
where show a lin-lin representation of the same curve.
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trends are confirmed by solving the model for the reversible
assembly process in the presence of compartments (see
Sec. III B); the corresponding results are shown in Fig. 8.
Note that for even longer times, φ̄A/ψ will approach a nonzero
plateau value due to the reversible pathway from the assembly
An to the monomer A. However, by choosing the reference
chemical potential such that the assembly An is strongly fa-

vored over the monomer A, i.e., exp(
μ̄0

An
kBT ) � exp( nμ̄0

A
kBT ), the

plateau emerges at much longer time scales as depicted in
Fig. 8.

APPENDIX F: PARAMETERS

We rescaled time by t → t kI, where kI is the reaction
rate coefficient in phase I. Thus, the fraction of rate coeffi-
cients, kII/kI appears. We additionally rescaled the diffusion
coefficients of the respective products in phase II as D̃II

i →
DII

i kI/L2, where L is the system size. The remaining diffu-
sion coefficients are expressed as multiplicative factors of the
same. Please refer to Table I for the values of parameters used
to generate the figures in this manuscript.

APPENDIX G: GLOSSARY

In this section, we provide a glossary for the different
symbols used in this manuscript to describe the physical quan-
tities. Please refer to Table II for the same.

TABLE II. Glossary.

Symbols Physical quantities

νi

φi

ji

si

M
μ̄i

kB

T
γ̄i

κi

Dil

mik

σ±
iα

kα

Hα

χi j

r
R
L
λint

V
Pi

ζi

ψi

Y
R
f , f0

ωi

I, II
pL

molecular volume
volume fraction
diffusive flux
reaction flux
mobility matrix
exchange chemical potential
Boltzmann constant
temperature
exchange activity coefficient
characterizes free energy costs for gradients in φi

diffusion coefficient
mobility coefficient
stoichiometric coefficient
reaction rate coefficient
reaction force
interaction parameter
radial distance
radius of droplet
radius of system
interface width
volume of system
partition coefficient
partitioning degree
conserved quantity
relative yield
relative initial rate
free energy density with, without free energy
costs for gradients
internal free energy
labels for the two coexisting phases
Laplace pressure
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