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Abstract

The development of an organism starting from a fertilized egg involves the self-organized for-
mation of patterns and the generation of shape. Patterns and shapes are characterized by their
geometry, i.e. angles and distances between features. In this thesis, we set out to understand
how the given geometry of pattern and shape of a living system feeds back into the evolution
of this geometry. We focus on two fundamental developmental processes: axis specification and
gastrulation. Both processes rely on the directed movements of cells and molecules driven by
molecular force generation. Here, we ask how the geometry of an embryo guides such active flows.

Active flows are often confined to the surface of a cell or embryo which is usually curved. We use
the hydrodynamic theory of active surfaces to investigate how this curvature impacts on flows
that are driven by patterns of mechanical activity. Using a minimal model of the cell cortex, we
find that active cortical stresses can drive a rotation of the cell that aligns the chemical pattern
of the stress regulator with the geometry of the cell surface. In particular, we find that active
tension in the cytokinetic ring ensures that a cell divides along its longest axes, a common phe-
nomenon known as Hertwig’s rule. As a consequence, the body axes of the C. elegans embryo
are aligned with the geometry of the egg shell.

We next set out to understand the impact of surface geometry on flows and patterns in more
complex geometries. We focus in particular on localized sources of mechanical activity in curved
fluid films. Such active particles act as sensors of the surface geometry, as the viscosity relates
the local flow field to the large-scale geometry of the fluid film. We find that the impact of an
anisotropic surface geometry on the flow field can generally be understood in terms of effective
gradients of friction and viscosity. With this, we show that contractile points in a fluid film are
attracted by protrusions and saddle geometries where the contractile point is surrounded by a
maximal amount of surface area within the hydrodynamic length. Furthermore, we find that
anisotropic active particles move towards or away from a saddle of the surface depending on
whether they are extensile or contractile.

To understand the process of gastrulation and left-right symmetry breaking in the avian embryo,
we develop a hydrodynamic theory of the primitive streak, a line of mechanically active material.
With this theory of an active viscous crack, we analyze experimental data from quail embryos.
We find that the embryo-scale cell movements during gastrulation are driven by mechanical ac-
tivity at the streak, while the surrounding epithelium behaves like a homogeneous fluid film.
With this mechanical model, we find that streak elongation does not require extensile forces
along the streak. Instead, streak elongation results from the flux of tissue into the streak, the
viscosity of the surrounding tissue and the polar geometry of the streak.

During avian left-right symmetry breaking, a chiral flow of tissue emerges at the tip of the streak,



the so called Hensen’s node. We find that this flow results from an active torque that drives a
counter-rotation of tissue layers. Thus, avian left-right symmetry breaking is facilitated by the
mechanical coupling of tissue layers that the structure of node and streak provides.

Finally, we study how the geometry of a surface impacts on such chiral flows. We find that chiral
flows at the avian node as well as in the cell cortex can be recapitulated as the result of molecular
torque dipoles that are aligned with the tangential plane of the cell or tissue surface. Only when
the surface is curved, such in-plane torques drive in-plane flows. Thus, the geometry of the avian
node and the cytokinetic furrow may facilitate the chiral flows that are driven by these structures.

Taken together, we find that the geometry of an embryo is crucial to the flows and patterns
that emerge in such a mechanically active system, because the geometry defines how forces and
torques are transmitted.



Kurzzusammenfassung

Die Entwicklung eines Organismus ist ein selbstorganisierter Prozess, der insbesondere die Ent-
stehung von Mustern und Formen umfasst. Muster und Formen sind durch ihre Geometrie ge-
kennzeichnet, d.h. durch Winkel und Abstände zwischen Bestandteilen des Organismus. In dieser
Arbeit untersuchen wir, wie die Geometrie von Mustern und Formen eines Embryos die weitere
Entwicklung dieser Geometrie beeinflusst. Wir befassen uns insbesondere mit zwei grundlegen-
den Entwicklungsprozesse: Gastrulation und die Etablierung der Körperachsen durch chemische
Gradienten. Beide Prozesse beruhen auf der gerichteten Bewegung von Zellen und Molekülen,
die durch Motormoleküle angetrieben wird. Hier befassen wir uns damit, wie die Geometrie eines
Embryos solche aktiven Strömungen prägt.

Aktive Strömungen sind oft auf die Oberfläche einer Zelle oder eines Embryos beschränkt. Die-
se Oberfläche ist in der Regel gekrümmt. Wir verwenden die hydrodynamische Theorie aktiver
Oberflächen, um zu untersuchen, wie sich diese Krümmung auf Stömungen eines aktiven Flüssig-
keitsfilms auswirkt. Dazu untersuchen wir ein minimales Modell des Zellkortex. In diesem Modell
resultieren Strömungen aus Gradienten von Myosinaktivität, die durch Gradienten einer aktiven
kortikalen Spannung erfasst werden. Für anisotrope Zellformen finden wir, dass aktive kortikale
Spannungen eine Rotation der Zelle antreiben können, die das chemische Muster des Spannungs-
regulators gemäß der Geometrie der Zelloberfläche ausrichten. Insbesondere finden wir, dass die
aktive Spannung im zytokinetischen Ring sicherstellt, dass sich eine Zelle entlang ihrer längsten
Achsen teilt, ein weitverbreitetes Phänomen, das als Hertwig’s Regel bekannt ist. Infolgedessen
werden die Körperachsen des C. elegans Embryos gemäß der Geometrie der Eischale ausgerichtet.

Darauf aufbauend untersuchen wir Strömungen aktiver Flüssigkeitsfilme in komplexeren Geome-
trien. Wir konzentrieren uns insbesondere auf lokalisierte Quellen mechanischer Aktivität. Wir
demonstrieren hier, dass solche aktiven Teilchen als Sensoren der Oberflächengeometrie agie-
ren können, da aufgrund der Viskosität des Flüssigkeitsfilms das lokale Strömungsfeld von der
globalen Oberflächengeometrie abhängt. Wir zeigen, dass der Einfluss einer anisotropen Ober-
flächengeometrie auf das Strömungsfeld mithilfe effektiver Gradienten des Reibungskoeffizienten
und der Viskosität verstanden werden kann. Damit zeigen wir, dass kontraktile Punkte in einem
Flüssigkeitsfilm sich hin zu Satteln und lokalisierten Aus- oder Einstülpungen bewegen. Darüber
hinaus finden wir, dass anisotrope aktive Partikel sich auf einen Sattel der Oberfläche zubewegen
oder von ihm wegbewegen, je nachdem wie sie an das Strömungsfeld koppeln, d.h. ob sie extensil
oder kontraktil sind.

Um den Prozess der Gastrulation und der Links-Rechts-Symmetriebrechung im Vogel-Embryo
zu verstehen, entwickeln wir eine hydrodynamische Theorie des Primitivstreifens, einer Linie me-
chanisch aktiven Materials. Mit dieser Theorie eines aktiven viskosen Risses analysieren wir ex-
perimentelle Daten von Wachtel-Embryonen. Wir stellen fest, dass die Zellbewegungen während



der Gastrulation durch mechanische Aktivität im Primitivstreifen angetrieben werden, während
sich das umliegende Gewebe wie eine homogene Flüssigkeit bewegt. Mit diesem mechanischen
Modell finden wir, dass die Verlängerung des Primitivstreifens keine extensilen Kräfte entlang des
Streifens erfordert. Stattdessen resultiert die Verlängerung des Primitivstreifens aus dem Fluss
von Gewebe in den Streifen, der Viskosität des umliegenden Gewebes und der polaren Geometrie
des Streifens.

Während der Links-Rechts-Symmetriebrechung im Vogel-Embryo entsteht eine chirale Strömung
von Gewebe an der Spitze des Streifens, dem sogenannten Hensenschen Knoten. Wir finden, dass
dieser Fluss aus einem aktiven Drehmoment resultiert, das eine Gegenrotation der Gewebeschich-
ten antreibt. Somit wird die Links-Rechts-Symmetriebrechung bei Vögeln durch die mechanische
Kopplung der Gewebeschichten ermöglicht und somit durch die Struktur von Hensenschem Kno-
ten und Primitivstreifen.

Schließlich untersuchen wir, wie die Geometrie einer Oberfläche solche chiralen Strömungen beein-
flusst. Wir finden, dass chirale Strömungen sowohl am Hensenschen Knoten als auch im Zellkortex
als das Ergebnis molekularer Drehmoment-Dipole verstanden werden können. Die Drehmomente
sind dabei parallel zur Zell- oder Gewebeoberfläche. Nur wenn die Oberfläche gekrümmt ist, trei-
ben solche tangential Drehmomente tangentiale Strömungen an. Somit kann die Geometrie des
Hensenschen Knotens und der Zytokinetischen Furche die durch diese Strukturen angetriebenen
chiralen Strömungen begünstigen.

Zusammenfassend stellen wir fest, dass die Geometrie eines Embryos entscheidend für die Strö-
mungen und Muster ist, die in einem solchen mechanisch aktiven System entstehen, da die
Geometrie definiert, wie Kräfte und Drehmomente übertragen werden.
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Chapter 1

Introduction

The development of a complex multicellular organism such as a human or a worm from a single
cell is an extremely fascinating process. Modern imaging techniques allow us to look at this
process in remarkable detail. Watching such a video of the emergence of complexity, where from
a diffuse mass of tissue an organism with a beating heart develops, can be a very satisfying
pastime activity. Watching such a video a few more times provokes a seemingly infinite chain of
hows and whys. In this thesis, we study a few such questions that arose from watching worm and
quail embryos develop. We focus in particular on processes, where the embryo or some part of it
moves or deforms. Such processes need to be driven by mechanical forces, which are generated
and controlled by chemical processes within the organism. To understand the dynamics of such
systems, we use a hydrodynamic description of living matter which we review in 1.2. With this
we study two fundamental processes of embryogenesis, gastrulation and axis specification, which
we introduce in 1.1. There, we observe that movements and deformations of a cell or tissue are
controlled by chemical patterns, but also the three-dimensional shape of an embryo (see section
1.1.6). Patterns as well shapes are characterized by their geometry, i.e. angles and distances
between features. In this thesis, we set out to understand how the given geometry of pattern
and shape of a living system feeds back into the evolution of this geometry. In particular, we
study the following questions

• What governs the growth and shrinkage of the primitive streak, a line of material that is
crucial to the process of gastrulation in avian as well as human embryos? (chapter 2)

• How does the shape of a cell impact on pattern formation in its surface? (chapter 3)

• Can localized sources of mechanical activity in the surface of a cell or tissue act as sensors
of the surface geometry? (chapter 4)

• Could differences in embryo geometry explain, why the embryos of some animals, such as
quails and nematodes, make use of the chirality of the actomyosin cortex to break left-right
symmetry, but many others do not? (chapter 5)

A more detailed overview of this thesis can be found in section 1.4.



CHAPTER 1. INTRODUCTION

1.1 Embryogenesis from a geometric viewpoint

The development of an organism involves the formation of patterns and the generation of shape.
The biological process that gives rise to the shape of a cell or an organism is called morphogenesis.
Morphogenetic processes are guided or controlled by chemical patterns, but also the topology
and geometry of an embryo, as we review in section 1.1.6. Chemical patterns that define the
body axes are established early in development, a process we call axis specification (see section
1.1.1, 1.1.2 and 1.1.4). The basic topology of the embryo is set up in a process called gastrulation
(see section 1.1.5). The motor of cell movements and deformations during gastrulation and axis
specification is the actomyosin cortex which we describe in section 1.1.3.

1.1.1 The three body axes

Humans are bilateral animals. This means that our body plan exhibits a clearly defined mid-line,
with respect to which most morphological features are mirror-symmetric. In an adult human,
this line is defined by morphological features such as the nose and the belly button on the ven-
tral side of the body and the back-bone on the dorsal side. However, the line as such is defined
already early in development by a structure called the primitive streak which we will discuss
in more detail in section 1.1.5. The mid-line corresponds also to the anterior-posterior (AP)
axis with the head defining the anterior pole of the body. In the plane orthogonal to the AP
axis one defines two orthogonal axes: the dorso-ventral (DV) axis and the left-right (LR) axis.
Since the body plan is superficially symmetric with respect to the mid-line, one often speaks of
a medio-lateral (ml) instead of a left-right axis with organs close to the mid-line called medial.
The form and positioning of the visceral organs such as the heart and the digestive systems,
however, are clearly left-right asymmetric.

When one draws vectors from A to P, D to V and L to R as in Fig. 1.1A, the three vectors define
a right-handed orthogonal basis. While in the drawing in Fig. 1.1A, this appears to define a
global cartesian coordinate system, this is in general not true. The mid-line as well as any other
coordinate line of a body axis is usually a curved line as can be seen from the gentleman in the
right panel of Fig. 1.1B. Thus a body axis may also be understood in terms of a vector field,
which defines at each point in the body a vector defining AP, DV or ml polarity. Microscopi-
cally this is often realised in terms of chemical gradients. Consider for example the zygote of
the nematode Caenorhabditis elegans as depicted schematically in Fig. 1.2B. Here the AP axis
is established (lower panel), as a domain with a high concentration of so-called posterior PAR
proteins forms on the future posterior side of the embryo. Hence, the concentration of posterior
PAR proteins within the surface of the cell defines a vector that is the AP axis. On a tissue
scale, each cell may define such a vector in terms of an asymmetric distribution of proteins, a
phenomenon called cell polarity, but also large-scale gradients of certain proteins are possible,
which effectively define a global coordinate system [1, 2, 3].

2



1.1. EMBRYOGENESIS FROM A GEOMETRIC VIEWPOINT

Such a coordinate system may also be defined and maintained topologically. In the adult hu-
man, it does not require a chemical gradient defining the medio-lateral axis to find that the hand
is located more laterally than the arm. Instead it is a consequence of topology: The hand is
connected to the trunk that includes the mid-line only through the arm. The medio-lateral axis
is defined by this topology and by the hand, the arm and the trunk being distinct from each other.

Also in the context of left-right asymmetry, topology is crucial. Before left-right asymmetric
morphologies such as the position of the heart emerge, LR asymmetry of a vertebrate embryo
is defined by chemically distinct domains that give the two sides of the body a "left" or "right"
identity (depicted as a red and blue half of the somite-stage human embryo in Fig. 1.1B).
Typically this is realized by the expression of certain genes (in particular Nodal encoding a small
signalling molecule) on the left side of the embryo [4]. The mid-line separates the left and right
halves of the body and thereby helps to maintain left-right asymmetry [5, 6, 7]. As such, left-right
asymmetry is topologically protected and not sensitive to transient asymmetries of the embryo
geometry. For the process of left-right symmetry breaking, however, the geometry of the embryo
is crucial as we will discuss in this thesis in section 1.1.4.

1.1.2 Embryonic axis specification in the nematode embryo

All three body axes are defined early in development, i.e. before the development of any organs
or limbs [3]. We distinguish here the establishment of an axis that may be understood as a rod
or two-headed arrow from the establishment of a polarity along a given body axis (Fig. 1.2).
The establishment of e.g. AP polarity may also be called AP symmetry breaking. We use the
term (body) axis specification for the combined process of axis and polarity establishment.

Axis specifcation typically involves the formation of a chemical gradient that guides later steps
of morphogenesis [2, 11]. Here, we briefly discuss AP and DV axis specification in C. elegans
as an instructive example. In section 1.1.4, we will discuss left-right symmetry breaking. The
AP axis of the C. elegans embryo is already defined in the zygote, i.e. the cell that emerges
from the fertilization of the egg-cell by a sperm (see Fig. 1.2B). The key player of axis spec-
ification in C. elegans is the cell cortex, also called actomyosin cortex [12, 13]. It is a thin
mechanically active layer of proteins just underneath the cell membrane, which we will discuss
in more detail in 1.1.3. AP axis is defined by a gradient of PAR polarity proteins, of which
there are of two types: anterior PAR proteins, marking the anterior side, and posterior PAR
marking the posterior. Until about 30 min after fertilization, no gradient is found. Anterior
PAR proteins are distributed homogeneously in the cell cortex. Posterior PAR proteins are
found almost exclusively in the cytoplasm, the fluid that fills the cell. AP symmetry breaking
is triggered by the male pronucleus brought by the sperm. Chemical interactions between the
pronucleus and the cell cortex, mediated in particular by microtubules, yield the recruitment
of posterior PAR proteins to the cell cortex [14]. Chemical interactions between these proteins
and the cell cortex, in particular myosin motor molecules, yields a reduced surface tension of the

3
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Figure 1.1: A: The three main body axes, anterior-posterior (AP), dorso-ventral (DV) and left-right (LR).
They may be understood as a right-handed orthogonal set of vectors (left panel). As evident from the
Vitruvian Man by L. da Vinci, most of the human body exhibits a mirror symmetry with respect to the
mid-line (dashed line). With respect to this mid-line a medio-lateral axis parallel to the left-right axis is
defined. However, the visceral organs such as the heart depicted in red exhibit a clear left-right asymmetry.
B: The body axis during human development. The mid-line is established by the primitive streak during
the process of gastrulation (left panel, image of human embryo taken from [8], see section 1.1.5 for more
details). Subsequently, the left-right axis is specified by the production of distinct proteins on the left and
right side of the mid-line as illustrated by the blue and red-shaded areas (middle panel, drawing of human
embryo taken from [9]). Right panel: Adult human as painted by Michelangelo, where the body axes are
defined by morphological features such as the position of the heart. We observe that the mid-line (dashed
line) is curved such that the body axis can only locally be understood as a set of orthogonal vectors.

posterior cell cortex. As a result, large-scale flows in the cell cortex emerge that give rise to an
expansion of the domain of posterior PAR proteins [12, 15, 13]. Due to chemical interactions
between anterior and posterior PAR proteins, the domain of posterior PAR proteins is devoid
of anterior PAR proteins [16, 17]. As a result two chemically distinct domains emerge in the
cell cortex that define the AP axis of the embryo. This axis is maintained after the first cell di-
vision such that the posterior daughter cell, the P1 cell, also contains a posterior PAR domain[18]

The DV axis needs to be set up orthogonal to the AP axis. In the C. elegans 2-cell embryo,
the plane separating the AB and the P1 cell is orthogonal to the AP axis. Importantly, the AB
cell divides in a plane that is parallel to this plane of cell-cell contacts [19, 20]. This division
axis in turn establishes the DV axis [21]. Similarly to AP symmetry breaking, DV symmetry
breaking relies on the cell cortex. As the AB cell divides, motor proteins in the cell cortex drive
counter-rotating flows in the surface of the AB cell. These surface flows result in rotation of the

4



1.1. EMBRYOGENESIS FROM A GEOMETRIC VIEWPOINT
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Figure 1.2: A: Schematic of the process of body axis specification starting from an isotropic cell (gray
circle). The establishment of an axis (gray rectangle) may precede the establishment of a polarity (gray
vector) as observed in the C. elegans embryo. B: AP axis specification in the C. elegans embryo. Upper
panel: Distribution of anterior PAR proteins (red) in the cortex of zygote consisting of the P0 cell is initially
homogeneous. However, the geometry of the rigid egg shell already defines a long axis (gray rectangle).
Middle panel: Interaction of the male pronucleus (carried by the sperm in the upper panel) with the cell
cortex induces the formation of a domain of posterior PAR proteins (green). Cortical flows (black arrows)
resulting from myosin depletion act to enlarge the posterior domain. Lower panel: Domains of anterior and
posterior PAR proteins define AP axis (red-green arrow). This axis is maintained chemically as the cell
divides into AB and P1 cell. In particular, the posterior PAR domain (green) persists throughout the P cell
lineage. C: DV axis specification in the C. elegans embryo. Upper panel: Division of the AB cell establishes
the DV axis (gray rectangle) corresponding to the division axis in a plane orthogonal to the AP axis. As the
cytokinetic ring ingresses, counter-rotating flows (black arrows) emerge in the cortex of the AB cell. Lower
panel: Schematic of the 4-cell stage, after the AB and the P1 cell have divided giving rise to ABa and ABp
cell, and EMS and P2 cell, respectively. Contact between the P2 and the ABp cell triggers the expression of
several genes (indicated by the blue shading) in the ABp and not in the ABa cell [10]. Thereby, DV polarity
(blue-gray arrow) is established.

AB division axis [22]. This rotation results in an embryo geometry, where the dorsal and ventral
halves are distinct from each other. Hence, it establishes DV polarity. As the P1 cell divides
along the AP axis, the asymetric embryo geometry results in an asymmetric pattern of cell-cell
contacts. Only one daughter cell of the AB cell, the ABp cell is in contact with the posterior
daughter cell (P2) of the P1 cell. Chemical interactions across this cell-cell contact trigger a
signalling pathway in the ABp cell, such that it becomes chemically distinct from the ABa cell
[10]. Thereby DV polarity is also chemically established.

In summary, the cell cortex powers AP as well as DV axis specification. During AP symmetry
breaking, the cell cortex drives flows that help to establish a chemical gradient. During DV
symmetry breaking, it drives cell rearrangements that are later read out chemically. As we will
discuss in section 1.1.6 and study in chapter 3 of this thesis, the cell cortex also powers the
alignment of these axis with the geometry of the rigid egg shell that confines the embryo. In
particular it ensures that the AP axis coincides with the long axis of the egg shell.
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Figure 1.3: A: Flourescently labeled actin filaments in the cell cortex, also called actomyosin cortex, of
the C. elegans embryo during the first cell division, image taken from [23]. B: Sketch of the actomyosin
cortex, a gel-like material underneath the cell membrane, consisting of helical actin filaments (F-actin, gray),
crosslinkers (not shown), myosin motor molecules and various other proteins such as formin that facilitate
polymerization of F-actin. C: Myosin mini-filament exerts a pair of forces on actin filaments as its heads
move towards the + end of the filaments. D: formin (upper panel) and myosin (lower panel) exert torques on
actin filaments during polymerisation (upper panel) and sliding (lower panel) of helical actin filaments. E,F:
Foci of RhoA signalling drive contractions (E) and chiral rotations (F) of the surrounding cortex due to the
activity of myosin and formin (red). G-J: cortical flows (black) resulting from polar (G,I) and ring (H,J)
patterns of RhoA activity. G,H show the mid-plane cross section of an ellipsoidal cell such as the C. elegans
zygote, whereas I,J show the cortical surface as shown e.g. in A. K: Epithelial tissue in a quail embryo
during gastrulation (see section 1.1.5) with the cell membrane flourescently labelled. Image was obtained
by Adrian Lahola-Chomiak at the MPI-CBG Dresden. L: Schematic of epithelial tissue illustrating the
function of adherens junctions (green) as mechanical links between the actomyosin cortices of neighboring
cells. M: Schematic of apical constriction, where an epithelial tissue deforms (black arrows) in response to
actomyosin activity (red) in the apical surface of a group of cells.
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1.1. EMBRYOGENESIS FROM A GEOMETRIC VIEWPOINT

1.1.3 The actomyosin cortex: the motor of morphogenesis

The main ingredients of the cell cortex are actin and myosin [24, 25]. While actin is the building
block of a meshwork that gives the cortex its rigidity, myosin is a motor molecule that makes
the cortex flow and deform. Together they give the cell cortex its alternative name actomyosin
cortex. Monomeric actin is a protein that polymerizes to form filaments called F-actin. These
filaments are polar, i.e. they have two distinct ends (as indicated by the + and − signs in Fig.
1.3). Efficient nucleation of new filaments requires the interaction with certain proteins called
actin nucleators including formins that bind to the + end of a nascent filament [26] (depicted
as red circles in Fig. 1.3). Actin filaments are connected by cross-linking proteins to form a
dense meshwork underneath the cell membrane. Cross-linkers and filaments undergo constant
turnover on the second to minute time-scale [25]. This allows motor molecules, in particular
myosin (specifically non-muscle myosin II), to set the gel-like material that is the cell cortex into
motion [27, 28]. Several myosin molecules assemble into so-called myosin mini filaments. These
myosin filaments binds to actin due to electrostatic interactions [29]. Upon hydrolysis of an ATP
bound to myosin, myosin undergoes conformational changes. Thereby, myosin walks on actin
from the − to the + end [28, 25]. When a myosin filament is bound to two oppositely oriented
actin filaments, it displaces the actin filaments relative to each other. As these filaments are me-
chanically constrained by the surrounding network, myosin exert forces onto actin filaments (Fig.
1.3C). Thus, myosin translates the chemical energy provided by ATP hydrolysis into mechanical
work. On the scale of the cortex, the mechanical action of myosin motors can be understood as
a density of force dipoles exerted on the two-dimensional material that is the cortex [30]. The
force dipole resulting from a single myosin mini-filament may drive a contraction or an expansion
of the surrounding network depending on the arrangements of actin filaments that the myosin
filament interacts with [31]. However, clustering of many myosin molecules is generally found to
result in contractile flows towards the cluster. This can be understood as a consequence of the
non-linear mechanical properties of actin filaments, which are easier to buckle than to stretch
[32]. As a consequence, a network of actin filaments contracts even if the force dipoles acting
on it are randomly oriented [32, 33]. Furthermore, the polarized movement of myosin on actin
filaments can result in asters of actin filaments, where the + ends are pointing towards the middle
of a myosin cluster [34]. Also in such a setting a cluster of myosin motors drives contractile flows
towards it [31].

Importantly, actin filaments are chiral. This means that their structure, a right-handed double-
helix, is different from its mirror-image [35, 36]. Due to this structure, a displacement of an
actin filament usually implies a rotation of the filament [37]. In particular, formin molecules
has been found to rotate while elongating an actin filament [38]. A rotation of the polar actin
filament defines a handedness that corresponds to the handedness of the molecular structure.
The rotation of a mechanically constrained filament requires a torque. Hence myosin, but also
actin nucleators such as formin exert molecular torques on the actin network [39]. Strikingly,
the activity of formin has been linked to rotational flows on the cell scale in various settings
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[40, 41, 42, 43, 44]. In particular, Middelkoop et al. observed that a cluster of myosin and formin
in the cortex of the C. elegans embryo drives a rotation of the cluster [44]. This rotation has a
handedness, i.e. it is a clockwise rotation in all embryos of the same strain when viewed from the
outside. Hence, molecular motors in the actomyosin cortex translate the chirality of the actin
molecule into chiral flows on the cell scale.

As we discussed in the previous section, the actomyosin cortex is crucial to the processes of AP
and DV axis specification of the C. elegans embryo. During these processes, cell-scale patterns
of myosin activity result in cell-scale flows of cortical material. The concentration and activity
of actin, formin and myosin is controlled in particular by a master-regulator, a protein called
RhoA [45, 46, 47, 48]. The contracting and rotating clusters of myosin and formin, we men-
tioned in the previous paragraphs, correspond to so called foci of high RhoA siginalling activitiy
[44]. During the processes of AP symmetry breaking in the C. elegans zygote (see section 1.1.2)
myosin activity is polarized with high activity on the anterior side of the zygote (corresponding
to the left side in the schematics in Fig. 1.3G,I). As consequence a contractile flow towards the
anterior side emerges, which is crucial to the process of AP symmetry breaking [13]. During cell
division such as the one that defines the DV axis (see previous section), RhoA and thus myosin
activity is high at a band around the equator of the cell, called the cytokinetic ring (indicated in
red in the schematics in Fig. 1.3H,J) [46]. As a consequence this ring contracts, both in terms
of contractile flows towards the ring and in terms of a deformation of the cell surface such that
the ring ingresses to form the cytokinetic furrow [23].

During symmetric cell divisions in the C. elegans embryo, also counter-rotating flows have been
observed that have been linked to molecular torque generation by the actomyosin cortex [39, 22].
These flows of the cell surface are crucial to the process of left-right symmetry breaking as we
will discuss in the next section. Notably, these chiral flows only emerge after the cytokinetic
furrow has started to ingress [22], suggesting that these flows are highly sensitive to changes
in cell shape. In addition, the net rotation that arises during asymmetric cell divisions, where
the pattern of RhoA activity is polarized, has been found to be sensitive to deformations of the
embryo [49]. In this thesis, we will study in chapter 5 what such a geometry-dependence of chiral
flows may tell us about the nature of the torques that drive them.

At later stages of development, cells often assemble into sheets that consist of hundreds or
thousands of cells with a thickness of only one or a few cells. These sheets are called epithelia.
Epithelia are polarized with two sides called apical and basal that are chemically distinct [3]. The
apical side faces the outside of the embryo whereas the basal side rests on a sheet of extracellular
matrix that faces the inside of the embryo. Epithelial cells are connected to each other by
protein complexes called junctions. Adherens junctions are junctions that are connected with
the actomyosin cortex. They allow for the transmission of forces generated in the actomyosin
cortex on the scale of the epithelial tissue [50]. Thereby, forces generated by the actomyosin cortex
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can drive movements and deformations on the scale of the tissue. One prototypical example is
apical constriction: When the tension resulting from actomyosin activity is higher on the apical
side than on the basal side of a cell, the apical side contracts [51, 52, 53]. When apical tension
is high in a group of cells, this results in a deformation of the tissue where this group of cells
ingresses [53]. When the neighboring cells are free to move within a plane but not out of the
plane, this ingression results in a movement of cells towards the region of ingression [54, 55].
Both the movement and the ingression are crucial to the process of gastrulation we discuss in
section 1.1.5 and which we study in this thesis in chapter 2.

1.1.4 Left-right symmetry breaking

The body of bilateral animals such as humans is superficially symmetric with respect to the
mid-line. The form and position of the visceral organs such as the heart and the digestive sys-
tem, however, are not left-right symmetric. Since the body is also asymmetric with respect to
anterior-posterior and dorso-ventral axis, the left-right asymmetry of the body plan corresponds
to a handedness or chirality of the body plan, i.e. it is different from its mirror image. Strikingly,
the bodies of animals of the same species have the same handedness most of the time. In 99.99%

of adult humans, the heart is positioned on the left [57]. The origin of this consistent chirality
is most likely the chirality of the molecules, in particular the proteins these animals consist of
[58]. In 100% of humans, actin is a right-handed double helix and DNA is a left-handed one.
The process of translating this molecular chirality into a consistent left-right asymmetry on the
scale of the embryo is called left-right symmetry breaking. In vertebrate embryos, it happens
after the AP and DV axis as well as the mid-line have been established [59]. Like the other body
axes, left right asymmetry is usually chemically defined before the development of the visceral
organs [60, 61]. This chemical asymmetry, typically due to a gene that is expressed on the left
but not the right side of the embryo, feeds into the left-right asymmetric morphogenesis of the
visceral organs [4, 62]. As a consequence, humans with a heart on the right often exhibit also
a handedness of the lungs and the digestive system that is reversed relative to the majority of
humans [57]. While the genetic signalling pathways of left-right patterning are highly conserved
in vertebrates and beyond, the mechanisms that translate molecular chirality into left-right pat-
terning differ substantially, possibly even among mammals [4, 59]. The mechanism of left-right
symmetry breaking in the human embryo is still unclear. In the following, we will briefly sketch
how left-right symmetry is broken in three model organisms: the nematode C. elegans, the quail
and the mouse. In this thesis, we investigate the chiral flows that underlie left-right symmetry
breaking in nematodes and quails in chapter 5.

In the nematode C. elegans left-right symmetry is broken already at the 4 to 6 cell stage, i.e.
during the divisions of the ABa and ABp cells [63, 64]. We have already encountered these cells
in section 1.1.2 in the context of DV symmetry breaking. They are the daughter cells of the AB
cell. As members of the so called AB cell lineage they divide symmetrically, i.e. into equally
sized daughter cells. Such symmetric cell divisions are accompanied by a counter-rotating flow
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Figure 1.4: A: Conceptual schematic of left-right symmetry breaking. Pairs of images represent the
commonly found version (left) and its mirror image (right, grayish) of molecules and organisms. For details,
see main text. Adult human (right panel) painted by L. da Vinci. B: Left-right symmetry of the C. elegans
embryo is broken at the 4 cell (upper panel, same as Fig. 1.2C, but viewed from the dorsal side ) to 6 cell
stage (lower panel) due to counter-rotating flows in the cell cortex (black arrows). This controls the left-right
asymmetry of the visceral organs (lower panel with the gut in cyan and the gonad in magenta). C: Left-
right symmetry breaking in birds such as the quail. Black circle encompasses the epiblast an epithelial tissue
(see also Fig. 1.5). Left-ward movement of cells (black arrows) at the Hensen’s node (HN), the tip of the
primitive streak (PS) results in a left-right asymmetric pattern of gene expression (green=Fgf8, red=Shh).
This triggers a signalling cascade and ultimately the rightward positioning of the heart in the adult bird.
D: Left-right symmetry in mouse embryos is broken by cilia-driven leftward movement of extracellular fluid
in the ventral node (VN, middle panel), triggering calcium signal (blue) on the left side of the VN. Upper
panel: cross-section of the cup shaped mouse embryo during gastrulation and left-right symmetry breaking,
drawn after [56].
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of the actomyosin cortex [22]. The chirality of the flow is understood as a consequence of the
chirality of the actin helix [39, 22, 44]. The flow requires the activity of myosin as well as formin
[39, 22]. Friction of the rotating cell surfaces with the underlying EMS and P2 cell yields a torque
that drives clockwise rotation of the division axes of the ABa/p cells [22]. As a consequence, the
daughter cells on the right side (AB(a/p)r) of the embryo are located more to the posterior side
than the daughter cells on the left side (AB(a/p)l). Similarly to DV symmetry breaking, these
cell rearrangements result in a left-right asymmetric pattern of cell-cell contacts at the 12 cell
stage, which is read out chemically by signalling pathways [65].

In vertebrate embryos the left-right symmetry is broken at much later stages of development,
when the embryo consists hundreds to thousands of cells. At this stage, the embryo undergoes
a process called gastrulation which we will discuss in the next section. During this process also
the mid-line of the embryo is defined. In amniotes such as birds and mammals, the mid-line is
defined by a structure called the primitive streak (PS) [3, 66]. It is a complex structure that is
embedded in an epithelium that is called epiblast. The most anterior part of the streak is called
the Hensen’s node (HN). In birds such as the quail, left-right symmetry is broken by a rotational
movement of cells in the HN and the epiblast around it [67]. Cells anterior to the PS move
leftward. Before the rotation of the HN, two distinct genes are expressed at the HN and at PS
immediately posterior to the HN (depicted as red and green shaded areas in Fig. 1.4C). The ro-
tation of the HN yields a shift of these domains of gene expression. A gene called sonic hedgehog
(Shh) is expressed symmetrically at the HN before the rotation, whereas after the rotation it is
mostly expressed by cells on the left side of the HN [67, 68, 60]. Thereby, a signalling cascade is
triggered [60]. In particular, it initiates the production of a signalling protein called Nodal on the
left side of the embryo. Importantly, this left-right patterning is perturbed, when the leftward
movement of cells is perturbed by introducing an obstacle. Also a drug that inhibits myosin di-
minishes the leftward movement [67]. This implies that avian left-right symmetry breaking relies
on chiral cell rearrangements driven by mechanical forces generated within the actomyosin cortex.

The Nodal signalling cascade on the left side is a conserved component of left-right patterning
in all vertebrates [4, 69, 70]. In embryos from fish, frog but also in rabbits and mice, Nodal is
also found on the left side of the embryo [4]. However, the trigger of the Nodal cascade is not a
movement of cells in these embryos but an extracellular fluid flow [6, 56, 71]. This fluid flow is
driven by cilia, i.e. threadlike cell appendages with a set of microtubules at their core [24, 72].
Microtubules like F-actin are cytoskeletal filaments. Like F-actin they have a chiral helix-like
structure [24]. Similarly to myosin, a motor molecule called dynein can displace microtubules
relative to each other. Thereby, dynein can drive rotations of the cilium [72, 73]. In the gastru-
lating mouse embryo, such motile cilia are found in a pit-like structure called the ventral node
that is located ventral and slightly anterior to the Hensen’s node. The cilia are tilted posteriorly
and rotate clockwise such that they move leftward, when the tip of the cilium is farthest away
from the tissue surface. Thereby, the cilia drive a leftward flow of extracellular fluid [56]. The
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lateral flow on the left side of the embryo is detected by immotile cilia triggering a calcium signal
and ultimately the Nodal cascade [74, 75].

Also in humans, cilia appear to be necessary for left-right symmetry breaking, since genetic de-
fects in cilia-related genes correlate with laterality defects [57, 76]. Whether they do indeed drive
a leftward flow like in mouse and rabbit embryos, however, is unclear, since human embryos from
the corresponding stage have not been studied. Notably, embryos from cattle and pig appear
to be more similar to chick than mouse embryos both in terms of tissue architecture and in
terms of the dynamics of nodal expression [67, 77]. Furthermore, a recent study from chameleon
shows that also there left-right symmetry breaking is independent of cilia and is accompanied by
left-right asymmetric tissue deformations [69]. Thus, the ancestral mode of left-right symmetry
breaking in mammalian embryos might be cilia-independent.

In summary, molecular chirality is translated into embryo-scale chirality by motor molecules in
vertebrates as well as nematode embryos. These motor molecules drive a chiral movement of
cells or extracellular fluid by interacting with cytoskeletal filaments that have a helical structure.
This movement triggers a signalling cascade that gives the left or right side a chemical identity
that is distinct from the other side. Hence, left-right symmetry is always broken mechanically
with the movement defining a rotation or a leftward vector and hence the geometric handedness
of the embryo. Afterwards, however, left-right asymmetry is maintained and transmitted chem-
ically with left and right domains topologically isolated from each other by a mid-line barrier in
vertebrate embryos or cell boundaries in the nematode embryo. In all cases a mid-line structure
can be identified before left-right symmetry breaking. Importantly, this structure does not span
the entire embryo before left-right symmetry is broken. In the nematode the cytokinetic furrows
of the ABa/p cells correspond to the mid-line of the embryo [64]. In mouse and quails, the prim-
itive streak acts as a mid-line barrier across which cells cannot move and chemical signals may
not be transmitted [7, 78]. At the node, this mechanical barrier is not yet established allowing
for a leftward flow of cells at the avian HN and a leftward flow of extracellular fluid at the ventral
node of the mouse. In both mouse and quail, left-right symmetry breaking is followed by the for-
mation of a mid-line barrier anterior to the primitive streak. In quail, the time-point of left-right
symmetry breaking coincides with the onset of notochord and neural groove formation [67, 79].
In mouse, much of the notochord has already formed, when left-right symmetry is broken, but a
mid-line barrier at the ventral node is established only shortly after left-right symmetry breaking
[7]. While the neural tube that is induced by the notochord contributes to the mid-line of the
adult animal, the primitive streak shrinks away [3]. Thus in both mouse and quail, left-right
symmetry breaking happens at the connection point of two lines that define the mid-lines of
the embryo during early gastrulation and after gastrulation, respectively. This connection point
encompasses only a small fraction of the embryo. Hence, left-right symmetry breaking depends
on the leftward flow of only a small volume of material. It seems likely that this contributes to
the robustness as well as the energy efficiency of left-right symmetry breaking. In the mouse
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embryo, the ventral node is a channel that confines the flow of the extracellular fluid. In the
quail embryo, in contrast, it is unknown what restricts the leftward movement of cells to the HN.
In chapter 5 of this thesis, we investigate the physical forces and torques that drive and restrict
the rotation of the HN.

For completeness, we want to mention here that there have been experimental reports in the past
that the distribution of ion pumps as well as the membrane potential are left-right asymmetric
in chick and frog embryos much earlier in development [80]. However, there appear to be issues
in terms of reproducibility with these reports [81]. More importantly, they do not falsify that
the crucial trigger of the left-sided expression of nodal is the leftward movement of extracellular
fluid or cells [81, 67, 82]. Instead, they may reflect a not necessarily functional chiral bias of the
embryonic tissue.

1.1.5 Gastrulation

In all vertebrates, left-right symmetry breaking happens during the process of gastrulation.
Before gastrulation, the embryo has the topology of a hollow sphere called blastula. The blastula
consists of a single layer of tissue. Gastrulation is the morphogenetic process that transforms
the blastula into a gastrula, i.e. it transforms the single-layered embryo into a multilayered
embryo (see Fig. 1.5A,B). The tissue layers of an embryo at the gastrula stage are the so called
germ layers [3]. Embryos of bilateral animals have three germ layers: ectoderm, mesoderm and
endoderm. Cells from different germ layers are chemically distinct and contribute to different
types of tissues in the adult animal. For example, only ectodermal cells, the outermost layer of
the gastrula, will contribute to the epidermis of the adult animal. Gastrulation generally involves
large-scale movements and deformations of tissue. In this thesis, we study the tissue movements
during avian gastrulation in chapter 2.
In amniote animals, i.e. reptiles, birds and mammals, gastrulation involves a complex structure
called the primitive streak (PS), which is embedded in an epithelium called the epiblast [85, 86].
Within the epiblast, cells move towards the streak, where they detach from the epithelium and
fill the underlying cavity. Thereby, they form meso- and endoderm, whereas the remaining epi-
blast contributes to the ectoderm [3, 79, 66]. In birds, the epiblast starts out as a flat circular
disk of cells. This disk lies on top of another disk of cells, the hypoblast that later contributes
to extra-embryonic tissue. On the edges, the disks are glued together by extraembryonic tis-
sue, the so called area opaca. There, embryonic and extraembryonic tissues form a continuous
tissue, whereas underneath the epiblast a layer of extracellular matrix separates the epiblast
from the underlying hypoblast (yellow line in Fig. 1.5D). Hence, the tissue consisting of epi-
and hypoblast connected by the area opaca has the topology of a hollow sphere, even though
its geometry is mostly flat [3, 79]. This flattened sphere is immersed in the yolk (Fig. 1.5C).
The yolk is enveloped by a protein membrane called vitelline membrane. Cells at the outer edge
of the area opaca adhere to the vitteline membrane, which is crucial to the expansion of the
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Figure 1.5: A,B: Schematic of the process of gastrulation, a morphogenetic process involving large-scale
tissue movements and deformations (black arrows). At the blastula stage (A), the embryo has the topology
of an unilayered hollow sphere, whereas at the gastrula satge, the meso/endoderm layers (orange) have been
folded inward. C-J sketches of embryo geometry and tissue movements during avian gastrulation. C-F cross
sections of the embryo at the onset of streak formation (C,D, corresponding to the dorsal view in G) and at
maximal streak extension (E,F, corresponding to dorsal view in I). C,E: Cross sections of the embryo along
the primitive streak in the AP-DV plane with the definitive endoderm drawn in pink. D,F: Cross sections in
the DV-LR plane (see lines in G,I) with cell boundaries drawn in black, extracellular matrix in yellow and
debris from apoptotic cell deaths in gray. White arrows denote the migration of individual mesynchymal
mesoderm cells (orange), whereas black arrows indicate the movement of the continuous epiblast tissue
towards the primitive streak. G-J Dorsal view of the avian embryo during gastrulation at different times
(t) after the beginning of incubation as found in embryos from chicken and quails[83, 84]. Large-scale fluid
like motions of the epiblast tissue are illustrated by black arrows.

embryonic tissue [79, 87].

At the onset of gastrulation (about 6h after the egg was laid in chicken and quails), the epiblast
is homogenous up to crescent-shaped region of thickened tissue at the future posterior end of
the embryo. The crescent, called Koller’s sickle, will contribute to meso- and endoderm (orange
region in Fig. 1.5C,G) [84, 83]. Gastrulation is initialized by large-scale movements of cells akin
to flows of a fluid (black arrows in Fig. 1.5G). These tissue flows are driven by myosin cables
at the apical (=dorsal) side of the posterior epiblast [88, 89]. Myosin cables are actin bundles
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that are connected across several cells through adherens junction and which contract due to the
activity of myosin motor molecules [90]. They drive so called convergent extension flows that
move cells towards the midline in the posterior half of the embryo and yield an extension of
the posterior epiblast along the midline. In the anterior half of the epiblast, cells close to the
midline move away from the mid-line, whereas lateral cells move posteriorly. Taken together, we
observe two vortices: a clockwise rotation of the epiblast in the right half of the embryo and an
anti-clockwise rotation in the left half. These large scale flows have been called polonaise flows
in the literature after a Polish dance [79]. Note that at the same time the epiblast is growing
as cells are constantly dividing such that the epiblast-hypoblast boundary in the AP-LR plane
is moving outward [87] (see black arrows at the boundary of the violet/orange epiblast in Fig.
1.5G-J)

At the posterior mid-line of the epiblast, cells start to undergo an epithelilial-mesenchymal
transition (EMT), meaning they detach from the epithelium and move between epiblast and
hypoblast as single cells or small groups of cells. This transition requires the breakdown of the
extracellular matrix that seperates the epiblast and hypolast layers [79]. The breakdown of the
epithelium also involves programmed apoptotic cell death. The debris from cell deaths as well
as poorly understood structure of extracellular matrix forms a barrier at the mid-line of the
embryo. Cells on the left and right side of the mid-line do not cross this barrier. Cells from the
right half of meso- and endoderm can be traced back to epiblast cells from the right half of the
embryo [78]. The streak of disordered tissue that encompasses the barrier as well as surrounding
epithelium constantly undergoing turnover by EMT is called the primitive streak (Fig. 1.5F).
While the surrounding epiblast is a flat epithelium, the primitive streak has characteristic 3D
morphology: A ventral valley along the midline is surrounded laterally as well as anteriorly by
a dorsal elevation [3, 68]. This shape may be understood as a result of apical constriction of the
primitive streak (see schematic in Fig. 1.3M). The anterior elevation at the tip of the streak is
called the Hensen’s node (HN, black dot in Fig. 1.5E,H-J).

The primitive streak forms as a result of convergent extension movements and then elongates
anteriorly until it reaches about 3/4 of the AP diameter of the epiblast. At this time-point
left-right symmetry is broken by a rotation of the HN as we outlined in the previous section
[67]. Subsequently the PS retracts and two structures called notochord and neural furrow form
along a line anterior to the HN [79, 3]. Neural furrow formation involves convergent extension
movements as well as a 3D deformation of the ectoderm where the tissue along the mid-line is
deformed ventrally, similarly to the PS [3]. Note that the line of convergent extension tends to
be displaced to the left with respect to the PS, which might be a result of the anti-clockwise
rotation of the HN [91, 68, 67].

In this thesis, we develop a mechanical model of the primitive streak during the transition be-
tween streak elongation and retraction. With this, we obtain a mechanical understanding of the
transition in chapter 2. In chapter 5, we investigate the rotation of the HN. There, we focus
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Figure 1.6: A: Schematic of morphogen-controlled morphogenesis of an epithelial tissue (gray). Distri-
bution of morphogen (blue) becomes spatially inhomogeneous in an initially homogeneous tissue. This
chemical pattern controls latter changes in tissue morphology including its shape. B: Digit formation in
mouse embryos, images taken from [92]. Left panels show development in a wild-type mouse whereas the
embryos on the right have been mutated such that a gene called Gli3 has been removed. Upper panels:
expression of the morphogen gene Sox-9 in the embryonic limb bud. Lower panel: Ossified (dark gray) and
cartilaginous (light gray) tissue in the digits of newborn mice.

in particular on how the rotation of the HN is facilitated by the geometry and topology of the
avian embryo, i.e. that all tissue layers are in close contact and thus likely mechanically coupled
at the HN and that the epiblast is curved only along the PS.

1.1.6 Interplay between chemical pattern and shape in morphogenesis

Recently, it has been argued, that the overall flatness of most amniotic embryos is the mechan-
ical reason for the evolutionary innovation of the primitive streak [85, 55]. In frog embryos, for
example, the tissue folds inwards along a ring. At the same time the ectoderm that is bounded
by this ring expands. As the ectoderm has a curved sphere-like geometry, the expansion of the
ectoderm corresponds to a contraction of the ring [85]. In [55], such a contracting ring has been
induced in the flat epiblast of a chick embryo by chemical perturbations. The ring contracts
within the plane, thereby preventing the expansion of the epiblast (=ectoderm). When only a
segment of the ring contracts and expands perpendicularly, it undergoes convergent extension to
form a streak, while the epiblast is free to expand [55, 54]. This way, the primitive streak may
have evolved from the contracting ring as the embryos have become more flat due to a larger
yolk volume [85]. Hence, mechanics appear to be the clue to the coevolution of a pattern (from a
closed ring to a streak) and the geometry of the embryo. Strikingly, this causal relation between
geometry and a resulting chemical pattern is opposite to how most morphogenetic processes are
understood, as we will discuss in the following.

Many if not most morphogenetic processes are understood in terms of morphogens [2, 3]. For
example, the protein Nodal which determines the identity of the left body half in much of ver-
tebrate development is such a morphogen. Also the PAR molecules we encountered in section
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1.1.2 are prototypical examples of morphogens. In general, a morphogen is a signalling molecule
that impacts on the state of a cell in a concentration-dependent manner. While many molecules
are involved in the process of morphogenesis, a morphogen is a molecule that appears to control
the production and degradation of many other molecules and thereby a morphogenetic process
[3]. Before or at the onset of a morphogenetic process, the spatial distribution of the morphogen
becomes non-homogeneous and this chemical pattern defines the spatial profile of the morpho-
genetic process including tissue deformations (see schematic in Fig. 1.6A).

The formation of digits in the mouse embryo is a particular beautiful example of this phe-
nomenon. Here a transcription factor called SOX-9 becomes non-homogeneously distributed in
the so called limb bud as studied in [92, 93] (see upper panel in Fig. 1.6B). Subsequently, this
chemical pattern controls which parts of the limb bud develop into the bones and cartilage of
the fingers. The formation of this chemical pattern results from the interaction between several
proteins. When one of these proteins is removed from the system by genetic modifications, the
pattern changes. Notably, it has been found that the removal of certain proteins reduces the
characteristic length scale of the SOX-9 pattern. As a result, more stripes fit into the limb bud,
which develop into more than five digits (Fig. 1.6C). Thus, protein-protein interactions control
the formation of a chemical pattern. This pattern in turn controls the shape change that is the
formation of distinct digits from the limb bud. Importantly, the shape change does not appear
to impact on the formation of the chemical pattern, as the two processes are well seperated in
time. This is typical for our understanding of various morphogenetic processes [3, 94].

In the gut, in contrast, finger-like projections, called villi, form simultaneously with a morphogen
pattern [100, 95]. The surface of the intestinal tissue starts out homogenous, both in terms of its
shape and chemical patterns within this surface. As this epithelium grows it buckles, because the
growth of the epithelium is restricted by an underlying muscle layer [100]. At the same time the
epithelial cells produce a morphogen that diffuses into the underlying tissue (blue shaded area in
Fig. 1.7A). Production of this morphogen is found to be initially homogeneous, even when the
concentration of the morphogen in the bulk of the tissue becomes non-homogeneous. It is found
that the morphogen concentrates beneath outward deformations of the surface of the tissue, which
can be understood from a simple diffusion model [95]. Subsequently, the morphogen triggers a
transition in the state of the cell at the tip such that the protrusion of the initially homgeneous
epithelium develops into a proper villus. While this later stage of development is reminiscent of
the process of digit formation in mouse, the formation of the initial pattern is not. During villi
formation, chemical pattern of the morphogen results from change in tissue geometry and not
the other way around. The coupling between surface geometry and chemical pattern results here
from the diffusion of the morphogen in the bulk of the tissue. We may thus say that diffusion of
the morphogen gives the gut tissue a sense of its geometry, specifically the geometry of its surface.

Also on smaller scales, biological surfaces have been found to have a sense of their geometry.
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A Morphogenetic feedback
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Axis convergence in the C. elegans zygote
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Figure 1.7: A: Schematic of the formation of villi in the chick gut, where a tissue deformation results
in the localization of a diffusing morphogen (middle panel) observed in [95]. Concentration of morphogen
is illustrated by blue shading. Black arrows in upper panel denote forces from surrounding tissue that
constraints the growth of the gray epithelium and drive its buckling (middle panel). Lower panel: Due
to morphogen localization, cells at the tip of the villus (black area) become distinct from the neighboring
epithelium. B: Different types of BAR-domains (blue, red) preferentially bind to lipid membranes (yellow)
with distinct radii of curvature (denoted by black dahsed line). Crystal structures taken from [96]. C:
Schematic of endocytic vesicle formation, where curvature-dependent binding of proteins containing BAR
domains facilitates the formation of a vesicle from an initial pit in the cell membrane. Drawn schematics
in [97, 98]. D: Alignment of the AP axis with the long axis of the egg shell in the C. elegans zygote as
studied in [99]. Schematics correspond to Fig. 1.2B, but with an initially off-center positioning of the male
pronucleus. Blue arrows denote the tension in the pseudo-cleavage furrow (black solid/dashed line) that
drives a cortical and cytoplasmic rotation to align the AP axis with the geometric long axis.

In particular in the context of lipid membranes, curvature sensing has been extensively studied
[101]. Such curvature sensing is typically understood in terms of specific curvature-sensing pro-
teins, in particular proteins with a so-called BAR domain [102, 101, 96]. These proteins have a
peculiar structure that makes them bind preferentially to lipid membranes with a certain radius
of curvature. This radius is specific to a protein and ranges roughly between 10nm and 100nm
[96]. Such proteins play a crucial role in certain types of endocytosis [97, 103]. When a pit in the
membrane of a cell forms, certain curvature sensing proteins localize to this pit due to its inward
curvature. Interaction between the lipid membrane and the curvature-sensing proteins makes the
membrane curve further inward [102, 97]. Hence, curvature-sensing proteins act to enhance and
stabilize an initially transient deformation of the membrane, similarly to the morphogen that
controls villi formation. Subsequently, other proteins act to close the neck forming an endocytic
vesicle [96]. Thereby, the deformation of the surface is translated into a topological transition.
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Both during villi formation and endocytosis, the coupling between surface geometry and chemical
pattern relies on a chemical flux between the surface and the bulk material underneath the
surface. During villi formation, a morphogen is secreted into the bulk of a tissue. As the
morphogen diffuses in the bulk of the tissue, patterns arise that depend on the geometry of
the surface where it is secreted. Membrane curvature sensing, in contrast, relies on curvature-
dependent association rates of certain cytoplasmic proteins to the membrane. Recently, however,
it has been found that such a sense of geometry may also result from movements within a
biological surface [99]. This surface is the cell cortex of the C. elegans zygote we have already
encountered in section 1.1.2. As we have discussed there, a chemical pattern forms within the
cell cortex, which defines the AP axis of the embryo. Strikingly, this axis is always aligned with
the long axis of the rigid egg shell [104, 105]. Importantly, the chemical pattern impacts on
the density of myosin motor molecules within the cortex, which results in large-scale flows of
cortical material. Bhatnagar et al., have shown that this cortical flow not only contributes to the
formation of the pattern but also to the alignment of the axis of the pattern with the egg-shell
geometry [99]. They find that the alignment relies primarily on the pseudo-cleavage furrow, a
contractile ring-like structure akin to the cytokinetic ring. This ring forms perpendicular to the
AP axis. When the AP axis is not aligned with the long axis of the egg shell, the ring drives
a rotational flow in the cortex that rotates the AP axis towards the long axis of the egg shell.
This flow can be understood from an effective line tension that yields a flow that minimizes the
circumference of the pseudo-cleavage furrow.
In this thesis, we set out to get a more fundamental understanding of how flows driven by motor
molecules give a biological surface such as the cell cortex or an epithelial tissue a sense of its
geometry. To this end, we define geometry sensing of a biological surface as the localization of
certain chemical species to certain points in the surface that are defined purely be the geometry
of the surface. In chapter 3, we focus on how chemical patterns in the cell cortex align with the
long axis of the cell. In chapter 4, we generalize this phenomenon to general surface geometries.
There, we study small patches in a biological surface that exert forces on the surrounding surface
due to the activity of motor molecules. As we lay out in that chapter, such patches move to
certain points in a surface which are defined by the geometry of the surface.

1.1.7 Hertwig’s rule

Strikingly, also biology knows a rule that relates the geometry of a system to the localization
and orientation of active processes that happen within this geometry: Cells divide along their
longest axis. This rule is termed Hertwig’s rule after embryologist Oscar Hertwig who discovered
this phenomenon in the late 19th century [106]. It applies to various eukaryotic cells and is
crucial to many developmental processes and tissue epistasis [107, 108, 109, 110, 111]. The
cell division is defined by the spindle, a complex protein structure that acts to segregate the
chromosome copies and orchestrates the formation of the cytokinetic ring by interacting with
the cell cortex. The cytokinetic ring then ingresses to seperate the cell into two daughter cells
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epithelial tissue

actomyosin cortex

Figure 1.8: Active surfaces: Thin sheets of living matter (e.g. epithelial tissues or the actomyosin cortex,
see section 1.1.3) are modelled as two-dimensional materials. The three-dimensional shape of such a surface
is given by X(s1, s2) denoting a position in three-dimensional space as function of the coordinates s1, s2.
This defines the covariant tangent vectors ei (Eq. 1.1) and the normal vector n (Eq. 1.2).

[24, 112]. The spindle apparatus consists in particular of microtubule filaments. In the original
article, Hertwig suggested that the cytoplasmic mass pulling at the microtubules is responsible
for centering the spindle and aligning it with the geometric long axis [106]. Consider an object
that pulls at the cytoplasm and is located to the right of the cell center. As more mass is
pulling to the left of the embryo, it moves towards the center. Recently, this hypothesis has been
formalized in terms of length-dependent microtubule pulling forces and experimentally validated
[107, 113, 114, 115]. Interestingly, Oscar Hertwig also noted that his rule implies that the
circumference of the cytokinetic ring is minimized. He suggested that this minimizes the work
that is required to constrict the ring. Such a minimization principle is not unlike the effective
line tension with which Bhatnagar et al. have understood the alignment of the AP axis of the
C. elegans zygote with the long axis of the egg shell [99]. Notably, the AP axis is also the axis of
the first cell division of the C. elegans embryo. Hence the rotation driven by the pseudo-cleavage
furrow ensures Hertwig’s rule in the C. elegans P0 cell. While the pseudocleavage furrow is a
structure that is specific to this cell, it is akin to the cytokinetic ring that forms during the
division of any animal cell. In section 3.3.3 of this thesis, we study whether this contractile ring
contributes to the robustness of Hertwig’s rule. There, we link Hertwig’s rule to a mechanical
principle: torque balance.

1.2 Hydrodynamic theory of active fluid films

In the following, we introduce a physical description of living matter. In order to gain conceptual
understanding of morphogenetic processes, we adopt a hydrodynamic description, where densities
and orientations of molecules or cells are coarse-grained in terms of continuous fields. We focus
on thin sheets of living matter such as epithelial tissues and the cell cortex. These nearly two-
dimensional surfaces are usually curved. In this thesis, we study how this curvature impacts
the dynamics of these living systems. This requires some notions from differential geometry
which we introduce in 1.2.1. We write down continuity equations within the surface in section
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1.2.2, corresponding to conservation laws of matter and momentum, as derived in [116]. In 1.2.3,
we briefly review the framework of non-equilibrium thermodynamics which allows us to obtain
constitutive equations in a systematic manner. In 1.2.5, we give constitutive equations for an
active fluid, which capture the dynamics of tissues and cell cortex on time scales longer than the
life time of the constituent cells or molecules. Such active fluids exhibit self-organized pattern
formation. In section 1.2.6, we review examples of this phenomenon.

1.2.1 Differential geometry of surfaces

Let us a consider a surface S embedded in three-dimensional space. A parametrisation of this
surface can be written as a function X(s1, s2) that assigns a position X ∈ R3 to a pair of
coordinates (s1, s2) ∈ R2 (see Fig. 1.8). By evaluating the derivative of X with respect to the
coordinates at some point p ∈ S, we obtain a pair of tangential vectors:

ei := ∂iX, (1.1)

where here and in the following i ∈ {1, 2} and ∂i := ∂si . These two vectors form the so-called
covariant basis which are a basis of vectors that are tangential to the surface S at p. We also
define a normalized vector n that is orthogonal to S:

n :=
e1 × e2
|e1 × e2|

(1.2)

ei are in general neither orthogonal with respect to each other nor normalized. The scalar
products of ei define the metric tensor

gij = ei · ej . (1.3)

We write the inverse of this matrix as

gij = (gij)
−1. (1.4)

With this, we define the contravariant basis

ei :=
∑
j∈1,2

gijej . (1.5)

implying that ei · ej = δij . In the following, we will use Einstein sum convention, i.e. we omit
the sum sign and understand that we some over pairs of up/down indices. With the thus defined
basis vectors, we can write any vector field on the surface as

f = f iei + fnn, (1.6)
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where f i = ei · f and fn = n · f . The scalar product of two vector fields ab can then be written
as

a · b = gija
ibj + anbn. (1.7)

The cross-product
a× b = ϵija

ibjn+ anb
iϵ ji ej − bna

iϵ ji ej (1.8)

requires the notion of the Levi-Cevita tensor ϵij which we define as

ϵij = n · (ei × ej). (1.9)

When the surface is curved, the surface normal n rotates as one moves across the surface.
This rotation corresponds to derivative of n with respect to the coordinates, which defines the
curvature tensor C j

i :
∂in = C j

i ej . (1.10)

The tensor field C j
i corresponds to the so-called second fundamental form (with the first fun-

damental form being the metric). It is distinct from the Riemann and Ricci curvature tensors
which contain only the Gaussian curvature. Gaussian curvature can be defined in terms of the
C j
i as the determinant

κ = detC j
i =

1

R1R2
, (1.11)

where R1/2 are the two prinicipal radii of curvature, i.e. the inverse of the eigenvalues of C j
i .

Gaussian curvature is an intrinsic property of the surface, i.e. it can be calculated from the
metric gij and its derivatives [117]. Intuitively, this means that the Gaussian curvature of a
surface can be determined from length and angle measurements within this surface (see Fig.
1.5 for some illustrative examples). For a surface that has only one radius of curvature at each
point in the surface, such as a cylinder, κ = 0. As such it can be deformed into a flat surface
without stretching or contracting the surface. In this sense, we say it is extrinsically but not
intrinsically curved. The extrinsic curvature quantified C j

i is non-vanishing, but the intrinsic
curvature quantified by κ or equivalently the Ricci and Riemann curvature tensors vanishes. The
relation between length scales and Gaussian curvature will become more explicit in section 1.3.2,
where we consider a so-called isothermal parametrisation of the surface.

In order to write conservation laws within a surface, we need to define derivatives of (tangential)
vector fields within the surface. Even if a surface is flat, the covariant vectors ei are in general
not constant. Their derivatives can be written as

∂iej = Γkijek − Cijn, (1.12)
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Figure 1.9: Circles with equal radii have distinct perimeters L in different surface geometries. For a
spherical surface geometry, i.e. positive Gaussian curvature κ (A), the perimeter is smaller than for a flat
surface (C). The perimeter is 2πr for a flat surface as well as all other surfaces with vanishing Gaussian
curvature such as a cylinder (B). For a saddle geometry, i.e. κ < 0 (D), the perimeter is larger than for a
flat surface. On all surfaces, we define the outline of a circle as a set of points that all have the same minimal
distance with respect to a reference point. Hence, the Gaussian curvature of a surface can be determined
from length measurements in the plane, demonstrating that Gaussian curvature is an intrinsic property of
the surface [117].

where Γkij are the Cristoffel symbols which are defined in terms of the metric as

Γkij =
1

2
gkm (∂igjm + ∂jgim − ∂mgij) . (1.13)

With this, we define the covariant derivative of a tangential vector field v = viei as

∇iv
j = ej∂iv = ∂iv

j + Γjikv
k, (1.14)

i.e. the projection of the derivative of v into the tangential plane. If v is constant, ∂ivj can be
non-zero depending on the parametrisation of the surface, but the covariant derivative is not, as
it defines a covariant quantity, i.e. (ei ⊗ ej)∇iv

j is parametrisation-independent. For a general
vector field f on the surface, we can write its derivative as

∂if = (∇if
j + C j

i fn)ej + (∂ifn − Cijf
j)n. (1.15)

For understanding conservation laws within the surface, the following divergence theorem is
crucial [118]: ∫

S′
dS∇iv

i =

∫
C
dlνiv

i, (1.16)

where S ′ ⊂ S and C = ∂S ′ is the bounding contour of S ′. Furthermore dS is the differential area
element defined as

dS =
√
det(gij)s

1s2. (1.17)

dl is the length element |∂sX|ds and ν is the outward pointing normal to the contour C tangential
to S:

ν :=
es × n

|es × n|
(1.18)
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A BForce balance Torque balance

Figure 1.10: Force and torque balance on a surface. Due to momentum and angular momentum con-
servation, the sum of all forces (A) and torques (B) acting on patch S ′ of a surface has to vanish. The
differential form of these equations is given in Eq. 1.24,1.27. C denotes the contour enclosing S ′ and ν is
the outward-pointing normal vector of this contour that is tangent to the surface. Contraction of the stress
(moment) tensor ti (mi) with νi yields the forces (torques) the surrounding surface is exerting on the patch
S ′. fext (orange vectors) and Γext (orange curved vectors) denote forces and torques that the surrounding
bulk material is exerting on the surface, respectively.

1.2.2 Conservation laws

Interpreting the vector field vi as a tangential flux density, Eq. 1.16 says that the divergence
∇iv

i, corresponding to a source density, equals the tangential outward flux through the bounding
contour. Thereby, Eq. 1.16 allows to understand physical conservation laws in the surface in
terms of the covariant derivative. In the following, we will use it to give continuity equations
corresponding to the conservation laws of mass, momentum and angular momentum. These con-
servation laws are generally valid. On length scales that are large compared to the constitutive
particles, we can write them in terms of continous fields.

We write the area density of mass of the surface as ρ(s1, s2). The mass M of a patch S ′ ⊂ S is
given by

M =

∫
S′
dSρ. (1.19)

As mass is a conserved quantity, changes in M over time have to be balanced by fluxes of mass
to the surrounding:

∂tM =

∫
S′
dSJn −

∫
C
dlνij

i, (1.20)

where Jn is the mass flux density from the surrounding bulk material to the surface and the
tangential flux density ji describes mass transport within the surface. Using the divergence
theorem (Eq. 1.16), we can write the change in mass of a differential area element as

∂t(ρdS) = (Jn −∇ij
i)dS, (1.21)

corresponding to a continuity equation. In this thesis, we consider surfaces with a static shape,
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i.e. ∂tX = 0. With this, the above equation becomes

∂tρ = Jn −∇ij
i. (1.22)

Furthermore, we define the center of mass velocity v = viei of the surface such that ji = ρvi.
Then, the momentum density of the surface is ρv. The flux of momentum within the surface is
given by vector-valued flux density −ti, where

ti = tijej + tnn (1.23)

is the stress tensor of the surface. Conservation of momentum yields the force balance equation:

∇it
i = −fext − ρa, (1.24)

where fext is density of forces that the surrounding material exerts on the surface. ρa is an
inertial force density resulting from the acceleration a of the surface. In the following, we neglect
such inertial effects, as we consider fluid films at low Reynolds number, where inertia forces are
negligible compared the forces resulting from friction and viscosity.

Eq. 1.15 allows us to write the force balance equation in terms of its tangential and normal
components:

∇jt
ji + Cijt

j
n = −f iext (1.25)

∇it
i
n − Cijt

ij =− fext,n. (1.26)

We observe that in plane stresses yield a normal force density Cijtij when the surface is curved.
In this thesis, we consider fluid films whose shape is fixed by external forces such that fext,n acts
as a Lagrange multiplier with a value given by 1.26. For a fluid film, the in plane stress tensor
tij is a function of the covariant derivatives of the tangential flow field vi (See section 1.2.5).
When the surface is flat, Eq. 1.25 then yields a differential equation for vi that is the governing
equation of the flow field. For (Cij ̸= 0), also normal stresses contribute to the tangential force
balance equation.

The normal stress tensor is further constrained by angular momentum conservation. Neglecting
inertial terms, conservation of angular momentum yields the torque balance equation [116]:

∇im
i = −Γext − ei × ti, (1.27)

where mi = mjiej +mi
nn is the moment tensor, which may be understood as a surface density

of torque dipoles, which result from the passive bending rigidity of a surface but also active pro-
cesses. In plane torque dipoles (mji) result in particular from a non-homeogeneous distribution
of stresses across the thickness of the surface, such as during apical constriction (see Fig. 1.3M)
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The tangential and normal components of the torque balance equation reads

∇jm
ji + Cijm

j
n =− Γiext − ϵjit

i
n (1.28)

∇im
i
n − Cijm

ij =− Γext,n − ϵijt
ij . (1.29)

We observe that the normal stress tin and the antisymmetric stress ϵijtij yield a torque which
cannot be set independently from the moment tensor and external torques.

1.2.3 Irreversible thermodynamics and virtual work

In this thesis, we consider living systems, which are generally out of thermodynamic equilibrium
due to a continuous influx of chemical energy. However, we consider a regime, where small volume
elements of the living material equilibrate quickly compared to the system-scale dynamics. This
local equilibrium is the basis of the framework of non-equilibrium thermodynamics [119, 120],
which has been found to quantitatively describe living as well as non-living systems out of equi-
librium [121, 122].

Applying this framework to a thin sheet of living matter, we define the free energy of a small
area element dS as the free energy density f . Summing the free energy density of all the area
elements that make up the surface defines a free energy

F =

∫
dV f. (1.30)

As the system is locally at equilibrium, f and hence F are well defined, even though the system is
globally out of equilibrium. Similarly, one obtains an entropy density s. s and f are understood
as functions of the local densities of mass, momentum and angular momentum, as well as the
number densities cI of chemical species I ∈ {1, ..., N}.

When a system is at thermodynamic equilibrium, its free energy is minimal. Hence any variation
δF with respect to a variation δx of a hydrodynamic field x that obeys the conservation laws has
to vanish at equilibrium. This yields equilibrium conditions for the derivatives of f [120, 123].
During a quasistatic process that leaves the system at equilibrium, the associated change in free
energy is given by the work that the surrounding performs at the boundary of the system (we
neglect here interactions at a distance, such as electromagnetic fields). Mathematically, this work
is given by the change in free energy that results from a change in boundary conditions that define
the system at equilibrium. When the change in in the hydrodynamic fields is equivalent to a
deformation δX of the surface, the change in free energy can be understood as purely mechanical
work:

δF = δW =

∫
S′
(fext · δX+ Γext · δθ) +

∫
C
dlνi

(
ti · δX+mi · δθ

)
, (1.31)

where δθ = 1
2(ϵ

ij∇iδXj)n−n× δn is the rotation of surface elements associated with the defor-
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mation. By calculating the differential of δF with respect to δX, the above equation allows to
infer expressions for stress and moment tensors at thermodynamic equilibrium.

δW can be calculated in and out of equilibrium and is called the virtual work [116]. Using the
divergence theorem (Eq. 1.16, one obtains

δW =

∫
S′
dS

[
t̃ij
δgij
2

+ m̃i
jδC

j
i +mi

n

ϵjkδΓ
k
ij

2

]
, (1.32)

where the in-plane tension tensor t̃ij and the bending moment tensor m̃i
j are defined as

t̃ij =
1

2

(
tij + tji + m̃kiC j

k + m̃kjC i
k

)
(1.33)

m̃ij =−mikϵ jk . (1.34)

We observe that t̃ij is conjugate to the variation of the metric and hence the intrinsic geometry
of the surface. In particular the trace t̃ii is conjugate to changes in area. We note that t̃ij

depends also on the moment tensor, whenever the surface is curved, as an area expansion in a
curved surface implies out-of plane deformations of area elements. The bending moment m̃i

j

is conjugate to δC j
i , i.e. changes in the extrinsic geometry of the surface. In other words, the

work one needs to perform to deform a flat surface into a cylinder depends solely on the bending
moment. For a surface with non-vanishing Gaussian curvature, however, changes in intrinsic and
extrinsic geometry are strictly coupled. Furthermore, local changes in area (δgij) in general also
imply in-plane rotations of area elements (∼ ϵjkδΓ

k
ij), which are conjugate to the normal moment

mi
n.

By calculating the change in free energy for a deformation of an isotropic fluid surface, one
obtains the following equilibrium values for tension and moment tensors [116]:

t̃ijeq = (f0 −
∑
I

cIµI)g
ij , m̃ij

eq = Kij , mi
n,eq = 0, (1.35)

where f0 = f − ρ|v|2/2 is the Galilei-invariant component of the free energy density, whose
differential is given by

df0 =
∑
I

µIdcI +Ki
jdC

j
i − sdT. (1.36)

Angular momentum conservation then yields the equilibrium normal and antisymmstric stress
tensor. The thus obtained equilibrium stress obeys the following Gibbs-Duhem relation:

∇jt
j
eq i + Cijt

j
n,eq = −

∑
I

cI∂iµI , (1.37)

i.e. it yields a force proportional to the gradient of the chemical potential.
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For non-equilibrium dynamics of a surface, Eq. 1.31 is no longer valid, as energy is dissipated.
Instead, the dynamics of s and f can be written as continuity equations [116]

∂tf +∇ij
i
f =Jfn − Tπs (1.38)

∂tf +∇ij
i
s =J

s
n + πs, (1.39)

where jif/s and J
f/s
n describe transport within the surface and exchange with the surrounding

bulk material, respectively. The transport of free energy includes in particular the work that the
surrounding surface and bulk material perform on an area element. T is the temperature, which
we consider to be constant in space and time. πs denotes the entropy production that results
from the non-equilibrium dynamics of the system. When a system is at globally equilibrium, the
entropy is maximal and πs = 0. When the system is out of equilibrium, dissipation results in an
entropy production πs > 0.

The entropy production can generally be written in terms of so called generalized fluxes Jk and
forces Xk:

πs =
∑
k

XkJk (1.40)

By calculating the time-derivative of the free energy, πs and, hence, Xk and Jk can be expressed
in terms of derivatives of f and the flux densities of conserved quantities. For an isotropic fluid
film, one obtains [116]

Tπs = t̃ijd vij + m̃ij
d

DCij
Dt

+mi
nn · ∂iω −

∑
I

(∂iµI)j
i
I +

∑
α

∆µαrα, (1.41)

where we have the following generalized forces: the dissipative tension t̃ijd = t̃ij − t̃ijeq, the dis-
sipative bending moment m̃ij

d = m̃ij − m̃ij
eq, the normal moment mi

n, the gradient of chemical
potential −∂iµI and the chemical potential difference ∆µα of chemical reaction α. Conjugate
to the these forces, we have there are the following generalized fluxes: the in-plane shear vij ,
the bending rate DCij/Dt, the vorticity gradient n · ∂iω, the diffusion fluxes jI and chemical
reaction rates rα [116, 120]. Here, vorticity, bending and shear rate of a non-deforming fluid film
(vn = 0) are defined as

vij =
1

2
(∇ivj +∇jvi), ω = ei × (∂iv),

DCij
Dt

= vk∇kCij + ωn(ϵ
k
i Ckj + ϵ kj Cki) (1.42)

At equilibrium, the generalized fluxes and forces vanish. Close to equilibrium, the generalized
forces may be written in terms of linear constitutive equations

Xk =
∑
l

LklJl (1.43)
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The coupling matrix Lkl contains phenomological coefficients, e.g. viscosity and diffusion con-
stant. When, the time reversal signatures of Xk and Jl are equal (different), the coupling Lkl is
reactive (dissipative). As the entropy production has time reversal signature −1, only dissipative
couplings contribute to the entropy production. This antisymmetry with respect to time-reversal
also yields the Onsager reciprocal relations [124, 125], which for reactive/dissipative couplings
L
r/d
kl can be written as

Lr
kl = −Lr

lk, Ld
kl = Ld

lk. (1.44)

Furthermore, the second law of thermodynamics implies that the quadratic form
∑

kl JkLklXl

must be positive definite. This yields the following constraints on dissipative couplings:

Ld
kk ≥ 0, Ld

kl ≤
√
LdkkL

d
ll, (1.45)

where we do not sum over indices.

1.2.4 Curie principle

The constitutive equations Eq. 1.43 can be further constrained by the spatial symmetries of the
material [119, 120]. If the physical state of a system is invariant under a transformation such as
a rotation of the observable fields, this symmetry has to be reflected by the physical model given
by the matrix Lkl. This is known as the Curie principle [126]. The physical state of an active
surface is always invariant under a reparametrization of the surface. While the components of
a tensor field tij depend on the choice of coordinates, a contraction of tensors tijhij is invariant
under a change of coordinates, when the tij , hij are components of a coordinate invariant tensor
field. This includes physical observables like the stress tensor, but also the following fields that
reflect the intrinsic and extrinsic geometry of the surface:

gij , Cij , ϵij (1.46)

The matrix Lkl has to be constructed from such tensors and contractions of them. Thereby, the
model is also invariant under rotations. Furthermore, we consider the symmetry of the system
with respect to inversion of the orientation n of the surface (O) and mirror transformations (M).
We define them in terms of the basis vectors as

O : {e1, e2,n} → {e2, e1,−n}, M : {e1, e2,n} → {e2, e1,n} (1.47)

O maps the right-handed basis to a right-handed basis with inverted orientation. It can also be
understood as a rotation of the basis around a tangent vector. M transforms a right-handed
basis to a left-handed basis while preserving the orientation of the surface. A physical system
that is not invariant under this inversion of handedness is called chiral. When applying these
transformations to tensors on the sphere, some change sign whereas others do not as given in
Table 1.1.

29



CHAPTER 1. INTRODUCTION

t̄ij tin m̄ij mi
n Cij gij ϵij

O 1 −1 1 −1 −1 1 1
M 1 1 1 −1 1 1 −1

Table 1.1: Signature of up-down (O) and mirror (M) symmetry on tensor fields of the surface.

The physical state of thin film of an isotropic material is invariant under O and M. A physical
model of such a surface has to reflect this up-down and mirror symmetry. Writing the matrix
with components Lkl as L, this condition can be written in abstract terms as

O−1LO = L, M−1LM = L, (1.48)

where a transformation on the right side of L act on the fluxes Jl whereas a transformation on
the left side of L acts on the generalized forces Xk.

Living surfaces are often not isotropic. Epithelial tissues, for examples, are always up-down
asymmetric due to apico-basal polarity. Furthermore, most molecules living systems are built
from are chiral, i.e. their stucture is distinct from its mirror image. In general, this gives rise
to a chirality of the material. In fact, various types of cells exhibit chiral behaviour in vitro, in
particular due to activity of the actomyosin cortex that consists of helical actin filaments (see
section 1.1.3). So far, however, a sense of handedness has only been demonstrated for a few
cell types [127]. Moreover, there are strikingly many morphogenetic processes, where a sense of
handedness on the cell or tissue scale appears not evident (see e.g. [128] and references therein,
or the tissue movements during early avian gastrulation [88]). After all, most bilateral animals
seem mirror symmetric from the outside. Given the chirality of the constituent molecules, such
a lack of chirality on the macroscopic scale amounts to a fine-tuning of the physical interactions.
While such a fine-tuning might be surprising for a passive material, it is not necessarily so for a
living system that is the result of evolution. It appears that a pronounced mesoscopic chirality of
the actomyosin cortex is not beneficial to an organism in most biological contexts. Furthermore,
not any chiral coupling in a physical model may manifest in a pronounced chirality of patterns
or flows. As we demonstrate in this thesis, flows and patterns in a living surface crucially depend
on its geometry. Motivated by this, we investigate in chapter 5 of this thesis, whether differences
in embryo geometry could explain why the chirality of the actomyosin cortex manifests only
in some embryos as a chiral rearrangements of cells that is crucial to the process of left-right
symmetry breaking (see section 1.1.4).

1.2.5 Active fluid films

In most of this thesis, we consider an isotropic fluid film. For an isotropic material, all couplings
between quantities that have the same signature with respect to O,M can be written in terms of
Kronecker deltas or the metric tensor [119, 129]. For example,there are the following couplings
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between shear rate and stress tensor:

tijvisc = ηs(v
ij + vji − gijv

ij) + ηbgijv
ij , (1.49)

where ηs is the shear viscosity and ηb is the bulk viscosity. Mathematically, ηb couples the trace
of the shear tensor, i.e. the divergence of the flow, to the trace of the stress tensor, i.e. the surface
tension. ηs, in contrast couples the trace-less symmetric components of shear rate and stress ten-
sor. Physically, ηb describes the dissipation associated with in-plane compression or expansion of
the fluid film, whereas ηs describes dissipation associated with shearing the fluid film in the plane.

In this thesis, we study growing epithelia and the cell cortex. Both represent thin sheets of
comdensed matter, which we represent here as two-dimensional surfaces. On short time scales
(< 1min. for the cortex, < 1h for the epiblast of the quail embryo), these surfaces resist elas-
tically to in-plane as well as out-of plane deformations due to the molecular crosslinks between
filaments and cells. However, the morphogenetic processes we study here in quail and nematode
embryos take place on longer time scales. On these time scales, crosslinks as well as the filaments
and cells themselves undergo continuous turnover. This turnover enables the relaxation of elas-
tic stresses by irreversible rearrangements of filaments and cells. In a fluid film model of these
living sheets, the dissipation associated with rearrangements that do not involve a net exchange
of material with the surrounding bulk is quantified by the shear viscosity. When exchange of
material with the bulk allows for expansions and contractions of the sheet in the plane, also a
bulk viscosity needs to be considered. Flows in the cell cortex have been well described with bulk
and shear viscosities being on the same order of magnitude, i.e. ηb/ηs ∼ 1 [39, 130]. Epithelial
tissues have been modelled as incompressible fluid films [131, 132], as elastically compressible
fluid films [87] and as compressible fluid films with compressible flows limited by a bulk viscosity
that is much larger than the shear viscosity, i.e. ηb/ηs ≫ 1 [54, 88, 133]. In this thesis, we use
ηb = ηs =: η for the cell cortex (see chapter 3). For the epiblast of the quail embryo, a quickly
growing epithelium, we will compare the experimental flow field to model predictions across a
range of bulk viscosities (see chapter 2 and section 5.1).

In contrast to a cup of tea, where fluid flows are driven externally by the person handling the
spoon, flows in living matter such as tissues and the cell cortex are driven internally, in particular
due to the activity of the motor molecule myosin (see section 1.1.3). Myosin performs mechanical
work on the actin meshwork. This energy is provided by the hydrolysis of ATP to ADP. In a
hydrodynamic model, this mechanical activity can be captured by a contribution to the stress
tensor that results from a coupling to the chemical potential difference ∆µ that is associated
with the chemical reaction of ATP to ADP. At thermodynamic equilibrium, the thermodynamic
force ∆µ vanishes. However a cell is maintained out of equilibrium, as the energy lost due to
dissipation and mechanical work is balanced by a continuous influx of chemical energy, i.e. food.
ADP is phosphorylated to ATP in the mitochondria as part of the metabolism of a cell. As ATP
is small molecule that diffuses quickly (D = 700µm2/s in aqueous solution [134]), we consider

31



CHAPTER 1. INTRODUCTION

the ATP concentration and hence ∆µ to be spatiotemporally homogeneous in the cell including
the cell cortex.

In an isotropic fluid film, the active stress is proportional to the metric tensor:

tijact = χ̃act∆µg
ij (1.50)

In the cell cortex, myosin activity drives in-plane contractions of the cortex, implying χ =

χact∆µ > 0. We note that the coupling constant χact is generally non-constant in space and
time as the activity of myosin is regulated in spatially and temporally heterogeneous manner
(see section 1.1.3). A gradient of χact and hence the active stress yields a force ∇jt

ji
act = ∂iχ that

drives flows (see Eq. 1.52). When the active stress is regulated by a molecule that is advected
by the flow, patterns arise as we will discuss in section 1.2.6. In systems, where the rotational
symmetry is broken locally, also active contributions to the trace-less symmetric component of
the stress tensor arise. For example, actin filaments in the cytokinetic ring align along the ring
[23]. This alignment locally defines an axis. On top of the isotropic contraction captured by Eq.
1.50, the cortex contracts along the axis of the filaments and expands perpendicular to it. Active
fluid films with such a trace-less symmetric contribution to the active stress are called active
nematics, analogous to nematic liquid crystals. They exhibit complex dynamics that result from
a coupling of the local axis that governs the active stress to the resulting flow [131].

Active and viscous stress are components of the dissipative stress t̃ijd . In general, one needs to
consider also equilibrium contributions to the stress tensor. For an isotropic fluid film, this yields
a force that is proportional to the gradients of the chemical potentials (Eq. 1.37). However,
we consider here a scenario, where differences in chemical potential within the fluid film are
limited by exchange with a homogeneous bulk material such that force given by Eq. 1.37 is
small compared to the gradients of the active and viscous stress. Therefore, we will neglect the
equilibrium stress in the following. We also do not consider couplings of the stress tensor to
the bending rate, as we consider gradients in curvature to be shallow compare to the gradients
in velocity. For simplicity, we also do not dissipative contributions to the bending moment or
normal moment for most of this thesis. Only in section 5.2, we consider active contributions to
the moment tensor. Otherwise, we have

m̃ij = 0, mi
n = 0, t̃ij = t̃ijd = tijvisc + tijact. (1.51)

We consider the fluid film to be coupled to a substrate such as the egg shell of the nematode
embryo that fixes the shape of the fluid film at all times by exerting forces fn,ext normal to
the surface given by Eq. 1.26. Additionally, the substrate exerts tangential forces f iext on the
fluid film, which we consider to be proportional to the velocity of the fluid film with a friction
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A Pattern formation in an
active isotropic fluid film

Steady state patterns
in a spherical fluid film

fluid flow
diffusive flux

B C

Figure 1.11: A: Schematic of pattern formation in an isotropic active fluid model (see constitutive equations
Eq. 1.49-1.51 and 1.53). A small accumulation of the stress regulator (orange shade) drives contracting
flows. When the flux due to advection by the fluid flow overcomes the flux due to diffusion, the homogeneous
state is unstable and a pattern emerges. B,C Numerically calculated steady state patterns in terms of the
stress regulator pattern (color) and the resulting flow field (red arrows) for a spherical geometry (images
taken from [135]). In contrast to 1.52, the surface is surrounded by a incompressible bulk fluid instead of a
rigid substrate. B: Solution for large hydrodynamic length resulting in a pattern with polar symmetry. C:
Solution for small hydrodynamic length resulting in pattern with nematic symmetry.

coefficient γ. With this the tangential force balance equation, Eq. 1.25, reads

ηs∇j(∇jvi +∇ivj) + (ηb − ηs)∂
i∇jv

j − γvi = −∇jt
ji
act. (1.52)

This is the differential equations that governs the flow field vi for a given pattern of active
stresses tijact. It depends on the intrinsic geometry of the surface through the covariant derivative.
Understanding how this geometry dependence impacts on the dynamics of an active fluid film
will be at the heart of chapters 3 and 4.

1.2.6 Pattern formation in active fluids

In the cortex of the C. elegans zygote before polarization no large-scale cortical flows are ob-
served, even though myosin is already present in the cortex. This is because myosin and all other
constituent molecules of the cortex are distributed homogeneously in the surface of the cell. At
the onset of polarization, myosin molecules are displaced from a small patch of the posterior
cell cortex (see section 1.1.2 and Fig. 1.2B). In a hydrodynamic model the localized removal of
myosin from the cortex is captured by a localized reduction in χ and hence the active stress. The
resulting gradient in active stress drives a flow that transports myosin (and the anterior PAR
proteins) from the posterior to the anterior half of the cortex. Ultimately a steady state emerges,
where myosin and anterior PAR proteins are localized to the anterior half of the cortex. At this
time-point the cortex still flows from the posterior to the anterior side of the embryo, but the
resulting transport of myosin and PAR proteins is balanced by exchange with the cytoplasm as
well as diffusional fluxes within the cortex.

To capture the emergence of a chemical pattern driven by active stresses, we consider the following
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dynamics of the chemical concentration c of a stress regulator

∂tc = −∇i(cv
i −D∂ic)− k(c− c0), (1.53)

where D is a diffusion constant capturing diffusion within the cortex and k is rate of exchange
with the cytoplasm with c0 being a reference concentration to which c relaxes. This dynamical
equation is complemented by the governing equation of the flow field (Eq. 1.52) and a expression
χ0f(c/c0) for χ, i.e. the dependence of the active stress on the regulator concentration c with f
being a dimensionless function with f ′(1) > 0. Gradients in c result in a flow vi that feeds back
into the dynamics of c as the advective flux cvi.

This model has been analyzed for a spherical geometry and in a one-dimensional domain, both
in terms of the linear stability of the homogeneous state and in terms of non-linear steady states
[136, 135]. The linear stability can be understood in terms of the ratio between advective fluxes
that transport the stress regulator towards maxima in c (with χ0 > 0) and diffusive fluxes that
counter-act this accumulation of the stress regulator. This ratio is the dimensionless Peclet
number Pe, which may be written as

Pe =
χ0

Dγeff
, (1.54)

where γeff = γ for friction limited flow and γeff = ηb/R
2 for viscosity limited flow in a finite do-

main with characteristic length scale R. When the Peclet number is greater than a critical value
Pe∗, the homogeneous state (c = c0) becomes unstable with respect to pertubations, as advective
fluxes dominate over diffusive fluxes yielding the self-organized formation of chemical patterns.
In a one-dimensional term, the pattern collapses into a single peak in c in the non-linear regime
[136]. Mietke et al. have studied this model in a spherical geometry incorporating the coupling
to an enclosed and a surrounding bulk fluid instead of a rigid substrate [135]. They found that
two kind of steady state patterns emerges: a polar pattern with a single peak in c (Fig. 1.11B)
and patterns with nematic symmetry (Fig. 1.11C), where the stress regulator accumulates either
at a ring around the equator of the sphere or in two patches at opposing poles of the sphere.
While the polar pattern is reminiscent of the cortex of C. elegans zygote during polarization, the
contractile ring may be understood as a minimal model of the cytokinetic ring.

Pe∗ as well as shape and symmetry of the steady state patterns depend on the ratio of the
viscosities ηb/ηs, the rate of exchange with the cytoplasm, the hydrodynamic length

√
ηs/γ and

the geometry of the fluid film. In chapter 3, we will study this geometry dependence of this
minimal model of pattern formation in the cell cortex.

1.3 Understanding active surfaces with complex numbers

In this thesis, we study fluid films. When studying such two-dimensional manifolds, may they be
curved or flat, we have found that notation and analytical calculations become more elegant and

34



1.3. UNDERSTANDING ACTIVE SURFACES WITH COMPLEX NUMBERS

1 20

A B
spin-weighted quantities

Figure 1.12: A: A right-handed orthonormal basis {a,b,n}, with n being the normal vector of the surface,
allows to define complex basis Z. B: Projections of vector and tensor fields onto Z define complex valued
fields, so called spin-weighted fields or quantities. The spin weight, indicated by the prescript, denotes the
local rotational symmetry of the field. See main text for details.

efficient by mapping two-dimensional vectors to complex numbers. Specifically, we will adopt the
Newman-Penrose formalism for much of this thesis, where vector and tensor fields on a surface
are understood as complex-valued so called spin-weighted fields [137]. In the following, we will
introduce this formalism which was originally developed in the context of general relativity.
Here, we adopt it to the study of active surfaces. Furthermore, we introduce a certain kind of
parametrisation, called isothermal coordinates, that can be found for any surface in section 1.3.2.
For such a parametrisation, the intrinsic geometry of a surface is uniquely defined by a scalar field
which we term the geometric potential. This enables us to study general surface geometries in
chapter 4. Finally, we introduce some basic notions of complex analysis, in particular holomorphic
functions, in section 1.3.3, which will enable us to analytically understand flow fields in the quail
embryo in chapter 2.

1.3.1 Newman Penrose formalism

The Newman Penrose formalism can best be understood by introducing a complex basis vector
field

Z = a+ ib (1.55)

where at each point on the manifold a,b are a real orthonormal basis of the tangent vector space
at this point and the (outward) pointing normal vector is n = a× b [137, 138] (see Fig. 1.12A).
For a given normal vector field n, defining an orientation of X, Z is defined up to a rotation
around n corresponding to a gauge transformation. With this, we understand scalar, vector and
tensor fields as so called spin-weighted fields. A spin-weighted field is a complex valued function
denoted as

(s)f(s
1, s2,Z) = f(s1, s2)eisθ(s

1,s2,Z) (1.56)

whose phase θ depends on the local choice of Z. s is the so-called spin-weight of (s)f and
denotes the rotational symmetry of (s)f , i.e. (s)f transforms under rotations of the local basis
(Z′ = e−iψZ) as

(s)f
′(z) := (s)f(z,Z

′) = e−isψ (s)f(s
1, s2,Z) (1.57)
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For example, for a real vector field v, we denote the tangential components as the spin fields

(1)v = Z ·v and (−1)v = Z̄ ·v, where .̄.. is the complex conjugate. As we consider only real vector
and tensor fields here, we have (s)f = (−s)f̄ for |s| > 0. The normal component vn = n · v is
a scalar quantity on the surface and hence defines a real valued spin 0 field. Pseudoscalars like
the vorticity correspond to imaginary spin 0 fields. Fields with spin-weight s > 1 correspond to
trace-less symmetric rank s tensors such as the order parameter of an s-atic [139, 140]. A rank
2 tensor tij defines a spin 2 field (2)t, corresponding to its trace-less symmetric component, as
well as a spin 0 field (0)t corresponding to its trace and antisymmetric component:

(2)t = ZiZjtij =
1

2
ZiZj(tij + tji − gijt

k
k ), (0)t = Z̄iZjtij = (gij + iϵij)tij , (1.58)

where we used Eq. D.2. Contractions of multiple tensors correspond to products of spin-weighted
fields. Consider for example a vector field fi given by the contraction of a rank 2 tensor tij and
a vector pj by fi = tijg

jkpk. Then, the corresponding spin-field can be written as

(1)f = Zifi =
1

2
((2)t (−1)p+ (0)t (1)p) (1.59)

where spin-weights add up, i.e. the spin-weight of the product is the sum of the spin-weights of
the factors. Covariant derivatives of vector or tensor fields can be understood using the derivative
operators ð ("edth" or spin-raising operator) and ð̄ ("edth bar" or spin-lowering operator):

ð (s)f =Zi∂i (s)f + sΓ (s)f (1.60)

ð̄ (s)f =Z̄i∂i (s)f − sΓ̄ (s)f, (1.61)

where Γ is the spin-connection which we define as

Γ =
1

2
Z · Zi∂iZ̄ =

1

2
Z · ðZ̄ (1.62)

corresponding to the rotation of the basis Z relative to parallel transport [141, 137]. Γ is the
complex analog to the Cristoffel symbols Γkij . The spin-raising operator ð yields a field with
spin-weight s+ 1. For s > 0, it corresponds to the symmetrised gradient of (s)f for s > 0. The
spin-lowering operator ð̄ is the complex conjugate of ð and yields a field with spin-weight s− 1.
For s > 0, ð̄ (s)f yields the divergence (or curl) of the tensor field associated with (s)f . Applying
the complex derivatives to the three-dimensional representation of the surface X understood as
a spin-0 field, one recovers the complex basis Z:

ðX = Zi∂iX = Z, ð̄X = Z̄ (1.63)

The curvature tensor Cij can be understood in terms of the mean curvature 2 0C and the
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anisotropic curvature 2C defined as

0C = C i
i , 2C = ZiZjCij . (1.64)

There are related to the Gaussian curvature κ via

κ =
1

4
(0C 0C − 2C −2C). (1.65)

Importantly, κ can also be expressed in terms of the commutator of the covariant derivative [141]

(ð̄ð − ðð̄) sf = 2sκ sf ⇒ κ =
1

2
(ðΓ̄ + ð̄Γ), (1.66)

which demonstrates that Gaussian curvature is an intrinsic property of a surface geometry.

To calculate the flow field of a fluid film, it is often useful to write the flow field as a Hodge
decomposition [142, 143, 144], which is the generalization of the more well known Helmholtz
decomposition in three-dimensional cartesian space to general manifolds. Using the Newman
Penrose formalism, the Hodge decomposition of the flow field (1)v can be written as:

(1)v = ð (0)F + (1)vh, (1.67)

where (0)F = F = A + iB is a spin 0 field composed of a scalar field A and a pseudoscalar
field iB with A(s1, s2), B(s1, s2) ∈ R. (1)vh is the harmonic component of the flow field with
ð̄ (1)vh = 0, i.e. a flow field with vanishing divergence and vorticity. It is only non-vanishing for
a surface with non-spherical topology. For a cylinder, it corresponds to rigid body rotation and
translation of the cylinder. The imaginary part of (0)F corresponds to the stream function and
hence the rotational component of the flow field with vanishing divergence. The real part of (0)F

corresponds to the velocity potential and hence the irrotational component of the flow field with
vanishing vorticity but non-vanishing divergence.

Using the spin raising and lowering operators, the tangential force balance equation of an isotropic
active fluid film (Eq. 1.52) reads

ηsð̄ð (1)v + ηbðRe[ð̄ (1)v]− γ (1)v = −ð (0)χ, (1.68)

where (0)χ = χ∆µ. This equation can be rewritten by making use of the Hodge decomposition
(Eq. 1.67) and the commutator of the covariant derivative (Eq. 1.66), yielding

ηð∆LB(F + αReF )− (γ − 2ηκ) (ðF + (1)vh) = −ð (0)χ (1.69)
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A B Cisothermal coordinates
Riemann sphere

geometric potential Gaussian curvature

Figure 1.13: A: Plot of the Riemann sphere understood as the complex plane mapped to a sphere such
that squares are mapped to squares, i.e. gij ∼ δij . Coordinates of a general surface that obey this condition
(Eq. 1.70) are called isothermal (see main text for details). B,C: Plots of a cylinder that is deformed to
a torus while keeping isothermal coordinates such that the deformation is understood in terms of a change
in φ, i.e. as locally isotropic expansions or contractions. B: Plots with φ = log l, also called the geometric
potential, indicated by the colormap. C: Plots with the Gaussian curvature κ indicated by the colormap.
Note that κ and φ are closely related as stated by Liouville’s equation, Eq. 1.71.

1.3.2 Isothermal coordinates

As shown by Gauss [145], there exist coordinates for any point on any surface such that in an
open set around this point, the metric tensor becomes

gij = l(s1, s2)2δij , (1.70)

where l(s1, s2) is a length scale. This may be understood as a (conformal) mapping that maps
squares in the coordinate space to squares on the surface, where the size of the square, however,
varies across the surface according to the length scale l (see Fig. 1.13 for examples. As l is
strictly positive, we can write it as l = eφ. φ is often called a geometric potential as it obeys
a Poisson-like equation [146, 139]. This equation, called Liouville’s equation, relates the length
scale with the Gaussian curvature:

∆LBφ = −κ, (1.71)

where ∆LB = gij∇i∂j = ð̄ð is the Laplace-Beltrami operator. Importantly, this operator simpli-
fies to the ordinary Laplace operator ∆0 = ∂2s1 + ∂2s2 , when using isothermal coordinates:

∆LB =
1

l2
∆0 = e−2φ∆0 (1.72)

Thereby, Liouvilles equation (Eq. 1.71) becomes a self-consistency equation for φ.

In isothermal coordinates we can identify the real and imaginary parts of Z with the normalized
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A B C D

Figure 1.14: Plots of the complex logarithm log z with the branch cut (black solid line) along the negative
real line.

covariant basis, i.e. Zi = (1/l, i/l). Then, the spin-raising and lowering operators read

ð (s)f =
2

l1−s
∂z̄(l

−s
(s)f), ð̄ (s)f =

2

l1+s
∂z(l

s
(s)f), (1.73)

where we make use of the so called Wirtinger derivatives defined as

∂z =
1

2
(∂1 − i∂2) , ∂z̄ =

1

2
(∂1 + i∂2) (1.74)

For functions that can be written as differentiable functions in z and z̄, these operators behave
as ordinary derivatives [147, 148]. On a complex manifold, the Wirtinger derivatives yield the
Dolbeault operators ∂, ∂̄, i.e. covariant derivative operators acting on differential forms, to which
the spin-raising and lowering operators ð, ð̄ can be mapped [149]. Thereby, the two-dimensional
surface is mapped to a Riemann surface, i.e. a complex one-dimensional manifold with complex
coordinate

z = s1 + is2. (1.75)

Isothermal coordinates have recently also been used by Vafa and co-authors to understand ne-
matic surfaces [139, 150]. There, they also make use of a complex formalism that appears
equivalent to the Newman-Penrose formalism we have introduced above when using isothermal
coordinates.

1.3.3 Holomorphic functions

For a fluid film with vanishing Gaussian curvature, we can parametrize the surface such that
l = 1. In chapter 2, we study such a flat fluid film with vanishing friction and in the absence of
gradients of active stresses. In this case,the governing equation of the flow field (Eq. 1.69) yields

∂z̄∂z∂z̄(F + αReF ) = 0. (1.76)

Solution to this equation can be written in terms of holomorphic functions (see sections 2.3,B.2),
which we introduce in the following.
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A function f is called holomorphic, when it obeys the Cauchy-Riemann equations, which can be
written using the Wirtinger derivatives as

∂z̄f = 0. (1.77)

A holomorphic function is n times complex differentiable with n ∈ N, i.e. the derivatives

f (n)(z) = (∂z)
nf(z, z̄) (1.78)

are well defined. Furthermore, every holomorphic function is analytic, meaning that it is identical
to its Taylor series

fa(z) =
∞∑
n=0

f (n)(a)
(z − a)n

n!
(1.79)

in an open disk around the point a ∈ Z. The coefficients f (n)(a) can also be calculated from the
values at the boundary of this disk. By virtue of Cauchy’s integral formula [147], we have

f (n)(a) =
n!

2πi

∮
C
dz

f(z)

(z − a)n+1
, (1.80)

where C is a curve in the complex plane that winds once around a and encloses an open region
in which f is holomorphic. Hence, f and all its derivatives are defined by the boundary values
of f . Choosing a = 0 and C as a circle with radius r around the origin, we have

f (n)(0) =
n!

2πrn

∫ 2π

0
dθ f

(
reiθ

)
e−inθ, (1.81)

i.e. the coefficients of the Taylor expansion correspond to the Fourier coefficients of f on the
boundary.

When f is holomorphic in an annulus with r < |z| < R, it can be written as a Laurent series:

f(z) =
∞∑

n=−∞
fnz

n, (1.82)

with fn ∈ C. In the limit R/r → ∞, the coefficients fn with n < 0 (n > 0) correspond to the
Fourier coefficients of f evaluated at the inner (outer) circle with |z| = r (|z| = R).

Any function that can be written as a Laurent or Taylor series in terms of (z−a) is holomorphic.
This includes in particular the complex exponential and logarithm, and functions that derive
from it such as trigonometric functions and non-integer power-laws like the square root

√
z. The

complex logarithm log(z) is holomorphic in the complex plane except along a curve z(λ) with
λ ∈ [0,∞), z(0) = 0 and ∂λ|z(λ)| > 0. This curve is the so called branch cut across which log(z)
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is discontinuous. It results from the multivaluedness of log(z), which in turn is a consequence of
exp(z) not being injective, i.e.

exp(z + 2πni) = exp(z) (1.83)

for n ∈ Z. A branch of log z is a single-valued function corresponding to a convention for the
angle ϕ = Im log z with z = r exp(iϕ). The standard branch is ϕ ∈ (−π, π) with the branch cut
along the negative real axis (see Fig. 1.14).

1.4 Overview of this thesis

In the following chapters we present the results of theoretical calculations and the analysis of
experimental data from quail and nematode embryos. Thereby we use the physical theories and
mathematical methods we discussed in the previous sections to understand the biological pro-
cesses we discussed in section 1.1.

We start by considering the process of gastrulation in the avian embryo in chapter 2. Adopting
some notions from fracture mechanics, we develop a mechanical model of the primitives streak
as an active viscous crack. This model allows us to understand experimental flow fields in terms
of forces generated within the primitive streak. To this end, we make use of the mathematical
methods introduced in the previous section, in particular in section 1.3.3. Using the thus inferred
mechanical model of the primitive streak we elucidate the process of streak elongation.

In chapter 3, we turn to the process of axis specification in the nematode embryo. As we discuss
there, the geometry of the egg shell determines the axes along which the body axes are estab-
lished in terms of chemical gradients with the help of flows generated within the actomyosin
cortex. To elucidate this phenomenon we consider a minimal model of guided symmetry break-
ing. To understand how such guiding arises from the mechanics of the actomyosin cortex, we use
a minimal model of the cortex introduced by Mietke et al. [135]. We investigate how anisotropies
in the cell shape impact flows and pattern formation in this active fluid model. We obtain ex-
act results for a slightly deformed sphere. To this end, we make extensive use of the Newman
Penrose formalism we introduced in section 1.3.1 and in particular spin-weighted spherical har-
monics which were originally defined within this formalism (see appendix E). We then compare
these results to experimental observations in the nematode embryo and generalize these findings
to a principle called Hertwig’s rule, i.e. the phenomenon that cells tend to divide along their
longest geometric axis. Finally, we develop a numerical method to understand how surface geom-
etry guides pattern formation in the non-linear regime of the active fluid model (see appendix F).

In chapter 4, we investigate how surface geometry guides flows in an active fluid film for more
general surface geometries. To this end we make extensive use of the Newman Penrose formalism
and the notion of isothermal coordinates which we introduced in section 1.3.2. With this, we
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map the governing equations of a curved fluid film to flat geometry by rescaling viscosities and
friction coefficient. Furthermore, we obtain exact bounds for how the flow field around a force
monopole changes upon a deformation of the surface. These results allow us to understand the
movement of a tension monopole in general anisotropies of the surface geometry. We then com-
pare these results to numerical solutions of an active fluid model in complex geometries. Finally,
we investigate how anisotropies in the surface geometry guides translations and rotations of a
localized source of anisotropic active stresses.

In chapter 5, we make use of the methods developed in the preceding chapters to understand
how torque dipoles generated by the actomyosin cortex give rise to chiral flows during left-right
symmetry breaking in quail and nematode embryos. In particular, we analyze experimental flow
fields from quail embryos during the process of left-right symmetry breaking.
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Chapter 2

Crack mechanics of avian gastrulation

The primitive streak is complex structure (see cross section in Fig. 2.1C) in the embryos of
amniote animals such as birds and mammals. It forms during the process of gastrulation and
enables the rearrangements of cells across tissue layers (see section 1.1.5). In Fig. 2.1B, an im-
age of a quail embryo with flourescent membrane marker is shown. On this scale, the primitive
streak looks like bright line drawn by a pencil on rather homogeneous sheet of tissue. During the
development of avian or mammalian embryos, the line first elongates and then regresses, i.e. it
shrinks away as the process of gastrulation comes to a close. In this chapter, we model this living
line that is the primitive streak as a one-dimensional active material. With this hydrodynamic
model, we study the transition between streak elongation and regression in terms of the forces
that drive these movements and deformations of tissue. To do so, we analyze experimental data
obtained from quail embryos by Julia Pfanzelter and Adrian Lahola-Chomiak from the lab of
Stephan Grill at the MPI-CBG, Dresden.

The primitive streak is embedded in the epiblast, an unicellular quickly proliferating epithelium.
Motivated by previous studies [88, 54, 87], we model the epiblast as a flat fluid film to understand
the large-scale movements and deformations of the epiblast tissue. In such a hydrodynamic the-
ory, the line that is the primitive streak introduces discontinuities in the stress and flow field,
not unlike a crack in a passive elastic material. These discontinuities in the model correspond to
sharp gradients within the streak or crack that are facilitated by distinct material properties. In
a fracturing elastic material, breaking down of covalent bonds facilitate large relative displace-
ments of the two crack faces. In the quail embryo, an epithelial to mesynchymal transition allows
cells to detach from the epiblast within the 100µm wide primitive streak [79, 3]. Also, out-of
plane deformations of the avian epiblast are restricted to the primitive streak and its immediate
surrounding [68]. Thus, the streak is also a line of material that is mechanically distinct from
the sheet of matter, the epiblast, it is embedded in. Such lines can be found in various biological
settings (see Fig. 2.7B-D for some examples). They shape the material properties and dynamics
of the organ or organism they are embedded in. Unlike passive cracks, living cracks like the
primitive streak or the cytokinetic ring undergo continuous turnover and perform mechanical
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work due to the activity of molecular motors, in particular Myosin. Next to understanding avian
gastrulation, the purpose of this chapter is to present a general hydrodynamic theory of such
active viscous cracks.

We will start by introducing a crack in a fluid film as a boundary with a peculiar geometry (section
2.1). We define this geometry (section 2.1.1) and discuss the flow field for prototypical crack
boundary conditions (section 2.1.2). To test whether the epiblast does indeed behave as a fluid
film, we analyze experimental flow fields from quail embryos, using microscopy images obtained
by Julia Pfanzelter and Adrian Lahola-Chomiak (section 2.1.3). In section 2.2, we develop
a mechanical theory of an active crack to understand how mechanical activity and material
properties of the crack material define crack boundary conditions. In section 2.3, we use this
theory and analytical solutions of crack boundary conditions to infer an effective mechanical
model of the primitive streak as an active crack. Finally, we investigate in 2.4 the propagation
of such an active viscous crack resulting from the advection of the crack tip. This will allow us
to understand how mechanical activity in the streak controls the elongation of the streak.

2.1 The primitive streak as a crack in a fluid film

2.1.1 Geometry of a crack in a surface

In a thin sheet of material, a crack may be represented as a curve

C = {Y(λ) ∈ S|λ ∈ [0, L]} (2.1)

embedded in the surface S that is the sheet, with λ being a coordinate along the crack. Y(0)

and Y(L) correspond to crack tips. With this, we define the covariant tangent vector of the
crack

eλ := ∂Y/∂λ (2.2)

which yields the length element dl := |eλ|dλ. Furthermore, we define the crack normal vector

νC := n× eλ/|eλ| (2.3)

which is normal to the crack contour but tangent to the surface (see Fig. 2.1E). Close to the
crack and away from the cracktips, we may parametrize the surface as

X(λ, x) = Y(λ) + xν. (2.4)

Identifying Y(0) as the Hensen’s node, the anterior tip of the primitive streak, x > 0 and
x < 0 correspond to the epiblast on the right and left side of the primitive streak. With this
parametrisation, we evaluate a vector or tensor field h on the surface S on the two sides of the
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Figure 2.1: Modelling the primitive streak as a crack in a fluid film. A-C: the primitive streak
in the avian embryo during the process of gastrulation, shortly before maximum streak elongation. A,C
Schematics of dorsal view (A) and cross section of the primitive streak C as in Fig. 1.5. B: Microscopy image
of the dorsal side of the avian embryo using a fluorescent membrane marker, obtained by Julia Pfanzelter at
the MPI-CBG, Dresden. D,E: Schematics of mouse (D) and human embryo (E) at a corresponding stage,
drawn after [66, 3]. Black arrows denote anterior movement of the Hensen’s node (black/orange circle) and
tissue movements towards the primitive streak (orange line). E: Geometry of a crack in a curved surface
(left panel) and of a straight crack in a flat surface using polar coordinates (right panel), see main text for
details. In F-I, we use the latter geometry for numerical solutions of the flow field (v, red arrows) of a
fluid film around a crack as a model for the epithelial tissue around the primitive streak. The color denotes
|v| with yellow corresponding to the maximum and blue to |v| = 0. Blue/red schematics illustrate the
stress (blue) and velocity (red) boundary conditions. In all four examples, we allow only for a rigid body
translation and rotation of the crack tip boundary. In F-H, we use lh → ∞. As this makes the flow field in
H degenerate with respect to a translation of the entire system, we further impose a vanishing net velocity
of the outer boundary. For further details on material parameters and boundary conditions see Table J.1 in
the appendix.
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crack as
hR(λ) = lim

x→0+
h(λ, x), hL(λ) = lim

x→0−
h(λ, x). (2.5)

As the crack represents a material that is distinct from the sheet represented by S,

hR(λ) ̸= hL(λ). (2.6)

In general, this is true for all hydrodynamic fields on S, including the flow field v and the stress
tensor ti. In other words, these fields are discontinuous at the crack. Of course, this discontinuity
in a mathematical sense is a property of the model. In reality, a crack in a fracturing material
as well as the primitive streak have a finite extension in all three spatial directions. The discon-
tinuity of the model represents a sharp gradient within the crack material that is facilitated by
the distinct material properties of the crack. In section In section 2.2, we link the discontinuities
in of flow and stress field, i.e. vR − vL and tiR − tiL, to a mechanical model of the crack.

Importantly, this requires also a model of the crack tip, as it is finite-sized object, denoted
in the following by T , that is mechanically distinct from the crack as well as the sheet the
crack is embedded in. In a fracturing elastic material, the immediate surrounding of the crack
tip is plastically deforming, which is crucial to calculating the critical load at which the crack
propagates (REF). The Hensen’s node is a peculiar structure with an extension of about 200 µm
within the plane of the epiblast to which specific morphogens are localized (REF).

2.1.1.1 A crack in the flat plane

The epiblast is a mostly flat epithelium as it is localized to the surface of the much larger
spherical egg-yolk. Therefore, we will represent the epiblast as a flat surface in the following.
We parametrize this surface using polar coordinates r, θ (see right panel in Fig. 2.1E). As the
primitive streak is a mostly straight line (see Fig. 2.1B for a typical example), we identify it
with the line θ = ±π with the crack tip or Hensen’s node T at the origin of the coordinate
system. To account for the finite size of the crack tip, we identify T with the circle r ≤ a. In
this parametrisation (λ = r), we have

eλ = r, ν = θ, hR = h(θ = −π), hL = h(θ = π). (2.7)

In principle, the primitive streak has a posterior tip or node. While in mouse this is called
the allantoic core domain [151], a similar structure has not or only poorly been characterized in
birds. In the experiments we analyze here, that were originally designed to image cell movements
around the Hensen’s node, the posterior half of the primitive streak is often outside the field of
view. Therefore, we consider here only a circular domain around the Hensen’s node, i.e. r < R

with R = 600µm.
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2.1.2 Crack boundary conditions in a fluid film

While Hensen’s node and primitive streak are highly complex structures, the surrounding epiblast
appears flat and homogeneous around the time point of maximum streak extension which we
study here. Furthermore, it is a quickly proliferating tissue with cells constantly dividing. Such
cell division fluidise an epithelium by facilitating the relaxation of elastic stresses [152]. Therefore,
we model the epiblast in the following as a flat fluid film. Using cartesian coordinates, the in-
plane stress tensor is given by

tij = η (ṽij + α(divv −G)δij) , (2.8)

where η is the shear viscosity α is the ratio of bulk over shear viscosity and ṽij is the trace-less
symmetric component of the shear tensor vij as defined in Eq. 1.42. G > 0 is a growth rate of
the tissue that is independent from the stresses that act on patch of tissue, in contrast to the
bulk viscosity ηb = αη which captures a coupling of cell division and death rates to the tissue
stress [152]. In the following, we consider G as well as the viscosities to be spatially homogeneous.

The epiblast is attached to the vitelline membrane, a protein membrane that encompasses the
egg-yolk. We take into account friction between the vitelline membrane and the epiblast by a
tangential force density

f iext = −γvi (2.9)

that is acting on the epiblast. γ is a friction coefficient that defines a hydrodynamic length
lh =

√
η/γ. With this, the force balance equation, Eq. 1.25, yields the governing equation of

the flow field v of the fluid film, given by Eq. 1.52 with tijact = −ηαG.

The flow field is defined by the differential equation Eq. 1.52 as well as boundary conditions at
the crack (θ = ±π), the crack tip (r = a) and the enclosing circle (r = R). We consider two
types of boundary conditions: velocity and force boundary conditions. A velocity boundary con-
dition, i.e. prescribing the velocity v at the boundary, amounts to a Dirichlet type of boundary
condition. We understand force boundary conditions as prescribing the forces f the boundary
exerts onto the fluid film. The boundary forces are given by the fluid stress projected onto the
outward pointing normal vector of the boundary contour. Thus, prescribing the boundary forces
amounts to a Neumann type of boundary condition. In section 2.2, we consider a mechanical
model of an active viscous crack, where such boundary conditions result from force and torque
balance and constitutive equations for fluxes at the crack. This mechanical model yields also
boundary conditions in terms of linear combinations of boundary forces and velocities, akin to
Robin boundary conditions.

To illustrate how crack boundary conditions shape the flow field, we plot numerical solutions
for combinations of Dirichlet and Neumann boundary conditions in Fig. 2.1F-I. To this end, we
make use of a staggered grid in terms of log r and θ (see appendix G for more details). In 2.1F,G,
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we consider a tissue that is incompressible, but homogenously growing, i.e. G > 0, ηb → ∞.
This implies a flux of tissue through the boundaries. In 2.1F and G, we limit this flux to the crack
and the outer boundary, respectively, by imposing v = 0 at the corresponding boundary. These
boundary conditions break the symmetry of the otherwise homogeneous system, such that the
tissue moves anteriorly (up in Fig. 2.1F) or posteriorly (down in Fig. 2.1G). The crack boundary
condition in Fig. 2.1F corresponds to a prototypical text book example from the field of fracture
mechanics. As a crack in such a setting is understood as a domain of broken molecular bonds,
one considers a model where left and right boundaries of the crack cannot sustain any forces, i.e.
fL/R := ±tijL/Rνi = 0 yielding a Neumann condition for the flow or displacement field. Applied
to the epiblast, it corresponds to a scenario, where the breakdown of extracellular matrix and
cell-cell adhesions allows for an unconstrained flux of the epiblast tissue into the primitive streak,
whereas the boundary to the extra-embryonic tissue acts a rigid constraint. This is similar to
previous ideas suggesting that ingression at the primitive streak results from fracture of the un-
derlying extracellular matrix [153]. In Fig. 2.1G, the situation is reversed with the crack acting
as a rigid constraint, while the outer-boundary is force-free.

It is instructive to calculate the mechanical work performed at the crack boundaries per time,
i.e.

jfL = +tνL · vL, jfR = −tνR · vR (2.10)

which quantify the flux of free energy from the crack to the fluid film (see also section 1.2.3). In
the examples discussed above (Fig. 2.1F,G), the flux of free energy jf vanishes at the crack as
well as all other boundaries. We call such crack boundary conditions, where jfL/R ≤ 0, passive,
as the crack does not drive the flow, i.e. it does not contribute to the mechanical work that
is required to balance dissipation due to viscosity and friction. The flow field in Fig. 2.1F,G
is entirely driven by the growth G of the tissue. For G = 0, the passive boundary conditions
considered there yield a vanishing flow field.

Importantly, the primitive streak is an active material. In particular, the activity of myosin
motor molecules has been found to be crucial for the cell movements during primitive streak
formation [88, 89]. Hence, the primitive streak may very well perform mechanical work on the
epiblast, also at the time point we are considering here. In Fig. 2.1H,I we consider such active
crack boundary conditions, where jf ≥ 0 at the crack boundaries or the crack tip. Furthermore,
we use G = 0 and use boundary conditions at the outer boundary such that we have jf = 0

there. Hence, the fluid flow is driven entirely by the crack and the crack tip. In Fig. 2.1H, we
consider a constant force-dipole density along the crack (fL/R ∼ ±ν) that pulls the fluid into
the crack, whereas the outer boundary and the crack tip are force-free. The flow field exhibits
two counter-rotating vortices on the left and the right side of the crack tip, reminiscent of the
so-called polonaise movements in the avian epiblast (see section 1.1.5). At the crack tip, these
flows yield an anterior movement of fluid surrounding cracktip relative to the outer boundary.
When the cracktip is advected by the fluid flow, this translates into a growth of the crack. In
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Figure 2.2: Tissue flows during avian gastrulation are captured by a fluid model A: LR-
symmetric component of the average flow field of the epiblast of 15 quail embryos 2h before the onset of
streak regression (see appendix C and Fig. C.2 therein). B: Flow field of a homogeneous fluid film with
lh → ∞ and α = 3 calculated with measured boundary velocities, i.e. the velocities at the boundaries of
streak and node and at a circle with R = 600µm (dashed line in A). See Fig. C.4 for a plot of the boundary
velocities and for other time points. C: residual of measured flow field (A) after subtracting the flow field in
B. D: Residual as in C averaged over the entire colored area in C and over time points −4h < tPS < −1h
for a range of the material parameters α, lh. Red star corresponds to the values used in B. E: Velocities
measured at the boundary of the primitive streak measured for different time points up to the onset of streak
regression (tPS = 0). Experimental data was obtained by Julia Pfanzelter and Adrian Lahola-Chomiak from
the lab of Stephan Grill, and then analyzed by me.

section 2.4, we investigate this advective crack growth to understand why the primitive streak
elongates. In contrast to crack propagation in a fracturing material, such crack growth is driven
by mechanical activity of the crack.

In Fig. 2.1I, we consider an active torque at the crack tip, driving a rotational flow around the
crack tip. In contrast to the other examples, this boundary condition and the resulting flow
field breaks the left-right symmetry of the fluid film. Importantly, a similar movements of cells
around the Hensen’s node has been found to underlie left-right symmetry breaking in the avian
embryo. In section 5.1, we will investigate this chiral flow further, using a model of an active
chiral crack (tip).
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2.1.3 Tissue flows during avian gastrulation are driven by the primitive
streak

In this chapter, we want to understand the large-scale movements of the avian epiblast prior to
left-right symmetry breaking. To this end, we model the primitive streak as a crack in a fluid
film. In the following, we validate this model using experimental data from quail embryos. The
raw data was obtained by Julia Pfanzelter and Adrian Lahola-Chomiak from the lab of Stephan
Grill at the MPI-CBG Dresden, and then analyzed by me (see appendix C for details). Briefly,
time-lapse microscopy data from quail embryos developing on a nutritive medium outside the
egg were analyzed using particle image velocimetry (PIV, [154]) to infer tissue movements. Data
from 15 embryos was aligned in space and time using the Hensen’s node as a spatial reference
point and the onset of primitive streak regression as a reference time point (tPS = 0). From this
data set an average flow field was obtained for different time-points −5h ≤ tPS ≤ 5h, averaging
the flow field around a given time point in a 1h window. Finally, this flow field was decomposed
in a left-right symmetric and left-right antisymmetric component (see Fig. C.2). In Fig. 2.2A,
the left-right symmetric component two hours before streak regression is shown in a 600 µm
window around the Hensen’s node.

We use this flow field to validate that the epiblast behaves as a homogeneous fluid film set into
motion by the primitive streak and possibly the outer boundary. To this end, we use the mea-
sured boundary velocities, i.e. the velocities at a circular boundary with a radius R = 600µm

centered at the Hensens’ node and the velocities at the boundary of streak and node. The latter
boundary is defined as points with a minimal distance between 100µm and 125µm to the cen-
ters of streak or node (corresponding to black line and circle in Fig. 2.2A. With this velocity
boundary condition, we calculate the flow field of an enclosed fluid film for a range of material
parameters, i.e. α and lh, as the velocity field is independent of a constant pressure that results
from a constant G for such boundary conditions. To this end, we make use of analytical solu-
tions of the governing equation Eq, see appendix B.1 C.5 for details. With this, we find that the
calculated flow field (vcalc) is in very good agreement with the measured flow field (vmeas) at
time points tPS < 0 for a hydrodynamic length that is larger than the system size (Fig. 2.2B-D),
i.e. the modulus of the residual, |vmeas − vcalc| < 0.1µm/min. is smaller than the experimental
standard deviation of the set of embryos (Fig. 2.4C,C.4). This validates our model. The epiblast
around the Hensen’s node indeed behaves as a homogeneous fluid film before left-right symmetry
breaking and streak regression.

The large value of lh we infer from the experimental flow field implies that friction forces re-
sulting from mechanical interaction with the vitelline membrane are negligible compared to the
viscous forces that result from mechanical interactions within the epiblast (see section 5.1.4 for a
discussion of mechanical interactions between the tissue layers). Therefore, we will neglect those
friction forces in the remainder this chapter, yielding lh → ∞. In this regime, the calculated flow
field is in good agreement with the measured flow field for any α > 1 (Fig. 2.2D), suggesting
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that tissue growth is largely independent from tissue-internal stresses. In fact divv is relatively
homogeneous and positive away from the primitive streak before streak regression (Fig. C.3).
We find that the residual is minimal for α ∼ 3 which we use in the following. Notably, this
corresponds to the value one obtains for a thin film of an incompressible fluid [155, 156]. Taken
together, the epiblast around the Hensen’s node behaves as a thin film of an incompressible fluid
with negligible substrate friction.

The flow field changes over time, as do the boundary velocities (Fig. 2.2E). For early time points,
the node moves anteriorly as the streak elongates. At latter time points this movement comes
to halt tPS = −1h, followed by streak regression tPS = 0h. In this chapter, we want to obtain
a mechanical understanding of this transition. This requires a mechanical model of streak and
node, which we introduce in the following section.

Importantly, we find that such a model cannot capture streak regression. For tPS > 0, we
find that the calculated flow field is no longer in qualitative agreement with the experimentally
measured flow field (Fig. C.4. We find that the epiblast anterior to the Hensen’s node undergoes
a striking shear flow, corresponding to convergent-extension rearrangements of the tissue, that
a model of a homogeneous fluid film cannot capture (Fig. C.3). This suggests that streak-
regression is at least partially driven by active convergent extension movements at the mid-line
anterior to the node. Notably, this line is known to become chemically distinct in terms of the
morphogen Shh at about this time point, i.e. immediately after left-right symmetry breaking
around tPS = 0 [67]. Furthermore, it is the line where a structure called the notochord forms
underneath the epiblast at around this time-point, which then induces a folding of the epiblast
to form the neural furrow [3]. It is beyond the scope of this thesis to understand the mechanics
of notochord and neural furrow formation. Therefore, we will focus on the time points tPS < 0.
However, it is worth noting that our approach can detect this mechanical heterogeneity of the
epiblast at later time points.

2.2 Hydrodynamic theory of active viscous cracks

2.2.1 Conservation laws

In the following, we set out to write down a physical model of an active viscous crack as a model
for the primitive streak, by considering the fluxes of momentum and angular momentum into
the crack and within the crack, similarly to section 1.2.2. For an extended version, including the
conservation of mass and considering a general parametrisation of a crack in a curved surface,
see section A.2 in the appendix.

Due to momentum conservation the net force acting on a line segment of the crack has to vanish,
when inertia forces are negligible. We consider mechanical interactions of the crack with the
surrounding fluid film and an underlying substrate. Mechanical interactions within the crack are
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captured by the crack tension tC . It has units of force and yields the force a line segment is
exerting on its anterior neighbor (i.e. the line segmented located in negative eλ direction with
respect to segment of interest). When the tension of two line segments differs, they exert a net
force on the line segment in between, which has to be balanced by other forces acting on the this
line segment. This balance of forces can be written in terms of a differential equation for tC

∂λtC = −fsub + fC , (2.11)

where ∂λ is the derivative with respect to the crack coordinate using an arc-length parametri-
sation of the crack. fsub denotes the force line density the substrate is exerting on the crack,
whereas fC is the force density the crack exerts onto the surrounding fluid film. fC is balanced
by the boundary forces resulting from the stress ti of the fluid surface, i.e.

fC = −
(
tθR − tθL

)
, (2.12)

where tθL/R = tiL/Rθi is the projection of the stress tensor ti onto the normalized vector ν = θ,
evaluated at the left and right sides of the crack as defined in Eq. 2.7. This implies that a
boundary condition in terms of

(
tθR − tθL

)
, corresponds in fact to the force balance equation Eq.

2.11. At the crack tip, the crack tension tC yields a force the crack is exerting on the crack tip.
Again, the net force acting on the crack tip has to vanish, yielding

Fsub + tC
∣∣
λ=0

= FT , (2.13)

where Fsub denotes the force the substrate is exerting on the crack tip, whereas FT is the force
the crack tip exerts on the fluid film, defined by contour integral of the fluid stress along the
boundary of the crack tip T In the geometry and parametrisation we consider here (right panel
in Fig. 2.1E), with T corresponding to a circle with radius a centered at the origin, we have

FT = −a
∫ π

−π
dθ tr(a, θ), (2.14)

where tr denotes the contraction of the stress tensor ti with the unit vector r.

In particular for understanding left-right symmetry breaking in chapter 5, we need to consider
also angular momentum conservation. We capture torque dipoles within the crack with the crack
moment mC which has units of a torque. In general mC is a three-dimensional vector. However,
we consider here a crack in a flat surface to understand forces and movements within this plane.
To this end, it is sufficient to consider the normal component of mC which we denote as mC to
simplify the notation (see Eq. A.16 for torque balance in a curved crack in a curved surface).
The balance of torques acting on a line segment of the crack then yields:

∂λmC = −τsub + τC − tC · θ, (2.15)
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where τsub denotes the torque line density the substrate is exerting on the crack, whereas τC is
the torque density the crack is exerting on the fluid film. Similarly to Eq. 1.27, we find that
crack stresses normal to the crack correspond to a torque density that is constrained by torque
balance. When omitting, normal surface moments, the τC balances a torque resulting from the
fluid stress, i.e.

τC = d
(
tθR + tθL

)
· r, (2.16)

where d is the width of the crack in the plane. For any real crack d > 0 such that a dipole of
forces that are parallel to the crack yields a torque. Finally, torque balance at the crack tip reads

Tsub +mC

∣∣
λ=0

= TT , (2.17)

where Tsub is the torque the substrate exerts on the crack tip and the torque TT the crack tip
exerts on the surface. For the crack tip geometry we are using here, the torque is given by

TT = −a2
∫ π

−π
dθ tr(a, θ) · θ. (2.18)

In chapter 5, these expressions will be crucial. In this chapter, however, we consider a left-right
symmetric crack and fluid film, implying trθ(θ) = −trθ(−θ) and hence τC = 0 = TT .

2.2.2 Constitutive equations for a left-right symmetric crack

In the field of fracture mechanics, a crack model is usually defined by a crack boundary condition.
Here, we consider a physical model of the crack, i.e. constitutive equations for the fluxes within
the crack, which then yield boundary conditions by making use of force and torque balance
equation. Since we consider here a straight left-right symmetric achiral crack, the flux of angular
momentum mC and the normal crack stress tC · θ vanish. For the crack tension along the crack
trC = tC · r, we consider the following form

trC = ηC∂rvC + tactC , (2.19)

where ηC > 0 denotes a one-dimensional viscosity of the crack material, with vC being the
(radial) velocity of the crack material (see illustration in Fig. 2.3A). For simplicity, we use
vC = (vrL+v

r
R)/2 in the following. Due to left-right symmetry, this is equivalent to vC = vrL = vrR.

tactC is an active line tension, which may be related to the concentration of a stress regulator in
the spirit of section 1.2.6.

Since friction with a substrate appears negligible in the epiblast, we omit here such substrate
interactions also at the crack and crack tip, i.e. fsub = 0 = Fsub. Force balance then yields the
following equation

ηC∂
2
rvC + ∂rt

act
C = −tθrR + tθrL (2.20)

Together with vC = vrL/R, this represents a non-standard boundary condition involving a deriva-
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A B

Figure 2.3: Mechanical model of active viscous crack. Illustration of the active viscous crack model
discussed in the main text. fθ

L/R denote the forces the left (L) and right (R) sides of the crack exert on the
surrounding fluid film.

tive of v along the contour of the boundary when ηC ̸= 0. However, this boundary condition is
not sufficient to uniquely define a left-right symmetric flow field, since it does not yield conditions
for vθL/R or tθθL/R. We understand this necessary condition as a constitutive equation for the force
dipole d(tθθR + tθθL ) with which the crack is pulling at the fluid film:

d(tθθR + tθθL ) = pactC − ηing∆v, (2.21)

where pactC is an active force dipole that may result from myosin cables in the primitive streak,
and ∆v := vθL − vθR is the flux into the crack (see illustration in Fig. 2.3). ηing has units of a
two-dimensional viscosity. Where understand it as an effective viscosity of a cross-section of the
primitive streak that quantifies dissipation associated with the process of ingression.

At the crack tip, force balance yields

FT = (trCeλ)
∣∣
λ=0

, (2.22)

where eλ = r(θ = ±π). Furthermore, we have TT due to left-right symmetry. For a finite
sized crack tip, one needs to consider also higher order force multipoles. In general, such force
multipoles imply a divergence of the flow field at the crack tip, implying strong deformations
of the crack tip. We do not find such a divergence at the Hensen’s node, when considering the
left-right symmetric component of the flow field. Therefore, we consider an effectively rigid crack
tip, that can move and rotate but not deform, implying

v(r = a, θ) = VT + aΩTθ, (2.23)

where we define the velocity VT and the angular velocity ΩT of the crack tip as

VT =
1

2π

∫ π

−π
dθ v(r = a, θ), ΩT =

1

2πa

∫ π

−π
dθ v(r = a, θ) · θ, (2.24)
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where ΩT = 0 in this chapter due to left-right symmetry.

Together with a Dirichlet or Neumann boundary condition at r = R, Eq. 2.20-2.23 are sufficient
to define a unique flow field of the fluid film (up to a rigid body translation in the case of
Neumann boundary conditions due to the Galilei invariance of the model). They allow us to
map the boundary conditions used in in Fig. 2.1F-H to material properties of the primitive
streak. A force-free crack, as in Fig. 2.1F, corresponds to the limit

ηC
ηR

→ 0,
tactC

ηGR
→ 0,

ηing
η

R

d
→ 0,

pactC

ηGd
→ 0, (2.25)

where viscous and active stresses of the crack are negligible compared to the viscous stresses of
the fluid film. A rigid crack, as in Fig. 2.1G, corresponds to the limit of infinite crack viscosities,
i.e.

ηC
ηR

→ ∞,
tactC

ηCG
→ 0,

ηing
η

R

d
→ ∞,

pactC

ηingGR
→ 0. (2.26)

In contrast, a crack that is no longer a crack, i.e. it yields a fluid film as if there was no crack,
would be given by

ηC
ηR

→ 0,
tactC

ηGR
→ 0,

ηing
η

R

d
→ ∞,

pactC

ηingGR
→ 0, (2.27)

where ηC vanishes but ηing not.

Finally, the active crack considered in Fig. 2.1H is given by

ηC
ηR

→ 0,
tactC

ηGR
→ 0,

ηing
η

R

d
→ 0,

pactC

ηGd
→ ∞. (2.28)

In general, we consider a crack to be mechanically active, when the active line tension tactC or the
active force dipole pactC are not negligible.

While the constitutive equations considered so far are sufficient to define the flow field, they do
not contain any information about growth and deformations of the crack in time. Due to left-right
symmetry, we consider here only the growth of the crack along its axis, and not deformations
of the crack away from the mid line. When keeping the outer boundary fixed, crack growth
(and shrinkage) corresponds to a motion of the crack tip eλ · ∂tY(0) < 0 (eλ · ∂tY(0) < 0). We
consider advection of the crack tip as well as flow-field independent crack growth, quantified by
the velocity Gact:

∂tY(0) = VT −Gacteλ (2.29)

Gactd corresponds to a rate with which material of the fluid film becomes crack material in terms
of a chemical transition that is independent of the flow field. As such, it may represent chemical
but not mechanical activity of the crack. Crack growth in a fracturing elastic material may
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be understood as a stress-dependent Gact that quantifies the rate of plastic deformations and
breakdown of molecular bonds in response to the stresses that act on the crack tip.

2.3 The primitive streak as a branch cut

In the previous section, we have introduced a theoretical framework for a mechanical understand-
ing of the primitive streak as an active crack, i.e. a one-dimensional active material embedded in
an otherwise continous surface material. This framework allows to understand boundary veloci-
ties and forces at the crack in terms of mechanical interactions within the crack material. Such
boundary conditions, however, are already a property of a model. The true physical observ-
able is the flow field away from the boundary condition in the model. In section 2.1.3, we have
established that experimental flow field of quail embryos is consistent with a model of a crack
embedded in a homogeneous fluid film with infinite hydrodynamic length. While the method
we used allows to test, if there are some crack boundary conditions that yield the observed flow
field, it does not yield a robust estimate of these boundary conditions, as the fitting functions
are ill-behaved close to the crack. In the following, we will make use of holomorphic functions to
understand in analytical terms how the flow field around a crack is controlled by crack boundary
conditions. In particular, we write the flow field as an analytical expansion, with the first terms
dominating away from the boundaries. Truncating this expansion allows to infer an effective
crack model of the primitive streak from the measured flow field.

2.3.1 Solving crack boundary conditions with holomorphic functions

The equation (Eq.B.13) that governs the flow field of a flat homogeneous fluid film in the absence
of friction is mathematically equivalent to the equation that governs displacement fields of an
elastic sheet with the function F known as the Airy stress function. In the field of elasticity, it has
long been known that this equation can be solved using harmonic or equivalently holomorphic
functions [157], which we introduced in section 1.3.3. This can be seen for example by making
use of the Newman Penrose formalism (see section 1.3.1) and Wirtinger calculus (see section
1.3.2). As we show in the appendix in section B.2, the flow field and the resulting stress field can
be written in terms of two holomorphic functions fand g (see Eq. B.15-B.17). Solving boundary
conditions amounts to finding appropriate functions that are holomorphic in the enclosed do-
main. When the domain is a circle (without a crack), f and g are given by Taylor expansions (Eq.
1.79). The power m in this expansion translates into a power-law exponent of the r dependence
and an frequency of the θ dependence of flow and stress fields (see Eq. B.18,B.26,B.27). Thus,
the Taylor coefficients of fand g correspond to Fourier components of the boundary condition
(see also Eq. 1.81). As higher modes decay with faster (i.e. with a greater power-law exponent)
inside the circle, this allows for a robust calculation of the flow field from measured boundary
velocities. In Fig. 2.4, we use this to determine fand g from the measured flow field interpolated
along a circle with radius 600µm. We find that the calculated flow field does not agree even
qualitatively with the measured flow field (Fig. 2.2A). Thus, as expected, the primitive streak
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does not behave like a homogeneous fluid film.

In order to incorporate a crack, one can augment the Taylor (or Laurent) expansion with non-
integer power laws, i.e. f, g ∼ zm with m ∈ M ̸⊂ Z [158, 159, 160]. For a passive crack
(tactC = 0 = pactC ), the crack viscosities ηing, ηC together with the viscosities η, αη of the fluid film
define a set of power-laws M that solves the crack boundary conditions, as we discuss in ap-
pendix B.2.2. This allows to capture the flow and stress field on length scales r with a≪ r ≪ R

in terms of a few analytic functions. The amplitudes of these modes result from the boundary
conditions at r = R. In the field of fracture mechanics, one usually finds a divergence of the
stress at the crack tip scaling as 1/

√
r. The amplitude of this divergence is known as the stress

intensity factor and corresponds to the external load that drives the fracture of the material. The
function that translates the external load, i.e. the boudary forces at r = R into the stress inten-
sity factor depends on the geometry of the system, the material properties of the sheet, as well
as the specific crack boundary conditions. In order to understand crack propogation, the stress
intensity factor is the key aspect of the stress field one needs to consider [161, 158, 162, 163].
While the powerlaw exponent of 1/2 may be modified by certain crack condition, the principle
of a divergence of stresses quantified by a well defined stress intensity factor appears robust
[159, 162, 164]

In the quail embryo, no such divergence of stresses at the node is evident, when considering the
symmetric component of the flow field (Fig. B.2). That the usual ansatz from fracture mechanics
does not apply to the primitive streak is not surprising for two reasons: Firstly, the system does
not exhibit such a clear separation of length scales. The size of the node (a ∼ 100µm) is only
one order of magnitude smaller than the size of the system which is on the order of millimeters.
Thus there is no regime where a ≪ r ≪ R with R ∼ 1mm. Secondly, the primitive streak is
mechanically active and potentially patterned. The pattern of mechanical activity determines
the flow field. However, we do not know this pattern, neither the mechano-chemical processes
that define it.
Therefore, we will use an agnostic approach (see appendix B.2), using an expansion of the flow

field that is valid away from the boundaries for any power-law or any other form of flow field
around a crack. Specifically, we consider an expansion of f, g in terms of the complex logarithm
log z = log r/R0 + iθ, i.e.

f =

∞∑
n=0

f̃n(log z)
n g =

∞∑
n=0

g̃n(log z)
n, (2.30)

where f̃n, g̃n are complex numbers that are given by the boundary conditions and define the
flow field. The crack is identified as the branch cut of the complex logarithm. In the usual
convention, the branch cut is the negative real axis. We use this convention also here, as we
consider a straight crack. We note, however, that this expansion can also be used for curved
cracks as long as r · ∂λY > 0 (see section 1.3.3).
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Figure 2.4: Capturing experimental flow fields with holomorphic functions. A: Flow field cal-
culated from measured boundary velocities at r = R, corresponding to a scenario where epiblast as well as
the streak behave as a homogeneous fluid film. We used lh → ∞, where the flow field can be understood in
terms of the holomorphic functions f, g for which we use here Taylor expansions up to order 50. B: Residual
of measured flow field after subtracting the flow field in A. C: Spatial average of residuals over the circle
with R = 600µm excluding streak and node. Blue: Residual of measured flow field after subtracting the
average velocity. Yellow correspond to the residual in Fig. 2.2C, whereas red and violet correspond to B
and G of this figure. D-F flow fields corresponding to the coefficients V , A, and B, in that order, in Eq.
2.31. Flow fields were normalized such that they all have the same average modulus. G: Fit to measured
flow field (excluding streak and node) at tPS = −2h using Eq. 2.31. H: Residual of the measured flow field
after subtracting the flow field in G. I: coefficients of fits as in G over time. Blue, pink and green correspond
to the normalized flow components in D, E and F, respectively.
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2.3.2 Deciphering the forces driving primitive streak elongation and ingres-
sion with the complex logarithm

In the following, we make use of expansion of the flow field in terms of the complex logarithm
to infer an effective mechanical model of the primitive streak. Using Eq. 2.30, we find that
the flow field of a fluid film around a left-right symmetric crack away from the boundaries (i.e.
| log r/R0| < 1 using a < R0 < R) can be written as

(1)v = V0−Az̄(log z̄)+Bz [(2 + α)(log z)− α (log z̄ + 1)]+(1)vcont+O(r| log r/R0+iθ|2), (2.31)

where (1)v = vy − ivx is the flow field with y corresponding to the axis of the primitive streak
(see appendix B.2.3 and C.6). We use here the notation of spin-weighted fields we introduced
in section 1.3.1. (1)vcont is a continuous component of the flow field scaling linearly with r rep-
resenting a global shear and expansion of the epiblast. For simplicity, we omit (1)vcont in the
following. V0, A,B are real coefficients corresponding to different components of the flow field. V0
corresponds to a rigid body translation (Fig. 2.4D). A corresponds to a harmonic flow field with
vanishing divergence and vorticity that is discontinous at the crack (Fig. 2.4E). B corresponds to
a non-harmonic flow field that is dominated by a term of the form vθ ∼ rθ (Fig. 2.4F). We want
to capture the experimental flow field in terms of these three coefficients to obtain an analytical
representation of the flow field.

To this end, we determine the coefficients as a fit to the flow field away from the streak and
the node. We find that the fit captures the flow field well for tPS < 0, meaning that we can
capture the experimental flow field with only three fitting parameters (Fig. 2.4C,G,H). Notably,
the fit is dominated by the non-harmonic component, i.e. the term proportional to B plotted in
Fig. 2.4F, at all times tPS < 0. Strikingly, we find that the fit fails for tPS > 0, i.e. the mean
residual is considerably greater than the experimental uncertainty of about 0.1µm/min. and even
approaches the average modulus of the flow field when subtracting the rigid body component
(Fig. 2.4C). This provides further evidence, that the epiblast does not behave as a homogeneous
fluid film during streak regression (i.e. tPS > 0).

The fit provides an analytical representation of the tissue during avian gastrulation (Eq. 2.31)
that coincides with the experimental flow field away from streak and node up to experimental
uncertainty. Importantly, this expression fulfills Eq. B.13 up to θ = ±π and is well behaved
there, meaning that it does neither diverge nor contain oscillatory patterns that are absent in the
experimental data (Fig. 2.4G). Thus, evaluating Eq. 2.31 at θ = ±π allows to understand the
experimental flow field in terms of effective crack boundary conditions. Evaluating Eq. 2.31 at
r = a with a = 100µm, yields boundary conditions at the cracktip corresponding to the Hensen’s
node. In particular, it yields the crack tip velocity VT (Eq. 2.24) and the crack tip force FT
(Eq. 2.14) the node is exerting on the epiblast. The hydrodynamic theory we presented in the
previous section then allows to map such boundary conditions to an effective mechanical model
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of the primitive streak as an active viscous crack. With this, we want to understand what drives
and stops the elongation of the streak. Note that in the following, we focus on time points before
the onset of streak regression (tPS ≤ 0), since the model of a crack in a homogeneous fluid film
does not apply to later time points (tPS > 0).

In Fig 2.5A, we plot the boundary velocities on the left (L) side of the crack parallel to the
crack (vθL = −vθR). vθL is positive along the crack at all times reflecting the flux of the epiblast
into the primitive streak. Over time vθL and thus the flux of material into the crack decreases.
We define the total flux J as the integrated flux through the boundaries of the crack and the
crack tip (Eq. C.9). From the experimental data, a corresponding value can be calculated from
the integrated divergence of the flow field (Fig. C.3) inside the area of streak and node. We
find that the experimental value agrees well with the flux J calculated from the crack model,
which validates the crack model (Fig. 2.5C). We understand this inward flux of material in the
plane of the epiblast to be balanced by an outward flux out of the plane, in particular due to
cells detaching from the epiblast to form the lower germ layers, a process called ingression. We
find that this flux decreases over time, also at latter time points tPS > 0. In other words, in-
gression slows down and eventually comes to a halt, as the streak stops to elongate and regresses.

Importantly, the crack model allows to understand this process in terms of the forces the streak
is exerting on the epiblast. We find that the streak pulls the material inside, i.e. fθL = −fθR < 0

at all times tPS < 0 (Fig. 2.5B). In our crack model (section 2.2.2), this implies a non-negligible
mechanical activity, in terms of pC > 0. Thus, the primitive streak is not just a special type of
tissue that locally allows the growing tissue to leave the plane in response to in plane stresses,
like the force-free crack we considered in Fig. 2.1F. Instead the primitive streak is a mechani-
cally active crack that pulls the surrounding tissue towards it. This is consistent with previous
studies that understood the primitive streak to form from a patch of active stresses resulting
from actomyosin cables [88, 89, 55, 54, 165]. Over time, the pulling force decreases as the flux
does, suggesting that ingression slows down because the streak pulls less strongly on the epiblast.

At the same time, the streak in our field of view is moving upwards (−vr > 0, Fig. 2.5D), as
the streak as a whole is elongating. We note that the epiblast at the streak close to the node
(r = 100µm) is moving slower than at posterior segments of the streak. This corresponds to a
contractile flow along the streak. We determine also the boundary forces parallel to the streak
and use force balance (Eq. 2.11, 2.13) to obtain the line tension trC of the streak in a regime of
negligible substrate interactions (Fig. 2.5E). We find that for early time points (tPS ≤ −2h),
the line tension is positive trC < 0, i.e. the streak as a line is contracting. Together with the
contractile flow (∂rvr < 0), this implies tactC > 0 in our crack model, i.e. mechanical activity in
the streak drives the contraction. At latter time points trC vanishes and even becomes negative
at tPS = −1h, while the gradient −∂rvr corresponding to the contraction decreases but never
vanishes such that we may attribute the negative line tension to the line viscosity ηC . Taken
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Figure 2.5: A,B,D,E: Crack boundary conditions obtained from fit in Fig. 2.4G to left-right symmetric
component measured flow fields, modelling the streak in the epiblast as a crack in a fluid film. Colors
correspond to different time points (tPS) with respect to streak regression. r corresponds to the distance from
the node along the streak. A,D: boundary velocities on the left side of the crack vθL = −vθR, vrL = vrR = vr.
B boundary force density fθ

L = −fθ
R with which the crack pulls the fluid film inside, relative to viscosity η

of the fluid film. E Line tension trC of the crack obtained from boundary force density fr and the crack tip
force FT in F using Eq. 2.11,2.13. C: Total flux into streak and node. Red line corresponds to J as defined
in Eq. C.9 using the crack boundary velocities inferred from the measured data. Black line corresponds
to integrated divergence of measured flow field (Fig. C.3) over area of streak and node with shaded area
representing the [5%, 95%] confidence interval from bootstrapping (see section C.3). F: Velocity (red, left
y-axis) of the crack tip, i.e. the node, and force (blue, right y axis) the crack tip exerts on the fluid film,
in the direction parallel to the streak axis pointing away from the streak. Thus, blue vector in schematic
represents the negative value of FT for early time points. Solid blue line and dashed red line represent crack
model using Eq. 2.24,2.14. Solid red is the median time derivative of manually determined node positions,
and shaded area is the corresponding confidence interval from bootstrapping. G: Schematic of node velocity
(red arrows), (boundary) forces (blue arrows) and line tension (light blue arrows), that drive flows during
streak elongation (tPS = −4h), when elongation comes to a halt (tPS = −1h), and during streak regression
(tPS > 0) where the measured flow field suggests the presence of active stresses above (i.e. anterior to) the
node. For detailed interpretation, see main text.
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together, we infer that mechanical activity of the streak gives rise to an active line tension tactC

that decreases over time as does the active horizontal pulling force pactC .

For time points tPS < 0 the streak elongates as the Hensen’s node moves upwards. As we dis-
cussed in section 2.2.2, such a growth of an active viscous crack can have two contributions (Eq.
2.29): First, a movement of the crack tip material as it is advected by the surrounding fluid.
Second, a flow-independent type of growth where fluid film material becomes crack tip material
in terms of a chemical transition. As we track the position of the node manually, we can compare
the time derivative of this position, with the crack tip velocity VT (Eq. 2.24) that we calculate
from the fitted flow field (solid and dashed lines in Fig. 2.5F, respectively). We find that these
two velocities agree well, implying that the streak grows because the node moves upwards (i.e.
anteriorly) with the epiblast.

We also calculate the force FT (Eq. 2.14) that the node exerts on the epiblast, which we used also
to calculate the line tension trC . Strikingly, FT points towards the streak (FT < 0 in Fig. 2.5F),
i.e. the node is pulling the epiblast downward while the node and the epiblast in its immediate
surrounding is moving upward. This force is balanced by a force from the epiblast resulting from
viscous stresses, meaning the epiblast pulls the node upward. As the node comes to a halt, this
force decreases and ultimately switches sign such that node pushes the epiblast upwards. The
change in the force FT directly corresponds to change in line tension trC of the streak directly
posterior to node. Notably, the change in trC is consistent across the streak. At early time points
(tPS < −2h), trC is maximal at r = R = 600µm and decreases monotonously from there up to a
positive value at the node, such that the streak is pulling the epiblast downward along the entire
streak and at the node. Just before streak regression (tPS = −1h), trC is minimal at r = R and
increases monotonously from there up to a negative value at the node, such that the streak is
pushing the epiblast upward along the entire streak. We note, though, that the pushing forces
at late times are almost an order of magnitude smaller than the pulling forces at early times.
Taken together, the streak elongates against an active line tension of the streak as viscous forces
from the epiblast pull the node and the anterior part of the streak anteriorly.

Using our crack model, we inferred that the viscous pulling force vanishes as the mechanical
activity of the streak decreases, both in terms of tactC and pactC . This suggests that elongation
of the streak as well as ingression slows down, because the overall mechanical activity of the
streak decreases, possibly due to a reduction in myosin activity (Fig. 2.5G). Subsequently active
convergent extension movements in the epiblast anterior to the streak result in streak regression,
as we inferred from the flow field of the epiblast in section 2.1.3.

As the active line tension tactC drives a contraction of the streak, we hypothesise that the active
force dipole pactC with which the streak pulls the epiblast inside is responsible for the elongation
of the streak. In the next section, we study how viscosity links the actively driven flux into such
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an active viscous crack with the (advective) growth of the crack.

2.4 Advective crack propagation

In a fracturing elastic material, crack propagation is typically driven by an external load that
yields diverging stresses at the crack tip resulting in plastic deformations and rupture of the
material. Here, we consider instead an active crack in a fluid film that drives flows which advect
the crack including the crack tips. In general, we define the growth of such a crack as a change
in length of the crack. The rate of growth ∂tL is given by an integral of the deformation rates
∂tY(λ) along the entire length of crack, which depend on the flow field at the crack boundaries.
As such, crack growth is a global phenomenon that depends on the flow field along the entire
crack, not just the flow and stress fields at the crack tips. However, we consider here a straight
crack (i.e. ν · ∂λY = 0). In this case, the growth rate is given by a change of the crack tip
positions relative to each other, i.e.

∂tL = êλ · ∂t(Y(L)−Y(0)). (2.32)

We note a deformation ∂tY may result not just from advection, but also processes that transform
fluid film material into crack material independently from the flow field (see Eq. 2.29). However,
we will not consider such flow-field independent contributions to crack growth in the following.
Instead we focus on crack growth resulting from the movement of crack tips advected by fluid
film, a phenomenon we call advective crack propagation.

As a generic example, let us consider a straight active crack that is mechanically homogeneous
(i.e. trC = tactC = const. with r = eλ) and that drives a constant flux ∆v = jact = const.

into the crack, corresponding to parameter regime with ηing/η → ∞ with pactC /ηing = jact > 0.
Solving such crack boundary conditions in appendix B.3, we find that the flow field diverges
logarithmically at the crack tip yielding a crack tip velocity VT = −eλ ·VT given by

VT = Vact log
R

a
+O(1) (2.33)

with
Vact =

1

2π(α+ 1)

(
jact −

2 + α

2η
tactC

)
. (2.34)

Importantly, Vact is independent from boundary conditions at a circle with radius R that encloses
the crack tip we consider here. For R/a ≫ 1, Vact dominates over any other contributions to
the crack tip velocity VT that result from the boundary conditions at r = R, as well as crack
boundary conditions at r/a ≫ 1. In this regime, we can understand crack propagation purely
in terms of the active flux jact and the active line tension tactC at the crack tips. As expected a
line tension tactC > 0 drives a contraction of the crack (i.e. VT < 0). Importantly, we observe
that shear viscosity yields also a growth of the crack (i.e. VT > 0) that results from the flux jact
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Figure 2.6: Flux into active viscous crack yields crack propagation by advection of the cracktip.
A,B numerical solutions of the flow field of a fluid film with lh → ∞, α = 3 to boundary conditions given
in table J.2, using a staggered grid. In A, the crack exerts a constant force dipole pactC on the fluid film,
whereas in B it drives a constant flux jact into the crack. C,D: Close-ups of the flow field around the crack
tip (white circular area) for the numerical solutions in A,B respectively. E-H: Schematics for understanding
the upward movement of the crack tip resulting from a flux into the crack (E) in terms of a net movement
(F), a rotation (G) and a shear (H) of patches next to the crack tip, as explained in the main text. Red
arrows illustrate the flow field, whereas the green arrow denotes force the fluid film exerts on the crack tip
due to shear viscosity which is balanced by a force (blue arrow) that the crack tip exerts on the fluid film.

into the crack. Thus, an actively driven flux into a crack can drive growth of the crack against
a non-vanishing line tension, as we observed for the primitive streak in the previous section.

In Fig. 2.6A,B, we plot numerical solutions of the full velocity field for a constant flux jact (B)
and for a constant force dipole pactC (A) and a vanishing line tension trC , using force-free bound-
ary conditions at r = R. In both cases, we observe counter-rotating vortices on the two sides
of the crack tip akin to the so called polonaise movements in the avian epiblast. These flows
involve an upward movement of the fluid film around the crack tip and the crack relative to the
boundary at r = R. Close to the crack tip, the flow fields differ qualitatively (Fig. 2.6C,D). For
a constant force dipole, the flow field around the crack tip is given by a rigid body translation,
as all other flow components vanish close to the crack tip. A constant flux, in contrast, implies
a non-vanishing flux into the crack next to the crack tip and, thereby, a non-constant velocity.
We note that the upward component of the flow increases towards the crack tip consistent with
analytical calculations. Thus, a constant flux jact yields an upward movement of the crack tip
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relative to the crack, whereas for a constant force dipole pactC , crack tip and crack move upwards
as a whole.

For the streak, we expect the flux into the streak to saturate away from the node, such that we
may understand the flow into the epiblast in terms of a constant flux into the streak on the scale
of the embryo. As we have shown here, this implies a movement of the epiblast around the node
relative to the remainder of the epiblast, when the line tension of the streak is not sufficient to
result in a contraction. Based on these calculations, we predict that the elongation of the streak
is directly related to the flux into the streak and is fairly independent of the geometry of the
epiblast boundary, which may be tested in future experiments.

So far, we have understood the movement of crack and crack tip that results from a flux into
the crack in terms of numerical and analytically calculations. However, we find that it can also
be understood in more intuitive terms: Consider two small patches of the fluid film on the left
and the right side of the crack tip. The flow in such a small patch may be understood in terms
of a translation, a rotation and a shear of the patch, as illustrated in Fig. 2.6F,G,H respectively.
A net movement of the patches towards the mid line may correspond to a global shear flow
resulting in an elongation of the midline, as observed during streak elongation. As we consider
patches next to the crack tip, the flux into the crack implies a movement of the lower half of the
patch towards the crack relative to the upper half. Such a movement may result from a rotation
(Fig. 2.6G) or a shear (Fig. 2.6H) of the patch. A rotation as observed in Fig. 2.6A,B and the
quail embryo implies an upward movement of the crack tip, whereas a shear implies a downward
movement. Such a shear movements results in a viscous shear stress such that the fluid pulls the
crack tip upwards. Taken together, the crack tip moves upwards due to the flux into the crack,
when the crack tip is force free.

2.5 Discussion

In this chapter we have presented a mechanical theory of active cracks in fluid films to understand
the tissue movements during avian gastrulation. Using experimental data from quail embryos,
we have shown that large-scale movements and rearrangements of cells in an epithilial tissue
called epiblast are consistent with a model of a homogeneous fluid film with a hydrodynamic
length that is larger than the system size. To understand how this fluid film is set into motion by
mechanical activity in a structure called the primitive streak, we introduced a mechanical theory
of active viscous cracks, i.e. lines of active material embedded in a fluid film. We gave force and
torque balance equations for such a system, as well as constitutive equations for an active viscous
non-chiral crack. With this, we inferred an effective model of the primitive streak as an active
crack. To this end, we made use of analytical solutions in terms of holomorphic functions that
allowed us to capture the experimental flow field with just three fitting parameters corresponding
to boundary conditions. Thereby, we found that the primitive streak pulls the epiblast towards
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A B
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Figure 2.7: Active cracks in developing epithelia and the cell cortex. Mechanically distinct lines
of material (red dashed lines) embedded in living sheets of matter, i.e. epithelial tissues (A-C) and the cell
cortex (D), as seen in fluorescent microscopy images. A: Primitive streak in the epiblast of a quail embyo.
B: Folds in the larval wing disc of the fruit fly Drosophila melanogaster. C: Veins of the pupal wing disc of
D. melanogaster. D: Cytokinetic ring in the cell cortex of the C. elegans zygote. Upper image corresponds
to cortical plane and lower image to mid-plane of the ellipsoidal cell. Scale bars: 1mm (A), 100µm (B, C),
10µm (D). Microscopy images in A,B were obtained by Julia Pfanzelter from the lab of Stephan Grill at
the MPI-CBG Dresden (A) and Jana Fuhrmann from the lab of Natalie Dye at the TU Dresden (B). C
was taken from [166] and D was taken from [23], both with permission.

it. Strikingly, our model suggests that the elongation of the primitive streak does not result
from extensile mechanical activity of the streak. As such, the primitive streak does not push the
node through the epiblast, but the epiblast pulls at the node due to the viscosity of the epiblast,
thereby elongating the streak against an active line tension of the streak. Using analytical and
numerical calculations we show that such a viscous force generally arises from an actively driven
flux into an active crack such as the primitive streak.

Lines of material that are mechanically distinct from the rather homogeneous sheet of living mat-
ter they are embedded in can be found in various biological settings (see 2.7 for some examples
from animal development). During development, these effectively one-dimensional structures
have a crucial impact on the movement of cells and the propagation of signals in the surround-
ing two-dimensional tissue. We propose that many such systems may be understood with the
mechanical theory of active cracks we presented here. We suggest the term crack for such lines
for two reasons: First, the mechanical properties of these lines often allow large deformations,
in-plane as well as out of plane, or gradients thereof that are absent from the surrounding tissue,
just like a classical crack allows for large deformations that are absent from the surrounding elas-
tic material. Typical examples are tissue folds as well as the cytokinetic ring that drives a very
very localized ingression, when the cell is constrained [23, 167]. Second, an important aspect of
such lines is what defines their length, not unlike cracks in the field of fracture mechanics, where
the primary concern is under which conditions a crack propagates. For example, the cytokinetic
ring of the C. elegans zygote as well as the AB cell starts to ingress from one side [168, 169]. For
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a cell to divide successfully, this ingressing line needs to span the equator of the cell.

Here, we have found that the growth of such a line that pulls material towards it is governed by
the resulting flux of material. We have found that due to shear viscosity of the surrounding fluid
film, an active flux into a crack results in a movement of the crack tip, when the line tension of
the crack vanishes such that the crack tip is force free. Such a movement of a force free object in
response to a force dipole is reminiscent of an active swimmer such as a bacterium. A bacterium
exerts a dipole of forces on the surrounding fluid that results in a net movement due the polarized
shape of the bacterium [170]. In the case of the active viscous crack, force dipoles along the crack
drive a movement of the crack tip due to the polar geometry of the boundary, i.e. the crack with
the crack tip on top. The rationale of movements resulting from an anisotropic geometry due to
shear viscosity will be at the heart of the next two chapters. There, we study how an anisotropic
surface geometry of a fluid film shapes active flows and patterns that emerge in it.
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Chapter 3

Pattern formation guided by surface
geometry

The body plan of bilateral animals contains three body axes (see section 1.1.1). These body axes
are defined early in development, typically by the formation of persistent chemical gradients, a
process we call axis specification (see section 1.1.2). The specification of a body axis is a typical
example of symmetry breaking. As such it can be understood in terms of an order parameter
that quantifies the order or anisotropy that is established as the symmetry of the initial state
is broken. As we discuss in the following, body axis specification, as observed in the C. elegans
embryo, can be understood in terms of a polar and a nematic order parameter. These order
parameters quantify anisotropies in the distribution of certain proteins (see Fig. 3.1A,B).

Notably, the C. elegans zygote (i.e. the fertilized egg cell) already exhibits a consistent anisotropy
before the first body axis, the AP axis, is specified: It has a prolate shape with a well defined
long axis, which corresponds to the shape of the rigid egg shell that encompasses the embryo.
Strikingly, the AP axis is always specified along this geometric axis [104, 99]. When the protein
composition of the zygote is experimentally perturbed, a nematic pattern with two posterior
domains forms. Also this pattern is found to align with the long axis of the egg shell [105].
Thus, the geometry of the surface of the embryo guides the formation of chemical patterns in
this surface in a profound way.

In this chapter we will elucidate the physical basis of this phenomenon. We will start by consid-
ering a minimal model of guided symmetry breaking (section 3.1). This model forms the basis of
the subsequent sections, where we study how the geometry of a surface impacts the formation of
chemical patterns within this surface. As a minimal example of chemical dynamics in a curved
surface, we investigate diffusion in section 3.2. In section 3.3, in contrast, we study how surface
geometry impacts patterns that form due to flows in the actomyosin cortex. This thin film of
actin filaments and motor molecules plays a key role in the specification of all three body axes
of the C. elegans embryo (see section 1.3). Here, we will understand this sheet of active mat-
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ter using a minimal hydrodynamic model, where cortical flows are driven by an active cortical
tension which is controlled by the concentration of a single stress regulator. With this model of
the cortex, we study pattern formation on a cell with static anisotropic shape. In particular, we
study how small anisotropies of the surface geometry impact the concentration dynamics in the
linear regime (section 3.3.1). To this end, we make use of the Newman Penrose formalism, in
particular spin-weighted spherical harmonics, to obtain analytical results in the linear regime of
the shape anisotropy (see appendix E). In section 3.3.2, we investigate how active tension drives
global rotations of the cell surface that align the pattern of the cortical stress regulator with the
surface geometry of the cell. There, we compare our analytical results also to experimental data
from C. elegans embryos during the process of DV axis establishment obtained by Teije Mid-
delkoop. In section 3.3.3, we generalize the phenomenon of rotational alignment due to active
force generation by including also mechanical interactions between the cortex and the mitotic
spindle. In particular, we investigate what forces ensure that a cell divides along its longest
axis. To this end, we compare also our theoretical predictions to the results of perturbation ex-
periments obtained by Teije Middelkoop. Finally, in section 3.3.4, we investigate the non-linear
dynamics of the minimal cortex model for a prolate spherical geometry of the cell surface. To
this end, we make use of a numerical method we developed (see appendix F).

3.1 Minimal model of guided symmetry breaking

In this chapter, we study symmetry breaking in a non-equilibrium system guided by an exter-
nally defined static cue. In order to gain a conceptual understanding of the process of guided
symmetry breaking we begin with a minimal coarse-grained model of the process. This model
yields generic phenomena, which we will also find in a model of the cell cortex in the remainder
of this chapter.

We consider a static nematic order parameter corresponding to the long axis of the egg-shell
geometry in the case of the C. elegans zygote. This static axis guides the self-organized for-
mation of a body axis, which we understand in terms of an uniaxial nematic order parameter,
corresponding to the axis as such, and a polar order parameter. Such order parameters can be
mapped to the distribution of proteins on the spherical surface of a cell [171, 172] (see Fig. 3.1A
and B for polar and nematic chemical patterns, respectively, in the surface of the C. elegans
zygote). However, the model we consider here is more general. The nematic order parameter
may for example also correspond to the cell division axis as defined by the mitotic spindle, a
protein complex (Fig. 3.1C).

For simplicity, we consider here a two-dimensional setting where both axes and the polarity
lie in one statically defined plane. In two dimensions nematic and polar order parameters can
be understood in terms of a magnitude W > 0 and an angle or phase φ ∈ [−π, π]. Using
the formalism of spin-weighted quantities we introduced in section 1.3.1, we write the order
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parameters as

(2)X = Xe2iφX , (2)Q = Q(t)e2iφQ(t), (1)p = p(t)eiφp(t), (3.1)

where (2)X, (2)Q, (1)p correspond to static nematic, dynamic nematic and dynamic polar order
parameters, respectively. The prescripts denote the spin-weight, corresponding to the rotational
symmetry of the quantity (Eq. 1.57). In the following, we consider a frame such that φX = 0.
Then φQ and φp correspond to the angles of axis and polarity with respect to the axis defined by

(2)X. (2)Q and (1)p may then be defined in terms of Fourier components of the line density of a
chemical on a circular outline, such as the mid-plane of a cell. Then, (2)Q and (1)p correspond to
distinct components of the concentration field c, i.e. the projection of c(φ) onto the orthogonal
functions e−2iφ and e−iφ, respectively. In this sense, polar and nematic order parameter are
independent from each other. However, a polarity (1)p also defines an axis (2)p = (1)p (1)p, to
which (2)Q may dynamically couple.

In the following, we study dynamical couplings between (2)Q and (1)p as well as (2)X, which can
result in alignment of the corresponding three axes. We consider all terms that are allowed by
symmetry up to quadratic order in the dynamic anisotropy W ∼ Q, p, and up to linear order
in X, except a dampening non-linearity of cubic order in Q, p. This corresponds to a scenario
where a slight anisotropy guides the process of self-organized symmetry breaking. With this, we
have the following equations

∂t (1)p =(γp1 + γp2p
2) (1)p+ χ1 (2)Q (−1)p

+ ζp (2)X (−1)p+ ζpQ1 Re[(−2)Q (2)X] (1)p+ iζpQ2 Im[(−2)Q (2)X] (1)p (3.2)

∂t (2)Q =(γQ1 + γQ2 Q
2) (2)Q+ χ2 (1)p (1)p

+ (ζQ1 + ζpQ3 p2) (2)X + ζQ2 Re[(−2)Q (2)X] (2)Q+ iζQ3 Im[(−2)Q (2)X] (2)Q, (3.3)

where negative spin-weights denote the complex conjugate and i is the imaginary unit. We
consider a non-chiral system in this chapter, corresponding to model that is invariant under
the mirror transformation φp/Q → −φp/Q. This implies that all coefficients (γxn, χn,ζxn) are real
numbers. The dynamical equations of a spin quantity (s)f =Weisφ can be mapped to dynamical
equations of the magnitude W and phase φ using

∂tW =
1

W
Re[(−s)f∂t (s)f ], ∂tφ =

1

sW 2
Im[(−s)f∂t (s)f ]. (3.4)
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Figure 3.1: Minimal model of guided symmetry breaking. A,B: Chemical patterns with polar (A)
and nematic (B) symmetry form along the long axis of the surface shape, as observed in the surface of the
C. elegans zygote. Red and green color correspond to the intensity of labelled proteins defining the future
anterior and posterior side, respectively. The zyogte in B has been perturbed giving rise to the bipolar
pattern. Images were taken from [105]. C: Mitotic spindle defining the cell divison axis of the C. elegans AB
cell rotates towards the long axis. Microscopy images were obtained by Teije Middelkoop as published in
[167]. D-F: numerical solutions of equations 3.5-3.8 defining a minimal model of guided symmetry breaking
motivated by the patterns observed in A,B. The plots show the time evolution of polar ((1)p, blue lines) and
nematic ((2)Q, red lines) order parameter for four different sets of parameters as given in Table J.3. In the
upper row, the magnitudes are plotted as a function of time. In the middle row, the corresponding angles are
plotted. The bottom row shows trajectories as polar plots, where the magnitude corresponds to the distance
from the origin and the angle corresponds to the angles φp, φQ of the order parameters. D: alignment in
the linear regime due to coupling of (1)p to the external axis (2)X. E: alignment in the non-linear regime
due to coupling of (2)Q to (2)X. Blue and yellow represent nematic order parameter at early and late times,
akin to the spindle configurations in C. F: Rotation arising from non-potential couplings between (1)p and
(2)Q. G: Complex oscillatory dynamics arising from non-potential couplings between (1)p and (2)Q in the
presence of couplings to (2)X.
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With this we obtain

∂tp =(γp1 + γp2p
2)p+ χ1Qp cos[2(φQ − φp)] + ζpXp cos(2φp) + ζpQ1 XQp cos 2φQ, (3.5)

∂tQ =(γQ1 + γQ2 Q
2)Q+ χ2p

2 cos[2(φQ − φp)] + (ζQ1 + ζQ2 Q
2 + ζpQ3 p2)X cos 2φQ, (3.6)

∂tφp =− χ1Q sin[2(φp − φQ)]−
(
ζp + ζpQ2 Q

)
X sin 2φp, (3.7)

∂tφQ =− χ2
p2

2Q
sin[2(φQ − φp)]−

(
ζQ1

1

Q
+ ζQ3 Q+ ζQp3 p2

)
X sin 2φQ. (3.8)

We observe that coupling to (2)X can come in two ways: First we find terms of the form
∂tφ ∼ −X sin 2φ, yielding an aligning rotation. For φ dynamics of this form, we have fixed
points at φ = 0,±π and φ = ±π/2 corresponding to parallel and perpendicular alignment, re-
spectively. The sign of the coupling coefficient defines whether the dynamic axis rotates towards
parallel or perpendicular alignment. Second, we obtain terms of the form ∂tW ∼ X cos 2φ,
corresponding to a magnitude that grows faster in the aligned configuration. This yields a stabi-
lization of the aligned state. Again, the sign of the coupling coefficient defines whether alignment
means parallel or perpendicular alignment.

Notably, the couplings of (2)Q and (1)p to (2)X involve distinct orders of p,Q. In particular, ζQ1
yields a coupling of (2)Q to (2)X even in the isotropic state Q = 0 = p. For the C. elegans em-
bryo, this corresponds to a scenario where the anisotropic shape directly induces the formation
of a pattern, e.g. due to curvature-dependent binding of cytoplasmic proteins. However, such a
geometry-dependent pattern is not observed in the isotropic state before AP symmetry breaking.
Hence, we consider ζQ1 = 0 in the following. In this regime (2)Q couples to (2)X only in quadratic
order of Q and p. In contrast, (1)p contrast couples to (2)X already in linear order of p.

This has a profound impact on the dynamics of alignment. To illustrate this, let us consider
two scenarios: First, a scenario where only the polarity (1)p couples to the static axis (2)X (i.e.
ζp = 1, all other ζxn=0). Second, a scenario where only the dynamic axis (2)Q couples to the static
axis (2)X by means of an aligning rotation (i.e. ζQ3 = 1, all other ζxn = 0). In both scenarios, we
consider the dynamic axis (2)Q to be closely aligned with the polarity (1)p (i.e. χ1 = χ2 = 1).
In Fig. 3.1D,E, we plot numerical solutions for these scenarios of a symmetry breaking process,
starting from a small perturbation of the isotropic state p = 0 = Q that is linearly unstable due
to γp1 > 0 or γQ1 > 0. With this, we find that the second scenario (B) involves a rotation of (1)p

and (2)Q while p and Q approach their steady state values. In the first scenario (A), in contrast,

(1)p and (2)Q are already aligned with (2)X when the magnitudes p,Q are still exponentially
growing. This is a consequence of the linear order in p of the coupling of (1)p to (2)X. For (2)Q

such a linear order coupling is not allowed by symmetry. Instead, (2)Q aligns with (2)X by a
rotation in the non-linear regime. Also a coupling given by ζQ2 is possible, which only affects the
magnitude Q. However such a coupling does not yield true alignment, as it does not affect the
fixed points of the angle φQ, but only yields a φQ dependence of the steady state magnitude.
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In summary, an (unpolar) axis that does not couple to the static axis in the isotropic state can
only align with an external axis by a visible rotation. Strikingly, such rotations have indeed been
observed during the establishment of the AP and DV axes of the C. elegans embryo [99, 167].
We will study these rotations in section 3.3.2 using a minimal model of the cell cortex.

So far, we considered only scenarios where the couplings between (2)Q and (1)p amount to an
alignment of the two dynamic axes they define, i.e. χ1χ2 > 0. Such a coupling can be understood
in terms of a minimization of an effective potential F (p,Q). When χ1,2 > 0, the couplings favor
parallel alignment, for χ1,2 < 0 one obtains perpendicular alignment of (1)p and (2)Q. However,
in an non-equilibrium system, also non-potential couplings with χ1χ2 < 0 are possible. This
corresponds to a scenario where e.g. (1)p rotates towards (2)Q but (2)Q rotates away from (1)p,
or viceversa. This gives rise to persistent rotations of (1)p and (2)Q (Fig. 3.1F). Couplings to the
static axis (2)X in this regime give rise to persistent oscillatory dynamics when the coupling to
the static axis is not sufficient to yield stable steady state (Fig. 3.1G). We note that we have not
found a parameter regime where the dynamical system governed by Eq. 3.5-3.8 exhibits chaotic
behaviour. In section 3.3.4, we will observe similar complex oscillatory patterns in numerical
solutions of a minimal model of the cell cortex.

3.2 Diffusion on a curved surface

We want to understand how the shape of a cell impacts a chemical pattern forming on its surface.
As a start, let us consider the simplest non-trivial example of chemical dynamics on a curved
surface: diffusion of a single chemical species with concentration c, i.e.

∂tc = D∆LBc. (3.9)

Here, D is the diffusion constant and ∆LB is the Laplace-Beltrami operator which is the gen-
eralization of the Laplace operator to curved surfaces defined as ∆LB = gij∇i∂j . On a closed
surface ∆LB is a self-adjoint operator with eigenvalues λi obeying

0 = λ0 > λ1 ≥ λ2 ≥ ... (3.10)

Hence, we can write the dynamics of the concentration field as

c(s1, s2, t) = c0 +
∞∑
i=1

cifi(s
1, s2)eDλit, (3.11)

where fi is the eigenfunction with eigenvalue λi and the initial condition is given by

c(s1, s2, 0) = c0 +
∞∑
i=1

cifi(s
1, s2). (3.12)
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3.2. DIFFUSION ON A CURVED SURFACE

Here, the geometry of the surface manifests in the eigenvalues and eigenfunctions of the Laplace-
Beltrami operator. The relation between surface geometry and the spectrum of the Laplace
Beltrami operator has been the subject of a considerable amount of research in the past [173].
We may mention in particular the influential lecture "Can one hear the shape of a drum?" [174].
Here we want to ask whether a patterning surface feels its shape. As an illustrative but also
biologically relevant example we consider a slightly deformed sphere parametrized as

X′(θ, φ) = (R0 + δR(θ, φ))r(θ, φ), (3.13)

where δR corresponds to a deformation normal to the spherical reference surface X0 = R0r. The
eigenfunctions of ∆LB on X0 are the spherical harmonic functions Ylm (Eq. E.2) with eigenvalues

λlm = − 1

R2
0

l(l + 1). (3.14)

Upon deformation the Laplace Beltrami operator changes as

∆′
LB = ∆0

LB + δ∆LB, δLB = −2
δR

R0
∆0
LB (3.15)

in linear order of δR/R0, where ∆0
LB is the Laplace-Beltrami operator on the sphere (see appendix

E.4.1 for more details of the calculation). From this, we calculate the spectrum of ∆′
LB up to

linear in δR. For simplicity, we consider an axisymmetric deformation δR and identify the z-axis
as the axis of symmetry, such that an axisymmetric deformation can be written as

δR =
∑
l

δRlYl,0. (3.16)

A calculation of the change in the spectrum in linear order of a perturbation is analogous to
perturbation theory in quantum mechanics. Using analogous notation, the spectrum changes as

λ′lm =− l(l + 1) + ⟨l,m| δ∆LB |l,m⟩ , (3.17)

Y ′
lm =Ylm +

∑
l′ ̸=l

⟨l′,m| δ∆LB |l,m⟩
l′(l′ + 1) + l(l + 1)

Yl′m, (3.18)

where λ′lm and Y ′
lm denote eigenvalues and eigenfunctions of ∆′

LB. We define ⟨l′,m| δ∆LB |l,m⟩
analogously to a bra-ket from quantum mechanics as the projection onto Yl′m of δ∆LB acting on
Ylm. It can be calculated using Wigner 3j matrices (appendix E.4.3.1). They are closely related
to the better known Clebsch-Gordan coefficients and obey several symmetry relations that allow
to simplify expressions when considering single spherical harmonics components of δR.

An axisymmetric elongation or compression of the sphere is given by the l = 2 component of δR,
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i.e. δR = δR2Y20. In this case, the eigenvalues are given by

λ′lm = −l(l + 1)

[
1− δR2

R

√
5

π

l(l + 1)− 3m2

4l(l + 1)− 3

]
. (3.19)

We observe that λ′lm depends on m, in contrast to the eigenvalues λlm on the undeformed sphere
(Eq. 3.14). This reflects the spatial symmetry that is broken by the perturbation δR. For a
given l, all spherical harmonics Ylm can be expressed in terms of spatial rotations of the m = 0

mode Yl0 and linear combinations thereof [175]. Thus, they all share the same eigenvalue due to
the isotropy of the sphere and the covariance of the Laplace-Beltrami operator. A deformation
breaks this symmetry and thus the degeneracy of the λlm, analogous to the splitting of energy
levels in an atom in response to an external electric or magnetic field [176, 177]. For an axisym-
metric deformation as we consider here, only a degeneracy of the eigenvalues λ′lm with respect
to the sign of m remains, i.e. λ′lm = λ′l,−m.

An elongation of the spherical surface corresponds to δR2 > 0. With this, Eq. 3.19 yields that
modes with larger |m| decay faster and that axisymmetric modes (m = 0) decay slower than on
the undeformed sphere (Fig. 3.2A). This implies that on long times the components of c that
are axisymmetric with respect to the geometric long axis (i.e. z) dominate, when we consider
diffusional dynamics starting from some initial pattern. Thus, for a pola pattern, corresponding
to l = 1, diffusion favors alignment of the axis of polarity with the long axis, corresponding to
m = 0 (Fig. 3.2C).

This phenomenon can simply be understood in terms of length scales: When the axis of polarity
is aligned with the long axis the chemical pattern spreads over a larger length than when the axis
of polarity is perpendicular to the long axis. Notably, we can find coordinates for any surface
such that the Laplace-Beltrami operator reads

∆LB =
1

l2
∆0, (3.20)

where ∆0 is the Laplace operator in flat two-dimensional space, and l(s1, s2) is a coordinate-
dependent length scale (see section 1.3.2). A deformation corresponds to a change in this length
scale δl, i.e. it can be understood in terms of isotropic contractions (δl < 0) and expansions
(δl > 0) of the surface. Thus, the geometry dependence of diffusional dynamics on a surface
can in principle always be understood in terms of a change in length scales. For simple patterns
and shapes the geometry dependence may be understood as the maximization of a length scale
associated with the chemical gradient.

Diffusion on its own does not yield the spontaneous formation of a pattern. However, diffusion
is crucial to many models of chemical pattern formation such as the classical Turing model
[2, 178, 179, 180, 181]. Thus, we expect the geometry-dependence of two-dimensional diffusion
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Figure 3.2: Linear concentration dynamics on a deformed sphere. A,B,D: Eigenvalues λlm of
linear concentration dynamics on a sphere (black dashed lines) and on an elongated sphere (colored crosses
with color denoting |m|, plotted for δR20 = 0.2) relative to the diffusion time scale τD = D/R2

0. A: Diffusion
of a single chemical species. Eigenvalues correspond to eigenvalues of the Laplace-Beltrami operator (Eq
3.19) B,D: Diffusion and advection of a stress regulator in an active isotropic fluid (Eq. 3.24,3.26). C:
Polar eigenmodes Y ′

1m of the Laplace Beltrami operator for δR20 = 0.2 (Eq. 3.18). Note that there is no
qualitative difference to the spherical harmonics Y1m or to the eigenmodes of the active fluid model on such
a geometry.

that we discussed here to have an impact on patterns in various biological surfaces. It is distinct
from effects of boundary geometries that have been discussed for bulk diffusion in the context of
pattern formation [95, 182, 183, 184].

3.3 Pattern formation in an active fluid model of the cell cortex

In the following we will study pattern formation in a minimal model of the cell cortex, which we
introduced in sections 1.2.5 and 1.2.6. Briefly, we consider an active fluid surface with a static
shape, where flows are driven by a pattern of active isotropic tension given by

tijact = χ0f(c)g
ij , (3.21)

where c is the concentration of a stress regulator and f(c) is a monotonously increasing function
with f ′(c0) = 1/c0 that saturates for large c. The flow field vi is dampened by the viscosities
ηs = η and ηb = αη of the cortex and friction with a rigid substrate, which defines a hydrodynamic
length scale lh =

√
η/γ. Self organized pattern formation results from advection of the stress

regulator balanced by diffusion within the cortex and exchange with a homogeneous reservoir,
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corresponding to the cytoplasm (see dynamical equation Eq. 1.53 and Fig 1.11). An almost
identical model has been studied on the sphere, where the formation of polar patterns and a
stable contractile ring have been observed [135]. In this section we investigate how patterns and
flows change, when considering a deformed sphere.

3.3.1 Linear stability of an active fluid film with anisotropic surface geometry

The trivial steady state of our model is c = c0 = const. with c0 being a reference concentration
resulting from the exchange with the bulk reservoir. In the following, we study our model by
considering slight perturbations

δc(θ, φ) =
∑
l,m

clmYlm(θ, φ) (3.22)

of the homogeneous steady state. With this, the dynamics of the concentration field can be
written in linear order of δc/c0 as

d

dt
δclm =

∑
l′m′

T lml′m′δcl′m′(t), (3.23)

where T lml′m′ is matrix that can be calculated from the governing equations. On a sphere, T lml′m′ is
diagonal due to symmetry, i.e. T lml′m′ = λlmδl,l′δm,m′ with the eigenvalues λlm given by

λlm = − l(l + 1)

τD

(
1 +

τDk

l(l + 1)
− Pe

R2
0/l

2
h + (1 + α)l(l + 1)− 2

)
. (3.24)

Here, τD = D/R2
0 is the time scale of diffusion, k is the rate of exchange with the bulk reservoir

and we have defined the Péclet number (Eq. 1.54) as

Pe =
χ0R

2
0

Dη
. (3.25)

Similar results have been obtained in [135], where interaction with a bulk fluid instead of a
rigid substrate has been considered. For λlm > 0, the homogeneous state is linearly unstable
and patterns emerge spontaneously. This threshold can understood in terms of a critical Péclet
Pe∗, such that at least one mode is unstable (λlm > 0) for Pe < Pe∗, whereas for Pe > Pe∗

the homogeneous state is stable (λlm < 0 for all l > 0) [156, 136]. Close to this threshold,
the pattern that emerges is given by the first unstable mode. For large hydrodynamic length
(lh/R0 > 1/

√
2 ≈ 0.7), λlm decreases monotonously with l such that the modes with l = 1

become unstable first (see dashed line in Fig. 3.2B). This explains why in such a regime the
formation of a polar pattern is observed in numerical simulations of the non-linear model [135].
For a small hydrodynamic length (lh/R0 ≪ 1 with kτD ≥ 1), in contrast, λlm is maximal for
some lmax > 1. Thus, a regime can be found such that only the l = 2 modes are unstable (Fig.
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3.2D). In such a regime, the formation of a ring as well as bipolar patterns has been observed in
numerical simulations [135].

Upon a deformation T lml′m′ is no longer diagonal, but it remains the matrix representation of a
self-adjoint operator. As such, it has a real spectrum that we can calculate perturbatively as in
the previous section (Eq. 3.17, 3.18). With this, we calculate the change in the eigenvalues δλlm
for an axisymmetric deformation in appendix E.4. In particular we consider an axisymmetric
elongation of the cell, i.e. δR = δR2Y20 with δR2 > 0 yielding a shape given by Eq. 3.13 (see
also Fig. 3.2C for chemical patterns on such a surface geometry). With this, we find

τDδλlm =
l(l + 1)− 3m2

4l(l + 1)− 3

δR2

R0

√
5

π

[
l(l + 1) + Pe

[
6(l − 1)(l + 2)− (R0/lh)

2l(l + 1)
]

[(R0/lh)2 + (α+ 1)l(l + 1)− 2]2

]
, (3.26)

where we observe that the m dependence, given by the first factor, is of the same form as for
pure diffusion (Eq. 3.19), as it results from the same mathematical object, the Wigner 3j symbol(

l lR l

m mR −m

)
(3.27)

with lR = 2, mR = 0. However the sign of the last factor given by the square brackets in Eq.
3.26 can vary depending on the viscosities of the cell cortex.

In the previous section we considered diffusional dynamics (χ′(c0) = 0). There we found that
δλl0 > 0 and δλlm is monotonously decreasing with |m|. We obtain equivalent results in the
regime of large hydrodynamic length, i.e. lh/R0 > 2, for modes with l > 1 (Fig. 3.2B). This
favors the formation of axisymmetric patterns corresponding to modes with m = 0. For small
hydrodynamic lengths, i.e. lh/R0 < 1/

√
6 ≈ 0.4, in contrast, we find that δλlm is monotonously

increasing with |m| for a sufficiently large Péclet number when l is small compared to R0/lh.
Thus, in the regime where the formation of nematic patterns is observed, polar patterns (l = 1)
tend to align perpendicularly to the geometric long axis, as λ′1,±1 > λ′1,0 (Fig. 3.2D). For larger
l, however, the axisymmetric component dominates, i.e. it has the maximal eigenvalue λlm, no
matter whether we consider small or large hydrodynamic lengths or diffusion limited dynamics
as in the previous section.

During the specification of the AP axis in the C. elegans zygote, pattern formation is initialized
by the localized removal of myosin motors from the cortex due to interaction with the male
pronucleus (see section 1.1.2). Similarly, the cytokinetic ring of the AB cell that is crucial to the
establishment of the DV axis forms in response to interactions of the spindle apparatus. Thus,
in both cases pattern formation is triggered by a sizable reorganization of the cortex due to
interaction with a cell-scale structure. Furthermore, the homogeneous state of the cortex before
the triggering event appears to be stable with respect to fluctuations. The significance of linear
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stability calculations to such a scenario is unclear. Therefore, we focus on non-linear phenomena
in the remainder of this chapter.

3.3.2 Rotational flow aligns tension pattern with surface geometry

In the following, we study the alignment of a stress regulator pattern with the surface geometry
using our hydrodynamic model of the cell cortex and experimental data obtained by Teije C.
Middelkoop. Most of the results of this chapter can also be found in our recent preprint [167]
that has been in press at PNAS at the moment of writing.

During the establishment of the DV axis of the C elegans embryo, a rapid rotation of the embryo
surface is often observed [167, 186]. It is found that the rotation requires the activity of myosin,
suggesting that it is driven by actomyosin tension. Strikingly, the cortical flows associated with
the rotation are an order of magnitude faster than any other component of the cortical flow
around this time point of the cell cycle (compare for example Fig. 3.3D,E). These experimental
observations suggests that the embryo is essentially free to rotate in the confining egg shell.
This corresponds to a parameter regime where friction between the embryo surface and the rigid
egg shell is almost negligible compared to viscosity of the cortex as the resulting hydrodynamic
length is much larger than the system size. Using our model of the cell cortex for a slightly
deformed spherical cell, we find that for a large hydrodynamic length the flow field is dominated
by a rotational flow that spans the entire surface of the cell (see appendix E.4.2).

On the undeformed sphere, this flow component corresponds to a rigid body rotation Ω of the
sphere. As such it is limited only by friction. However, on such an isotropic surface a pattern
of active tension χ does not yield a rotational flow, i.e. a flow with non-zero vorticity. In
an anisotropic surface geometry, in contrast, shear viscosity yields a coupling of rotational and
irrotational flow components (see section 4.1.2). As a consequence, a pattern of active tension
can drive a rotation δΩ of the entire cortex that scales with the deformation δR. Identifying the
axis of rotation as the z axis (δΩ = δΩz), we find that the rotation results from a misalignment
between pattern of active tension and the surface geometry. This can be seen by writing the
spherical harmonic coefficients of the deformation δR and the active tension χ in terms of a
magnitude and an azimuthal angle

δRlm = |δRlm|e−imφR , χlm = |χlm|e−imφχ . (3.28)

With this, the angular velocity of the cell scale rotation is given by

δΩ =

(
lh
R0

)2 ∑
l≥2,m>0

3

2π

m [l(l + 1)− 2]

(α+ 1)l(l + 1)− 2

|χl,m|
η

|δRl,m|
R0

sin[m(φχ,lm − φR,lm)]. (3.29)

Misalignment of components of tension pattern and surface geometry corresponds to a configu-
ration, where sin[m(φχ,lm−φR,lm)] ̸= 0. Due to advection, the rotational flow implies a rotation
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Figure 3.3: Rotation resulting from misalignment between the pattern of active tension and
the surface geometry A,B: numerical solutions of the flow field (red arrows) for a ring of active tension χ
denoted by the color (blue: χ = −1, yellow: χ = 1) for an elongated sphere with an aspect ratio of 1.5, with
lh = 2R0, α = 1. C: Plot of the deformation-triggered rotation, corresponding to the l = 1,m = 0 component
of the rotational flow field (Eq. E.38), obtained from numerical solutions for shapes and tension patterns
as in A for different hydrodynamic lengths and aspect ratios with α = 1. D-I: analysis of experimental
data obtained by Teije C. Middelkoop, as published in [167]. D, E: Cortical surface of a 2-cell C. elegans
embryo expressing Lifeact [185] before (D) and after (E) the whole-embryo rotation. Red arrows denote
flow field from PIV. φ denotes the angle of the cytokinetic ring, indicated by the orange dashed line, with
respect to the short axis of the AB cell in the DV-LR plane. F: Schematic of the 2-cell embryo during AB
cell division with blue arrows indicating compression of AB cell in the DV-LR plane due to mounting in
the experimental setup. G: Angular velocity Ω of rotation as a function of the ring angle φ with respect to
the short axis in the DV-LR plane. Colored points are single time points from single embryos. The color
denotes the relative timing with respect to onset (blue) and end (yellow) of the whole embryo rotation. Red
dashed line is A sin 2φ with A = 2.5 deg /s. Ω was obtained using PIV from embryos expressing flourescently
labelled myosin. Final value of φ for each embryo was determined from the average DV intensity profile of
the cortical layer of the AB cell, from this Ω was integrated to obtain φ for earlier time points. H: Maximal
absolute rotation speed for embryos subject to varying degress of compression. Aspect ratio is the ratio of
the long axis over the short axis of the AB cell in the DV-LR plane. I: Same data as in G but plotting
Ω/ sin 2φ as a function of the intensity M of flourescent myosin in the ring.
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of the stress regulator pattern c and hence the active tension pattern χ. Thereby δΩ yields a
rotation of the tension pattern towards a configuration where cos[m(φχ,lm−φR,lm)] = −1, which
is a configuration where the cortical tension χ is maximal at inwardly deformed sections of the
surface, i.e. where δR is minimal.

Let us consider for example a contractile ring on an elongated cell, which we construct in terms
of the l = 2 and m = 0,±2 spherical harmonics components of χ and δR such that the ge-
ometric long axis and the plane of the ring are both orthogonal to the z axis (Fig. 3.3A,B).
Then, ∆φ = φχ,22 − φR,22 defines the azimuthal angle between the ring and the long axis. Due
to the rotation δΩ, the tension pattern rotates towards cos 2∆φ = −1, corresponding to a ring
that is orthogonal to the long axis. Thereby, the circumference is minimized, such that we may
understand the rotation as the result of an effective line tension of the contractile ring.

Recently such a rotation of the entire cortex was indeed observed during the alignment of the
AP axis with long axis of the C. elegans zygote [99]. Importantly, Eq. 3.29 yields no aligning
rotation for polar modes (l = 1). Thus, a purely polar pattern of active tension, corresponding to
χ1m, does not drive an aligning rotation with the long axis of the cell in first order of the shape
anisotropy δR. This explains why, a contractile ring, the pseudo-cleavage furrow, is required
for rapid alignment of the AP axis with the long axis of the C. elegans zygote, whereas polar
asymmetry of actomyosin tension on its own is found to yield only slow alignment [99].

Also the rotation of the 2-cell embryo in Fig. 3.3D coincides with the formation of a contractile
ring, the cytokinetic ring of the AB cell, visible as a white band of increased actin intensity in
Fig. 3.3D,E. After the rotation, this band always lies in the imaging plane (Fig. 3.3E). Impor-
tantly, the embryos are compressed in the experimental setup such that the shape of the egg shell
is non-axisymmetric around its longest axis corresponding to the AP axis of the embryo (Fig.
3.3F). Thus, the cross section of the AB cell in the orthogonal plane, the DV-LR plane, shows a
well defined long axis that is often longer than the extension of the AB cell along the AP axis.
In the experimental setup, the imaging plane is parallel to this long axis of the AB cell. Thus,
the rapid rotation of the 2-cell embryo aligns the cytokinetic ring perpendicular to the long axis
of the AB cell (corresponding to φ = 0 in Fig. 3.3G). Together with our model, this suggests
that active tension in the cytokinetic ring drives this rotation due to misalignment between the
pattern of actomyosin tension and the geometry of the egg shell.

In the following, we set out to test this hypothesis quantitatively. Eq. 3.29 yields that the
rotation is proportional to the product of misalignment and active tension, i.e.

δΩ = − 1

τeff
|χ2,2| sin(2φ), (3.30)

with φ = −(φχ,22−φR,22) being the axis of the ring with respect to the shorter axis of the cell in
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the DV-LR plane. χ2,2 corresponds to the level of tension in the cytokinetic ring. Importantly,
this relation is more general than the model considered in Eq. 3.29. It generally corresponds to
a rotation resulting from the coupling of a dynamic nematic (i.e. the ring pattern) to a static
nematic (i.e. the elongated shape) order parameter, as given by the coefficient ζ2Q in our coarse
grained model (Eq. 3.3). Only the proportionality constant 1/τeff depends on the viscosities and
the specific geometry of the system. Thus, we expect the rotation speed of the 2-cell embryo to
scale with the ring and the mechanical activity in the ring in the form of Eq. 3.30.

To test this, we analyzed the speed of rotation as a function of the orientation of the cytokinetic
ring with respect to the geometric long axis in the DV-LR plane using microscopy images from
C. elegans embryos with fluorescently labelled myosin molecules. We found that the speed of
rotation is indeed maximal for an angle around ±45°, consistent with Eq. 3.30 (Fig. 3.3G). Of-
ten, the speed of rotation peaks slightly closer to 0°. This may be understood from an increased
level of actomyosin tension at later times, as myosin is still accumulating in the cytokinetic ring.
As a proxy for χ2,2 we quantify the intensity of flourescent myosin molecules in the cytokinetic
ring M . We calculate M as the m = 2 component of the azimuthal profile of the intensity,
averaged along the AP axis over the extent of the AB cell. We expect χ2,2 to be a non-linear but
monotonously increasing function of M , corresponding to f(c) in our model of the cortex. Indeed
we find for the rotation speed Ω of the two-cell embryo that Ω/ sin 2φ increases monotonously
with M , consistent with Eq. 3.30.

So far, we considered only linear calculations in terms of the shape anisotropy δR that are quanti-
tatively valid for δR/R0 ≪ 1. However, the aspect ratio of the AB cell, defined as the ratio of the
long axis with respect to the short axis, ranges between 1 and 1.5, corresponding to δR/R0 > 0.1

(Fig. 3.3H). To test whether the qualitative insights of our analytical calculations are still valid
in such a regime and beyond, we developed a pseudo-spectral method for calculating flow fields
in general spherical geometries (see appendix F). With this we calculated the flow field for a
ring pattern of active tension on an elongated cell, defined in terms of the spherical harmonic
components χ2m, δR2m as before (Fig. 3.3A). From this we determined the speed of rotation as a
spherical harmonics component of the flow field (Eq. E.38). We consider hydrodynamic lengths
between R0 and 4R0. With this, we find perfect agreement of the numerical results with the
analytical calculation (Eq. 3.29) for aspect ratios smaller than 1.1. For larger aspect ratios the
rotation speed saturates and even decays for lh > R0, as the rotation becomes viscosity-limited.
Analyzing experimental data from 2-cell C. elegans embryos subject to varying degress of com-
pression, we find that the rotation speed does indeed scale with the compression (Fig. 3.3H).
Furthermore the rotation speed appears to saturate for aspect ratios greater than 1.1, consistent
with a hydrodynamic length that is longer than the embryo.

Taken together, the rotation of the two-cell embryo is in quantitative agreement with a model
where myosin-dependent tension in the cytokinetic ring drives a rotation due to misalignment
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of this active tension pattern with the geometry of the cell cortex. In our model, this aligning
rotation results from the shear viscosity of the cortex. In chapter 4, we will further investigate
how shear viscosity gives an active fluid film a sense of its geometry by transporting patches of
mechanical activity towards certain points in the geometry.

3.3.3 Hertwig’s rule as a consequence of torque balance

The DV axis of the C. elegans embryo is defined by the division axis of the AB cell. The rotation
we studied in the previous section aligns this division axis with the long axis egg shell in the
DV-LR plane. Thereby, the DV axis is aligned with the egg-shell geometry. So far, we have
understood this process solely in terms of the cytokinetic ring. However, the cytokinetic ring is
induced by the spindle apparatus due to spindle-cortex interactions [112]. As such, the spindle
is the structure that defines the division axis. During the rotation of the 2-cell embryo, spindle
and ring rotate together, which we attribute to cytoplasmic viscosity. Thereby the ring-driven
rotation results in alignment of the spindle with the long axis (Fig. 3.4A). In other contexts it
has been found that mechanical interactions between the spindle and the cortex align the spindle
with respect to an externally controlled pattern of actomyosin tension [187]. In both scenarios
the alignment of the cytokinetic ring with an external cue results in a corresponding alignment
of the spindle.

Such a cytokinetic ring-based mechanism of alignment is in contrast to how the alignment of
the cell division axis with the cell geometry has usually been understood (see section 1.1.7).
Hertwig’s rule states that a cell divides along their longest axis. This phenomenon has been
attributed in particular to mechanical activity on the microtubules of the spindle. In the C.
elegans AB cell, astral microtubules of the spindle pull at the cell cortex due to the activity
of dynein motor proteins [188]. Strikingly, optogenetic over-activation of these pulling forces
reveals that they result in short-axis alignment of the spindle, when myosin activity is reduced,
thereby contradicting Hertwig’s rule (Fig. 3.4C). In the following, we want to understand how
such mechanical spindle-cortex interactions counteract the actomyosin driven alignment we have
studied in the previous section.

To this end, we model spindle-cortex interactions in terms of an active force density fspindle that
acts on the cortex. We do not constrain fspindle other than that it does not amount to a net force
or torque acting on the cortex, since fspindle describes cell-internal interactions, i.e.∫

S
dS fspindle = 0 =

∫
S
X× fspindle, (3.31)

where the surface S corresponds to the cell cortex that encloses the cell. These equations may
also be derived from understanding fspindle as a the contraction of a three-dimensional stress
tensor σαβ of the cytoplasmic material with the normal vector of the surface. In the absence
of external forces or torques due to gravitiy or an external magnetic field, force and torque bal-
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Figure 3.4: Orientation of the cell division axis as a consequence of torque balance. A: Spindle
of the AB cell in the DV-LR plane imaged by Teije C. Middelkoop using fluorescently labelled tubulin.
Long axis of the cell corresponds to vertical axis with which the spindle and thus the division axis aligns.
tbegin and tend denote time points at the beginning and the end of anaphase during which the whole embryo
rotation is observed. B: Schematic of a cell rotation driven by tension in the cytokinetic ring (black line)
understood in terms of torque balance. Rigid shell enforces shape of the cell by exerting forces (red arrows)
normal to the surface that balance an inward force (yellow arrow) resulting from tension in the cell cortex
(colored contour with red (blue) denoting elevated (reduced) cortical tension). When the division axis is not
aligned with the long axis (left panel), the normal forces from the egg shell amount to a torque resulting in a
rotation (black arrows) of the cell. Thereby, cortical tension ensures long-axis alignment of the division axis.
C: Same as in A but for a genetically engineered embryo, where cortical pulling by astral microtubules of
the spindles is increased and myosin activity is diminished. We observe short-axis alignment of the spindle.
Due to a lack of myosin activity the cell does not divide properly. D: Schematic of a cell as in B, but for
vanishing myosin activity such that forces due to cortical pulling (yellow arrows) by the spindle dominate.
Due to torque balance this yields a rotation that aligns the spindle with the short axis.

ances yield
∑

α ∂ασαβ and σαβ = σβα, from which Eq. 3.31 can be derived using Gauss’s theorem.

Force balance (Eq. 1.24) on the cell cortex (which we understand as equivalent to the cell surface)
reads

∇it
ij = −fext − fspindle, (3.32)

where fext = −γviei+ fnextn is the force from a rigid container such as the egg shell that enforces
the shape of the cortex. Thus, fnext acts as a Lagrange multiplier given by the normal force
balance equation (Eq. 1.26), which for our model yields

fnext = Cijt
ij − fnspindle. (3.33)
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With this, Eq. 3.31 implies

0 =

∫
S
dSX× fext =

∫
S
dS
[(
Cijt

ij − fnspindle
)
(X× n)− γX× v

]
, (3.34)

i.e. the net torque the rigid container exerts on the cell vanishes. This equation is valid for
general surface shapes X. It is particularly informative for an almost spherical surface. For a
sphere with radius R0, we have X/R0 = n = r such that X× n = 0. With this, Eq. 3.34 yields
that the component of the cortical flow v that corresponds to a rigid body rotation vanishes, i.e.

Ω :=
1

I

∫
S
dSX× v = 0, (3.35)

where I = 8π
3 R

4
0 is the moment of inertia of the spherical surface. As we mentioned in the

previous section, cortical tension cannot drive a rigid-body rotation of a spherical cortex, neither
can cell-internal mechanical interactions (fspindle).

In the following, we want to understand the deformation triggered rotation we have found in the
previous section (Eq. 3.29) in terms of the balance of torques given by Eq. 3.34. To this end,
we consider a slightly deformed sphere (Eq. 3.13) and decompose the flow field v driven by a
given pattern of actomyosin tension χ and cortical pulling fspindle as

v = v0 + δv, (3.36)

where v0 is the flow field these patterns of mechanical activity would drive on a sphere with radius
R0, whereas δv is a deviation linear in δR. Furthermore, we decompose δv into a deformation-
triggered rotation δΩ and an orthogonal residual δvres as

δv = δΩ×X0 + δvres, (3.37)

where X0 = R0r. With this, the balance of torques (Eq. 3.34) yields

δΩ =
1

I
(δTN + δTres) , (3.38)

where δTN is a torque that results from the normal forces fnext due to the rotation δn of the
surface normal relative to the undeformed sphere. δTres results from the friction forces against
v0 due to the deformation. Using δn = −ei∂iδR [116], we obtain

δTN = −
∫
S
dS

(
1

R0
t ii − fnspindle

)
X×∇δR. (3.39)

This means that normal forces can yield a torque, when the surface is anisotropic, i.e. ∇δR =

ei∂iδR ̸= 0. This torque results in a rotation. The torque due to normal forces δTN is pro-
portional to the viscous and active stresses of the cortex, and to the curvature 1/R0. Hence,
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δTN dominates over the torque from friction force δTres for large hydrodynamic lengths, i.e.
lh/R0 ≫ 1. In this regime we have δΩ = δTN/I. Identifying the axis of rotation as the z axis
this yields

δΩ =

(
lh
R0

)2 ∑
l≥2,m>0

3m

2π

|fnl,m|
η

|δRl,m| sin[m(φf,lm − φR,lm)], (3.40)

where |fnl,m| and φf,lm are modulus and phase of the spherical harmonic components of the normal
forces fnext. We observe that a rotation results from a misalignment of the pattern of normal forces
and the shape of the cell. It yields a rotation of the cortex towards cos[m(φf,lm −φR,lm)] = −1,
corresponding to a configuration where the confining container is pulling at the cortex (fnext > 0)
where the surface of the cell is deformed inward (δR < 0) relative to the reference sphere. For
fspindle = 0, we recover the results of the previous section, i.e. Eq. 3.29. In particular, we find
that a ring of active tension aligns perpendicularly with the long axis of an elongated cell. Here,
we understand this is as a consequence of torque balance and the inward normal forces Cijtij ,
that result from the product of curvature and tension of the cell cortex. For a dividing cell, this
implies that the forces that drive the ingression of the cytokinetic ring also yield alignment of
the cytokinetic ring perpendicular to the long axis, whenever the cell is free to rotate inside a
confining container (Fig. 3.4B). Thus, in such a setting Hertwig’s rule is a consequence of torque
balance.

In the C. elegans AB cell as well as many other animal cells, the spindle pulls at the cortex at the
poles of the cell in order to balance the forces required for elongation of the spindle [112, 188].
Again, such forces yield a rotation, when the division axis is not parallel or perpendicular to
the long axis. Again, this yields an alignment where cos[2(φf,l,2 − φR,l,2)] = −1 according to
Eq. 3.40. However, the relation between the orientation of the force pattern φf,l,2 and the
division axis is differs, when pulling forces from the spindle dominate over the forces resulting
from cortical tension in the ring. Whereas tension in the cytokinetic ring yields inward forces
at the ring (balanced by outward forces from the eggshell), the spindle pulls the poles inward.
Hence spindle pulling forces favor a short-axis alignment of the poles of the cell (Fig. 3.4D).
Thus, torque balance explains the orientation of the spindle in embryos where spindle pulling
forces are over-activated and the myosin activity is inhibited (Fig. 3.4C). Taken together, we
find that the orientation of the cell division axis with respect to a confining geometry is a direct
consequence of torque balance, when the cell is free to rotate inside the confining container.

3.3.4 Cell elongation induces the formation of a contractile ring

We have found that a rotational flow aligns a ring of active tension orthogonal to the long axis of
the fluid surface. This rotation dominates the flow field, when the hydrodynamic length is large.
However, in such a regime, our dynamic model of the cortex does not yield the formation of a
stable contractile ring, i.e. a ring with increased concentration c of the stress regulator. Instead,
a polar pattern consisting of a single contractile patch is observed [135] (see also Fig. 3.2B and
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A B

Figure 3.5: Surface geometry shapes non-linear steady states of active fluid film. We solve the
non-linear dynamics of an active isotropic fluid film on a deformed sphere with a pseudo-spectral method
(appendix F). Color code corresponds to concentration of stress regulator c, with yellow indicating high
concentrations and thus high levels of active tension. Red arrows denote the flow field. A: Exemplary
dynamics where initially a circular patch of high active tension forms and localizes to the saddle of the
prolate sphere. There it drives a shear flow that deforms the circular patch into a ring. B: Steady state
patterns as a function of the hydrodynamic length lh and the magnitude of the static deformation δR20 (Eq.
3.13) corresponding to varying degrees of elongation. Each colored surface shows the steady state pattern
on such an axisymmetric surface. Black-white colored surfaces show non-steady states (see Fig. J.5 for
examples). Physical parameters are Pe = 55, α = 1, kτD = 10.

left row in Fig. 3.5B). We wondered, whether this pattern changes, when considering a deformed
sphere. After all, all components of the flow field depend on the surface geometry. This may
yield not only a rotation but also a deformation of the stress regulator pattern.

To this end, we developed a pseudospectral method (appendix F). Briefly, we decompose all flow
and concentration field in terms of (spin-weighted) spherical harmonic components, which we
use to calculate derivatives on a reference sphere. From this we calculate the derivative on the
deformed sphere by making use of the Newman Penrose formalism and by calculating products
of fields on a spherical grid. Using the spherical harmonic decomposition we represent the force
balance equation as a matrix equation, which we invert to obtain the flow field for a given stress
regulator pattern. With this we simulate the dynamics of the stress regulator concentration (Eq.
1.53) for a range of hydrodynamic lengths on surfaces with varying degrees of deformation (Fig.
3.5B).
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3.4. DISCUSSION

As expected, we find that stable contractile rings always orient perpendicularly to the long axis
of the cell. Thereby, the contractile ring is located at the saddle of the surface geometry, i.e.
the minimum in Gaussian curvature. Notably, we find that also for polar patterns the patch
of increased active tension localizes to this saddle. Thus, the axis of polarity is oriented per-
pendicular to the long axis, as predicted by the linear stability analysis in section 3.3.1. That
this orientation persists in the non-linear regime can be understood from the principle we have
found in section 3.3.2: in the regime of large hydrodynamic length, patches of heightened active
tension align with regions of the surface that are deformed inward relative to a reference sphere
(Eq. 3.29). In chapter 4, we will study the phenomenon of contractile patches localizing with
saddle geometry for general surface geometries.

Strikingly, we observe the formation of stable contractile rings in a broad range of parameters.
For larger hydrodynamic length, we often observe the formation of a polar patch in the linear
regime as expected from linear stability analysis. For sufficiently strong deformations, we observe
that the initially circular patch of active tension drives a shear flow that deforms the patch into
a ring (Fig. 3.5A). As for the deformation triggered-rotation (Eq. 3.29), the flow field is a result
of the pair of anisotropies of surface geometry and tension pattern. Specifically, we understand
the shear flow driven by a circular patch as a consequence of the nematic anisotropy of the local
surface geometry at the saddle, where the contractile patch is localized. We will further investi-
gate this phenomenon in the next chapter. Taken together, an elongation of surface yields the
formation of a stable contractile ring, as the surface geometry reshapes the pattern by reshaping
the flow field.

Notably, we find also parameters where the dynamics do not converge to a steady state pattern.
In particular, we observe rotations of a a single contractile patch on a sphere. This rotation does
not correspond to a rotational flow but to a travelling wave of the concentration field (see Fig.
J.5). We have predicted these rotations in our coarse-grained model (Fig. 3.1F). As such, they
reflect the non-equilibrium nature of the model (see section 3.1). When considering a fluid film
with identical material parameters on a deformed sphere, we observe complex dynamics, where
the circular patch repeatedly deforms into a ring and viceversa (see Fig. J.5). The dynamics
do not appear to be strictly oscillatory and might show some intermittency. This suggests, that
coupling to shape anisotropy can give rise to chaotic dynamics in an active isotropic fluid. We
plan to analyze this more carefully in the future.

3.4 Discussion

In this chapter, we have investigated how the shape of a cell impacts on patterns that form in the
cell cortex. To this end, we developed analytical and numerical tools to solve and understand a
hydrodynamic model of the cortex as well as experimental data from the C. elegans 2-cell embryo.
We found that active tension in the cell cortex drives a whole cell rotation, when the pattern
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of active tension is not aligned with the geometry of the cell surface. As mechanical activity is
controlled by chemical patterns, this rotation yields robust alignment of chemical patterns with
the surface geometry. In particular, we found that a contractile ring aligns perpendicularly to the
long axis of the cell. Thereby, the division axis of the C. elegans AB cell is aligned with the long
axis of the cell. We note that such a ring-driven rotation has recently also been studied in the
C. elegans zygote [99]. As we discussed in section 1.1.6, cortical tension in the pseudo-cleavage
furrow, a structure akin to the cytokinetic ring, drives a rotation that aligns the AP axis with the
long axis of the egg shell. This was understood using numerical simulations of an active nematic
fluid and, phenomenologically, in terms of an effective line tension. Here, we have generalized
this phenomenon to general anisotropies of shape and tension patterns in an active isotropic fluid.

Importantly, we found that a polar pattern of active tension does not yield parallel alignment of
the axis of polarity with the long axis. In the linear regime, we found that the axis of polarity
aligns perpendicularly to the long axis for strong mechanical activity, in particular for small
hydrodynamic length. In the non-linear regime we also find perpendicular alignment, as the
domain of high active tension localizes to the saddle of a prolate sphere. These results explain
why the alignment of the AP and the DV axis of the C. elegans embryo with the long axes of
the egg shell relies on rings of myosin-generated tension.

Furthermore, we also incorporated mechanical interactions of the cortex with the spindle. Using
torque balance, we found that the cytokinetic ring and mechanical spindle-cortex interactions act
antagonistically to define the orientation of the cell division axis with respect to the geometry
of a cell, in agreement with experimental results. In particular, this implies that the forces that
drive the ingression of the cytokinetic ring ultimately enforce an alignment of the division axis
with the long axis of the cell, whenever the cell is free to rotate inside a confining shell. Taken
together, we provided physical explanations for the alignment of body and cell division axes
with a confining geometry. In particular we connected Hertwig’s rule, i.e. the principle of cells
dividing along their longest geometric axis, to the conservation of angular momentum.

Finally, we found that the surface geometry can not only yield alignment but reshapes the pat-
tern. In particular, we numerically found that an elongated surface shape yields the formation of
a stable contractile ring for a wide range of material parameters. This may serve as a feedback
mechanism for the formation of the cytokinetic ring. Notably, the formation of a band of active
tension has also been found in perturbed C. elegans zygotes [105]. In contrast to wild type
embryos, the formation does not appear to be triggered by cortex-centrosome interactions. Also
in contrast to wild type embryos, no aligning rotation is observed. This suggests that in the
absence of other triggers the shape of the (P0) cell defines the chemical patterns that form in
the cortex. It remains to be tested, whether our model is sufficient to explain the experimentally
observed geometry dependence.
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Chapter 4

Geometry sensing by active flows

Biological cells are often said to sense their environment, as they respond to external stimuli in a
complex yet predictable way that is beneficial for the survival of the cell or the organism the cell
belongs to [189, 190]. A well studied example is chemotaxis: Bacterial or eukaryotic cells move
towards a nutrient or away from a poison, as if they could smell it [190]. This phenomenon relies
on receptor proteins and a complex network of signalling proteins that affect the cilia, flagella
or cell cortex that give a cell its motility. Thereby the direction of movement is aligned with the
gradient of a chemical concentration [190, 24].

Cells also respond to mechanical stimuli like squeezing the cell into a certain shape [189, 99, 191,
107]. In particular, cells tend to divide along their longest geometric axis (see section 1.1.7). We
may thus say, cells sense their shape. Also in other contexts, biological cells have been found to
sense their shape, specifically the curvature of their surface (see section 1.1.6). However, such
curvature sensing is typically understood as curvature-dependent binding of specific proteins
from the cytoplasm to the plasma membrane or other lipid membranes [101]. In the previous
chapter, in contrast, we have shown that diffusive or advective movements of molecules within the
cell surface naturally result in geometry-dependent patterns, giving a cell a sense of its longest
axis. In particular, we have found that in an active fluid film such as the cell cortex, contractile
patches localize to the saddle of a prolate spherical surface. In this chapter, we generalize this
phenomenon to active particles in fluid films for general surface geometries and topologies. We
demonstrate that such localized sources of mechanical activity sense the geometry by moving in
response to the local flow field, and investigate what measure of the surface geometry they sense.

Throughout this chapter, we consider a static shape of the surface. We will start by studying
contractile patches on a torus, where we observe that they move down the gradient of the
geometric potential, a measure of the intrinsic surface geometry (section 4.1). Motivated by
this, we investigate further how the surface geometry shapes the flow field of an active fluid. To
this end, we use isothermal coordinates, which allows us to map the flow field of a curved fluid
film to a flat fluid film (section 4.2.1). Furthermore, we investigate in analytical terms how the
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flow field changes upon static infinitesimal deformations of the surface (sections 4.2.2 and 4.2.3).
Using these insights, we investigate how the geometry of a surface defines attractors towards
which contractile points are advected (section 4.3.1). Furthermore, we investigate how general
anisotropies of the surface geometry yield deformations of a contractile patch (section 4.3.2). In
section 4.4, we test whether all these analytical calculations allow us to understand the patterns
that emerge in an active isotropic fluid for complex surface geometries. Finally, we study active
anisotropic particles embedded in a curved fluid film. These particles rotate and move by locally
coupling to the flow they drive. In section section 4.5, we show how this flow coupling gives such
particles a sense of the surrounding surface geometry.

4.1 Geometry sensing by an active isotropic fluid

4.1.1 Patches of active contractility are advected towards saddle geometries

In section 3.3.4, we investigated pattern formation in an isotropic active fluid film with anisotropic
surface geometry. Using numerical solutions of the concentration dynamics, we found that steady
state patterns emerge where a patch with a high concentration of the stress regulator colocalizes
with the saddle of a prolate spherical surface. A high concentration c > c0 corresponds here to a
large active isotropic tension driving in-plane contractions. We have found that this colocaliza-
tion of contractile patches with the saddle arises only in the non-linear regime, where contractile
patches are advected towards the saddle (see sections 3.3.1,3.3.2). To illustrate this phenomenon,
we initialize the system with a circular patch of elevated tension between the saddle and a pole
(Fig. 4.1A), corresponding to a steady state of the model on an isotropic spherical surface [135].
On the prolate sphere, the flow driven by the circular patch is anisotropic as is the surface ge-
ometry. Advection by this flow yields a movement of the patch while keeping the circular shape
of the patch largely unchanged. This movement can be understood as particular example of the
rotation we discussed in section 3.3.2. Thereby, the contractile patch moves towards the saddle of
the prolate sphere, where the Gaussian curvature κ is minimal. We wondered whether this advec-
tion of contractile patches towards minima in Gaussian curvature is also found for other surfaces.

To this end, we study the same minimal model as before but on a surface with toroidal topology.
Again, we use a pseudo-spectral method to solve the dynamical equation numerically, using
a Fourier instead of a spherical harmonics decomposition (appendix F). We consider identical
physical parameters and a surface of similar size. With this, we find that a circular patch is
advected towards the inner surface of the torus, i.e. the minimum in Gaussian curvature (Fig.
4.1B). Moreover, we find that a shear flow emerges that reshapes the circular patch into a ring
spanning the inner surface of the torus, similarly to our observations on a prolate sphere (Fig.
3.5A). Thus, both on a prolate sphere and on a torus, the saddle geometry attracts contractile
patches and facilitates the formation of a contractile band.
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A

B

t=0 t=0.1 t=0.5

Figure 4.1: Contractile patches in a fluid film are advected towards saddle geometries. A,B:
Snapshots of numerical solutions of Eq. 1.53 using a pseudo-spectral method (appendix F) for a prolate
spherical geometry (A) and for a torus (B). Red arrows denote flow field and color denotes stress regulator
concentration c. Physical parameters given in Table J.4. In both cases, we initialize with a circular patch
which was obtained as the steady state on a sphere (A) or a cylinder with periodic boundary conditions
(B). In both cases a steady state was reached, i.e. we did not observe considerable changes in c after t = 0.5
up to t = 20.

4.1.2 Contractile points sense the geometric potential of a torus

We set out to understand in more fundamental terms why a contractile patches move to the
minimum of Gaussian curvature. To this end, we calculate the flow field of a tension monopole,
i.e. stress regulator concentration c = δ(s1 − s10)δ(s

2 − s20)/
√
g. As we are not aware of ana-

lytical solutions to this problem, we approximate the flow field numerically using a staggered
grid (appendix G). From this, we calculate the velocity vmono (green arrow in Fig. 4.2A) of the
contractility monopole (see appendix I for a discussion of such velocity multipoles on a curved
surface). vmono corresponds to the average velocity in the immediate surrounding of the contrac-
tility monopole (Fig. J.1). It gives the direction in which a small contractile patch moves due
to advection. Calculating vmono for contractility monopoles at different positions on the surface
yields a vector field that defines an attractor and a repeller (solid and dashed lines, respectively,
in Fig. 4.2B). Small contractile patches are advected away from the repeller towards the attrac-
tor. For the given parameters, contractility monopoles are advected away from the outer side of
the torus and accumulate at the inner side of the torus (i.e. div vmono = ∇iv

i
mono < 0, Fig. 4.2B).

Importantly, vmono depends only on the viscosities η, ηb and the friction coefficient γ defining
the hydrodynamic length lh =

√
η/γ. For all parameters we tried (with 0 ≤ α ≤ 10), we find

that attractor and repeller coincide with the lines of minimal and maximal Gaussian curvature,
respectively (Fig. 4.2C). This implies that shear viscosity is sufficient to yield the advection of
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a contractile point towards a saddle. Also in section 3.3.2, we have found that the sign of the
rotation that aligns patterns of active tension with the surface geometry is independent of ma-
terial parameters. Strikingly, this analytical result (Eq. 3.29), reveals that the aligning rotation
vanishes for vanishing shear viscosity (corresponding to the limit α → ∞ with αl2h = const.)
Together, this suggests that shear viscosity attracts contractile points to minima in Gaussian
curvature.

To gain insight how such sense of Gaussian curvature results from shear viscosity, we write the
flow field vi as a Hodge decomposition, i.e. in terms of a harmonic field vh and two (pseudo)
scalar fields A,B that correspond to the irrotational and rotational flow components respectively
(Eq. 1.67). With this decomposition, the tangential force balance equation of an isotropic active
fluid with a pattern of active tension χ yields

η(α+ 1)∆∆A+ (2ηκ− γ)∆A+ 2η(∂iκ)(∂
iA) + 2η(ϵij∂iB + vjh)(∂jκ) =−∆χ (4.1)

η∆∆B + (2ηκ− γ)∆B + 2η(∂iκ)(∂
iB)− 2ηϵ ji (∂

iA+ vih)(∂jκ) =0 (4.2)

Ph[2ηκ(g
ij∂jA+ ϵji∂jB + vih)]− γvih =0, (4.3)

where Ph is the projection yielding the harmonic component of a vector field in the sense of a
Hodge decomposition. On a closed surface with constant Gaussian curvature (∂iκ = 0), these
three equations are uncoupled yielding B = 0 = vih . Hence, on a sphere, the flow field driven
by an arbitrary pattern of active tension χ is irrotational. This is not the case, however, on an
anisotropic surface, such as the torus in Fig. 4.2. Notably, the coupling can be understood as
the result of an effective friction coefficient γeff = γ−2ηκ (see also Eq. 1.69). Thereby, gradients
of Gaussian curvature translate into a gradient of effective friction:

∂iγeff = −2η∂iκ (4.4)

In Fig. 4.2D-F, we plot a Hodge decomposition of the flow field of a contractility monopole
obtained numerically (see appendix G.4). Strikingly, we find that rotational and harmonic flow
component yield the monopole velocity vmono (green arrows), whereas the contribution to vmono

from the irrotational component is on the order of the numerical error. Thus, the transport of
contractile points towards the saddle is a consequence of the coupling of the flow components
that results from the effective friction gradient −2η∂iκ. In intuitive terms, a contractile point is
dragged towards the saddle due to an increased effective friction at the saddle that results from
the product of shear viscosity and Gaussian curvature.

We use this insight to calculate the monopole velocity vmono analytically for a slightly anisotropic
surface geometry, i.e. for κ = κ0+ δκ with κ0 = const. and l2hδκ≪ 1. We have found that vmono

primarily results from a flow field that is constant around the position of the monopole and thus
only friction limited (see Fig. 4.2E,F). Furthermore, we have found that this flow field results
from the effective friction δγeff = −2ηδκ. Thus we can write the flow field δv that results from
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div vmonolog |v|
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Figure 4.2: Tension monopoles on a toroidal surface drive transport along gradients of the
geometric potential. A: Numerical solution (see appendix G) of the flow field around a tension monopole
on a torus. For better illustration, only half the torus is shown. Red arrows indicate fluid velocity, blue
arrows denote forces the monopole exerts onto the fluid film and green arrow denotes monopole velocity
vmono corresponding to an average velocity around the monopole position (see appendix I and Fig. J.1).
Color denotes modulus of fluid velocity on a logarithmic scale. Magenta arrows show poloidal velocity along
a cross-section of the torus, where we observe a transport of the entire fluid film in a poloidal direction. B:
Field of monopole velocities vmono (green arrows), obtained by calculating the flow field around monopoles
as in A for different monopole positions. This yields a repeller (dashed line) and an attactor (solid line) of
contractile points, i.e. tension monopoles. Color denotes the divergence of the field vmono. C: Plot of vmono

as in B as a function of the poloidal coordinate p for different hydrodynamic lengths, i.e. lh = 3R1 (colored
dashed lines with color denoting α = ηb/η) and lh = R1/3 (black dashed line, no considerable dependence
on α is found for α < 10, when normalizing the curves with respect to the maximum) . Blue line denotes
gradient of Gaussian curvature κ. Red line shows the gradient −∇φ with φ denoting the geometric potential
(Eq. 4.8). We observe that numerical solutions for vmono collapse onto this line for small hydrodynamic
lengths as predicted by Eq. 4.7. All curves denote projections onto the poloidal unit vector p and each
curve is normalized with respect to the maximum modulus. D-F: Plots as in A of a Hodge decomposition
of the flow field in A (see appendix G.4). We observe that the monopole velocity (green arrow) is due to
the rotational and harmonic components and that the large-scale transport of the fluid film (as evident from
the poloidal velocity (magenta) in the cross-sections) is due to the harmonic component.

the anisotropy δκ close to the monopole as

γδv = 2ηδκv0, (4.5)

where v0 = ∇A0 is the flow field for δκ = 0. Close to the contractility monopole at rmono,
viscous forces dominate yielding

η(α+ 1)∆LBA0 = −Tδ(2)(r− rmono)/
√
g. (4.6)

where T > 0 is the magnitude of the tension monopole. With this we obtain

vmono =
1

Sϵ

∫
Uϵ(rmono)

dS δv = −2
T

γ(α+ 1)
∇δφ(rmono), (4.7)

where Uϵ(rmono) denotes a neighborhood with surface area Sϵ. We used here integration by
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parts, omitting boundary terms, which is valid for large enough Uϵ such that A0 vanishes on
the boundary of Uϵ. δφ is the geometric potential associated with the anisotropy δκ of the
intrinsic surface geometry (Eq. 1.71). We introduced the geometric potential φ in section 1.3.2.
It determines the metric of a surface in isothermal coordinates. As such, it defines the intrinsic
geometry of a surface. Here, we find that a contractile point moves down the gradient of φ. For
a torus, we find

φ = φ0 − 2 log

[
R1

R2
− cos(p)

]
, (4.8)

with p being the poloidal coordinate and R1, R2 being the radii of the torus (see Eq. F.24 for
the corresponding isothermal parametrization of a torus). This yields an analytical expression
for the velocity of a contractility monopole on a torus for lh ≪ R1. Strikingly, we find that
the numerical results agree perfectly with this analytical calculation for small hydrodynamic
length or large α (Fig. 4.2C). Taken together, we find that shear viscosity yields a transport of
contractile points along gradients of the geometric potential on a torus. Thus, patches of active
isotropic tension in a fluid film act as sensors of the geometric potential. In the following, we
will generalize this insight to general surface geometries.

4.2 Deformation response of active flow in general surface geome-
tries

In the previous section, we have found that the shear viscosity of a fluid film gives rise to the
transport of a contractile point along gradients of the geometric potential for a slightly anisotropic
surface geometry. This insight was based on linear calculation in terms of the anisotropy of the
surface geometry. However, biological surfaces often have complex shapes far away from any
isotropic idealization. In the following, we investigate in analytical terms how such surface
geometries shape the flow field, going beyond small deformations of an isotropic surface. To this
end, we adopt the formalism of spin-weighted fields (see section 1.3.1) and use an isothermal
parametrisation of the surface (see section 1.3.2). With this, we present two approaches to
understanding the geometry dependence of active flow: First, we show how the flow field of
a curved fluid film can be mapped to a flat one by rescaling the viscosity and the friction
coefficient. Thereby, gradients in measures of the surface geometry are mapped to gradients
in material properties (section 4.2.1). Second, we study the change in the flow field upon an
infinitesimal deformation of the surface in terms of Green’s functions (sections 4.2.2 and 4.2.3).

4.2.1 Mapping anisotropies of the surface geometry to effective gradients in
viscosity and friction

The geometry of a surface has a profound impact on the flows that emerge in an active fluid
(see the previous section and chapter 3 for examples). In the previous section we have found
that some of this impact can be understood in terms of an effective friction that results from
the product of shear viscosity and Gaussian curvature. We found that a contractile point is ef-
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fectively dragged towards the maximum of effective friction which is the saddle of a torus. Here
we want to extend this approach to general surface geometries by using isothermal coordinates,
which can be found for any surface (see section 1.3.2). In isothermal coordinates the metric and,
thus, the intrinsic geometry of the surface is defined by a single real valued field φ(s1, s2). We
call φ the geometric potential, as it is related to the Gaussian curvature κ by a Poisson equation.
In these coordinates, the Laplace-Beltrami operator ∆LB is equivalent to the Laplace operator
∆0 up to a rescaling by e2φ (Eq. 1.72). Furthermore, the covariant derivative operators ð and ð̄
from the Newman Penrose formalism can be expressed in terms of the Wirtinger derivatives ∂z̄
and ∂z by rescaling the original field and its derivative by powers of the length scale l = eφ (Eq.
1.73). We use these relation to understand the impact of the surface geometry on the flow field
in terms of a rescaled viscosity and a rescaled friction coefficient.

We consider a general force density (1)f that drives the flow field. In sections 4.3 and 4.5, we
understand this force density as the divergence of some pattern of active stresses. As before we
use a Hodge decomposition of the flow field (1.67). The derivative operators motivate a rescaling
of flow field and force density given by

(1)f
r = eφ (1)f, (1)v

r = eφ (1)v = 2∂z̄ + (1)v
r
h. (4.9)

where the rescaled harmonic flow field (1)v
r
h = eφ (1)vh obeys

∆0 (1)v
r
h = 0. (4.10)

With this, we evaluate the tangential force balance equation of a fluid film that governs the flow
field (Eq. 1.69). We find it can be written as

2∂z̄ηeff∆0(F + αReF )− γeff(2∂z̄F + (1)v
r
h) = − (1)f

r, (4.11)

where we introduced an effective viscosity ηeff and an effective friction coefficient γeff , given by

ηeff = e−2φη, γeff = γ − 2ηκ. (4.12)

Eq. 4.11 and 4.10 are differential equations that determine the flow field in terms of F and (1)v
r
h.

Apart from ηeff and γeff , these equations are independent of the surface geometry. Thus, they
allow us to calculate the flow field of a fluid film with arbitrary surface geometry by mapping it
to a flat fluid film with effective heterogeneities in friction and viscosity.

As observed in the previous section the product of Gaussian curvature and shear viscosity gives
rise to an effective friction γeff . Thereby, minima in Gaussian curvature correspond to maxima
in effective friction. The geometric potential defines a rescaled viscosity ηeff that is maximal at
minima in φ. We note that the effective viscosity ηeff does not correspond to a shear viscosity,
when φ is non-constant. Instead, ηeff defines an effective bulk viscosity (1 + α)ηeff and an ef-
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Figure 4.3: Surface geometry defines effective viscosity and friction gradients As discussed in
the main text, the impact of the intrinsic surface geometry on the flow field can be captured by effectively
geometry-dependent material properties. A,B: Plots of effective friction coefficient γeff and effective viscosity
ηeff (Eq. 4.12) for a torus with a smaller radius R2 = lh. See also Fig. 1.13 for a plot of φ and κ. We observe
that γeff and ηeff are maximal at the saddle, i.e. the minimum in Gaussian curvature. C: Illustration of a
surface deformation that corresponds to a localized isotropic expansion δφ > 0 of the surface. D: Effective
change in shear viscosity η and friction coefficient γ for a localized expansion for vanishing bulk viscosity
(α = 0). We observe that an expansion of the surface effectively increases viscosity and friction coefficient
E: Effective change in bulk viscosity for a localized expansion in the regime of vanishing shear viscosity
(η → 0, ηb = αη > 0). We observe that an expansion effectively decreases bulk viscosity.

fective rotational viscosity ηeff . We understand here a rotational viscosity as an antisymmetric
stress that is proportional to the vorticity (corresponding to a scenario where the intrinsic rate of
rotation vanishes due to substrate interaction) [120]. In other words, it is torque density acting
against the vorticity of the flow. For a non-vanishing hydrodynamic length, γeff and ηeff affect
the flow field in a non-local manner. The flow field at position zv that is driven by a force at
position zf depends on the geometry of all parts of the surface that are connected to zv and zf
by a length on the order of the hydrodynamic length.

The rescaling of force density and flow field, in contrast, is purely local. Moreover, the rescal-
ing factors for both fields are identical. Thus, the rescaling does not affect the flow field when
evaluating the flow field at the same position where it was driven. In this chapter, we focus on
localized sources of mechanical activity that are translated, rotated and deformed by the flow
field in its immediate surrounding. For these scenarios, the rescaling of force and flow field can
be omitted. Instead, we focus on the response to the surface geometry that arises on the hydro-
dynamic length scale due to the effective geometry-dependent material properties. In particular
we will discuss how the effective gradients of viscosity and friction define attractors of contractile
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points in section 4.3.1.

In Eq. 4.11, φ and κ appear as independent features of the surface geometry that shape the
flow field in distinct ways. However, it is the metric and, thus, the geometric potential φ that
defines the intrinsic geometry of the surface, including the Gaussian curvature (see Eq. 1.71).
For a deformation δX of a surface, it is the associated δφ that defines the change in the intrinsic
surface geometry. δφ corresponds to locally isotropic area expansions (δφ > 0) and contractions
(δφ < 0) of the surface. We would like to understand the impact of such expansions and con-
tractions on the flow field.

When shear viscosity vanishes, Eq. 4.12 yields that a deformation δφ effectively changes the
bulk viscosity as

δηb = −2δφηb (4.13)

In words, an expansion of the surface (δφ > 0) relaxes the pressure from bulk viscosity. Thus,
we expect that an expansion of the surface amplifies the flow driven by a force density, when the
flow is limited only by bulk viscosity and friction.

When bulk viscosity vanishes, the force balance equation in isothermal coordinates reads

4e−3φ∂z

[
ηe2φ∂z̄

(
e−φ (1)v

)]
− γ (1)v = − (1)f. (4.14)

We rescale the force as (1)f
r = e3φ (1)f and the velocity as (1)v

re−φ (1)v. With this we read off
a rescaled shear viscosity e2φη and a rescaled friction coefficient e4φγ. We note that in this case
the rescaling factors of flow and force field differ, in contrast to Eq. 4.9. However, we can omit
this local rescaling for a localised deformation at a distance, i.e. when δφ vanishes where the
flow is driven ((1)f ̸= 0) and where it is evaluated. In this case, the change in the flow field is
solely determined by the effective change in shear viscosity and friction coefficient given by

δγ = 4γδφ, δη = 2ηδφ. (4.15)

In words, an expansion of the surface effectively increases shear viscosity and friction.

φ defines also the Gaussian curvature κ (Eq. 1.71). κ is negative at minima in φ. Minima in
φ are points where the surrounding area has been expanded with respect to this point, such
that this point is surrounded by more surface area in a given distance to the point (see also
Fig. 1.9). This explains why shear viscosity assigns regions of negative Gaussian curvature an
increased effective friction. Thus, we sum up the geometry-dependence of flows limited by shear
viscosity as: Adding more surface area around a point makes it harder to move the fluid film at
that point. Saddle geometries as well as localised expansions of the surface, akin to protrusions
(Fig. 4.3C,D), act as obstacles as they correspond to regions of effectively increased viscosity
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and friction.

In the previous section, we found that in particular the effective increase in friction fundamen-
tally changes the flow field of an active isotropic fluid film and makes a contractile point move,
as it yields a coupling of rotational and irrotational as well as harmonic flow components. This
effective friction arises only from the shear viscosity η, but not from bulk viscosity ηb = αη. This
is a consequence of the tensorial nature of the shear rate. While bulk viscosity couples two scalar
fields, the divergence of the flow field to the trace of the stress tensor, shear viscosity amounts to
a coupling of two trace-less symmetric tensors. Such a tensor defines not only a magnitude but
also a local angle or phase in the sense of a spin-weighted quantity. Parallel transport of such an
object yields a rotation, whereas a scalar quantity remains unchanged. It is this rotation that
gives rise to the non-vanishing commutator of the covariant derivative (Eq. 1.66), which in turn
gives rise to the effective friction.

Taken together, we find that the flow field of a curved fluid film can be mapped to the flow field of
a flat heterogeneous fluid film. Thereby, we map anisotropies of the surface geometry to effective
gradients in the viscosities and the friction coefficient. This yields an intuition for understanding
the geometry dependence of flow fields. In the following, we investigate this geometry dependence
more explicitly, by calculating how the flow field changes, when one changes the geometry of a
surface.

4.2.2 Complex Green’s functions of force and deformation response

In an active fluid, the force generated by some mechanically active structure like a myosin foci
depends on the geometry of this structure. This geometry dependence gives rise to variation
of the force density δ (1)f associated with a deformation δφ, when considering the deformation
response of the flow field of an active fluid film. Such a geometry dependence has been considered
for example for topological defects in an active nematic fluid film with vanishing hydrodynamic
length [192]. Here in contrast, we focus on localised sources of mechanical activity, i.e. active
stresses (or moments) that are non-vanishing only on a patch that is small compared to the
hydrodynamic length and the length scales of the surface geometry. In this case, a geometry
dependence of the flow arises only due to viscosity.

To get an understanding of how the surface geometry shapes the flow field due to viscosity, we
study the geometry dependence of the Green’s functions. For a tangential force density (1)f , the
resulting flow field (1)v can be calculated as

(1)v(z) =

∫
dS′

[
(1,−1)G(z, z

′) (1)f(z
′) + (1,1)G(z, z

′) (−1)f(z
′)
]
, (4.16)

where here and in the following z = s1 + is2 denotes the coordinates and dS′ =
√
gds1

′
ds2

′ .
The Green’s functions (1,−1)G and (1,1)G are fields with mixed spin weights (see appendix D).
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Figure 4.4: Understanding the geometry dependence of active flow using complex Green’s
functions. A: Schematic for the change in the flow field δv upon a deformation corresponding to a localized
surface expansion δφ of the reference surface in the upper panel. Red arrows denote the flow field v and blue
arrows denote the monopole force F that drives the flow. We investigate the deformation response of the
flow field by evaluating the deformation response of the Green’s functions. B: Upper panel: Flow field (red
arrows) around a force monopole (blue arrow) in a flat incompressible fluid film (α → ∞). Lower panels:
Decomposition of the flow field in the upper panel into the contributions from the complex Green’s functions
(1,−1)G = G0 and (1,1)G = G2, where we use the formalism of spin-weighted functions (see section 1.3.1 and
appendix D). (1,−1)G (left panel) and (1,1)G correspond to the trace and trace-less symmetric components
of the Oseen tensor, respectively. Formulas for flat fluid film are given in Eq. B.8, B.9.

The tangential force balance equation that governs the flow field (Eq. 1.69) yields the following
differential equations for the Green’s functions:

ð̄ð (1,−1)G(z, z
′) +

α

2
ð
(
ð̄ (1,−1)G(z, z

′) + ð(1,1)G(z, z
′)
)
− 1

l2h
(1,−1)G(z, z

′) =− 1

η
δz,z′ (4.17)

ð̄ð (1,1)G(z, z
′) +

α

2
ð
(
ð̄ (1,1)G(z, z

′) + ð(1,−1)G(z, z
′)
)
− 1

l2h
(1,1)G(z, z

′) =0. (4.18)

Here all derivative operators, defined in Eq. 1.73, are understood with respect to z, z̄. δz,z′

denotes the Dirac distribution on a two-dimensional surface which we define in terms of the
usual one-dimensional Dirac delta distributions as

δz,z′ = δ(Re[z − z′])δ(Im[z − z′])e−2φ(z′). (4.19)

For better readability, we will omit the spin-weights of the Green’s functions in the following by
defining

G0(z, z
′) = (1,−1)G(z, z

′), G2(z, z
′) = (1,1)G(z, z

′). (4.20)

For a flat incompressible fluid film (i.e. α→ ∞, φ = const., G0(|z−z′|)) andG2(z−z′) correspond
to the trace and the trace-less symmetric component of the Oseen tensor, respectively (plotted
in Fig. 4.4). For φ ̸= const., the Green’s functions cannot be written as functions of z− z′. Still,
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they obey symmetry relations that follow from the self-adjointness of the differential operators
in Eq. 4.17 and4.18:

G0(z, z
′) = G0(z

′, z), G2(z, z
′) = G2(z

′, z). (4.21)

The Green’s functions depend on the intrinsic surface geometry, which we understand in terms
of a functional dependence on the geometric potential φ. Importantly, this relation between the
Green’s functions and φ is non-linear and non-local. However, we can calculate the differential
δG(zv, zf )/δφ(z) of a Green’s function G with respect to a change in surface geometry δφ(z)

(see Fig. 4.4A for an illustration). δφ(z) corresponds to a deformation that amounts to locally
isotropic expansions and contractions of the surface. δG(zv, zf )/δφ(z) is particularly informative,
when we consider a surface S ′ that results from a continuous deformation of a reference surface S0

such as the sphere or a cylinder. Such a deformation can be understood in terms of a continuous
map

Φ : [0, 1] → C2 (4.22)

mapping a time-like variable x to a geometric potential Φ(x) = φx such that φ0 = Φ(0) and
φ′ = Φ(1). φ0 and φ′ define the intrinsic geometry of S0 and S ′, respectively. The flow field (1)v

′

on the deformed surface with intrinsic geometry φ′ can be written in terms of the flow field (1)v0

on the reference surface and an interaction Kernel (1,0,±1)K as

(1)v
′(zv) = (1)v0(zv) +

∫ 1

0
dx

∫
dS

∫
dSf

[
(1,0,−1)K(zv, z, zf ) (1)f(zf )

+ (1,0,1)K(zv, z, zf ) (−1)f(zf )
]dφx
dx

∣∣∣∣
z

, (4.23)

where (1,0,±1)K are defined as

(1,0,−1)K(zv, z, zf ) =
δ (1)v(zv)

δφ(z)δ (1)f(zf )
=
δG0(zv, zf )

δφ(z)
+ 2G0(zv, zf )δz,zf (4.24)

(1,0,1)K(zv, z, zf ) =
δ (1)v(zv)

δφ(z)δ (−1)f(zf )
=
δG2(zv, zf )

δφ(z)
+ 2G2(zv, zf )δz,zf . (4.25)

(1,0,±1)K comprise the geometry-dependence of the flow generated by the force pattern (1)f . Im-
portantly, they can be written in terms of the Green’s functions and their spatial derivatives for
general surfaces, as we derive in appendix H.

4.2.3 Response of active flow to localized deformations

As an instructive example, we consider an intrinsically flat reference surface, i.e. a surface with
vanishing Gaussian curvature. We calculate how the flow field (1)v of a force monopole changes
upon a localised expansion δφ = δz,z′ (Fig. 4.5). Such an expansion may be understood as a pro-
trusion with a size much smaller than the hydrodynamic length. We consider different regimes
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Figure 4.5: Differential of the flow field with respect to a deformation δφ for a flat reference
surface. Plots of (1,0,−1)K (1)F + (1,0,1)K (−1)F (Eq. 4.24, 4.25) as function of zv with |zf − z| = lh/2. This
corresponds to the differential change in the flow field (1)δv (pink arrows) around a force (1)F (blue arrow)
at zf upon a differential expansion of the surface δφ at z (indicated by white circles). δφ corresponds to a
localized deformation of the surface as illustrated in the lower right corner. A-C: (1)F = 1 with z−zf = lh/2,
i.e. the force is pointing towards the deformation. D-F: (1)F = 1i, i.e. the force is rotated by 90° with
respect to the force in A-C. Vectors in insets illustrate the orientation of δ (1)v (pink arrow) evaluated at
the position of the force zf . We observe that δ (1)v(zf ) is anti-parallel to (1)F for ηb = 0 (A,D), as given by
Eq. 4.26. For η → 0, ηb > 0, δ (1)v(zf ) is parallel to (1)F (B) or vanishes (E) depending on the orientation
of (1)F , as given by Eq. 4.27. For an incompressible fluid film (C,F), δ (1)v(zf ) may be parallel (C) or
anti-parallel (F) to the force (1)F , depending on the orientation of the force. For most angles, δ (1)v(zf )
is anti-parallel to (1)F , as the modulus |δ (1)v(zf )| is greater in panel C than in panel F, which yields the
numerical result in Eq. 4.28. All flow fields were obtained by exact differentiation of the Green’s functions
for a flat fluid film (Eq. B.8,B.9) using MATLAB [193]. With this, δ (1)v was obtained exactly analogous
to appendix H.

of α and orientations of the force that drives the flow.

As we have found shear viscosity to be crucial to the geometry sensing of a contractile point in
the previous section, we begin by considering the case of vanishing bulk viscosity (α → 0) (Fig.
4.5A,D). We observe that δ (1)v contains a shear flow around z and that δ (1)v overall points in
the opposite direction of the force that is driving the flow. Both these components of δ (1)v can
be understood in terms of the effective increases in friction and viscosity in Eq. 4.15. We may
say an expansion of the surface adds resistance against flow due to shear viscosity. Strikingly,
we can formalize this notion of increased resistance in terms of a strict bound that is valid for
any surface:

δ (1)v(zv)

δφ(z)δ (1)f(zf )

∣∣∣∣
zv=zf

= −4γ|G0(z, zf )|2 − 2η|ðG0(z, zf )|2 ≤ 0 for zf ̸= z. (4.26)

with equality restricted to a set of points (see appendix H.1 a derivation, note that (1,0,1)K van-
ishes for α = 0). In words, the change in the flow field upon a surface expansion δφ > 0 points
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in the opposite direction to the force, when the flow field is evaluated where it is generated. We
note that δ (1)v scales with the modulus of the Green’s function and, thus, the hydrodynamic
length. As this inequality is valid for any closed surface geometry, it provides inside that go far
beyond a linear calculation.

An analogous rationale applies to flows that are limited by bulk viscosity (ηb = αη), i.e. in
the limit η → 0, αη = const.. We found that an expansion of the surface (δφ > 0) relaxes the
pressure from bulk viscosity (Eq. 4.15). Thus, an expansion of the surface amplifies the flow
driven by a force monopole at a distance. Specifically, we find the following bound for the change
in the velocity, evaluated at the position and in the direction of the force (1)F that drives the
flow (see appendix H.2):

Re

[
(1)F

| (1)F |2
δ (1)v(zf )

δφ(z)

]
=

4|GP (z, zf )|2

ηb
(1 + cos(2∆ψ)) ≥ 0 for zf ̸= z. (4.27)

Here GP = (0,−1)GP is the propagator of the pressure (Eq. H.17). ∆ψ is the angle of the force
vector (1)F with respect to an axis defined by GP (see appendix H.2, note that both (1,0,1)K and

(1,0,−1)K contribute to δ (1)v, but the bound is again due to (1,0,−1)K). This inequality is valid
for general closed surface geometries in the regime of vanishing shear viscosity, i.e η → 0, ηb ̸= 0.
It is in direct contrast to Eq. 4.26 that applies to the regime of vanishing bulk viscosity, i.e.
ηb → 0, η ̸= 0. Thus, the geometry dependence of the flow field results from a competition of the
forces resulting from shear and bulk viscosity.

A particularly interesting regime is that of an incompressible fluid, i.e. α → ∞ with η and lh

non-vanishing and finite. Again, it is instructive to consider a deformation of an intrinsically
flat surface (Fig. 4.5C,F). We find that δ (1)v heavily depends on the orientation of the force
with respect to the geodesic that connects the positions of force monopole and surface expan-
sion. When the force is pointing towards the surface expansion, δ (1)v is pointing in the same
direction when evaluated at the position of the force (Fig. 4.5C). When the force is oriented
perpendicularly, δ (1)v is anti-parallel to the force (Fig. 4.5F). When we calculate the angular
average over orientations of the force, we find that δ (1)v is on average anti-parallel to the force,
i.e.

1

2π

∫ 2π

0
dψF Re

[
δ (1)v(zf )[(1)f ]

δφ(z)
e−iψF

] ∣∣∣∣∣
zv=zf

= (1,0,−1)K(zf , z, zf ) ≤ 0 (4.28)

with (1)f = FeiψF δz′,zf and z ̸= zf . Thus, the rationale we obtained from the regime of vanishing
bulk viscosity generalizes to the regime of shear viscosity, when averaging over orientations of
the force. We note that this inequality is only valid for a flat surface. For a general surface
geometry, we find that this inequality remains valid, when gradients of pressure resulting from
gradients of Gaussian curvature are small (appendix H.3). Thus, we find that the effect of shear
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viscosity on the geometry-dependence of the flow tends to dominates even when bulk viscosity
is infinite. As we discussed in section 4.2.1, this is dominance is due to the effective friction that
results from the tensorial nature of shear viscosity.

Taken together, we find that localized deformations modify the flow field at the position where
it is driven in a predictable manner. In the remainder of this chapter, we will use this insight to
investigate how localized sources of mechanical activity act as sensors of the surface geometry.
Such geometry sensing at a distance results from the viscosities. As we have observed here, the
viscosities yield that the flow field changes upon a deformation as Gδφ with G being a propagator
that scales with the distance relative to the hydrodynamic length. As such, the viscosities give
a localized source of mechanical activity a sense of the amount of surface area, quantified by φ,
it is connected to within the hydrodynamic length.

4.3 Geometry sensing by a contractile point

In the following, we make use of the insights gained in section 4.2 to investigate how anisotropies
in the surface geometry yield translation and deformations of a localized source of active tension.
Thereby, we generalize the findings of chapter 4.1.2, where we considered a tension monopole on
a torus. Again, we consider a monopole of active tension, i.e. a pattern of active tension given
by

tijact = T
δ(s1 − s10)δ(s

2 − s20)√
g

, (4.29)

where s10, s20 are the coordinates of the monopole, and T > 0 has units of a force dipole. Such
a contractile point may be interpreted as a model for a myosin focus. More generally, the flow
field around a monopole yields a basis for understanding the flow field of a general pattern of
active tension, similarly to the Green’s functions we considered in the previous section.

4.3.1 Contractile points are attracted by saddles and protrusions

As in the previous section, we adopt the Newman Penrose formalism in isothermal coordinates
(section 1.3.1,1.3.2). In such coordinates, the intrinsic surface geometry is defined by the geo-
metric potential φ. In section 4.1.2, we found that contractile points move along gradients of φ
on a torus. We understood this movement as the result of an effective friction gradient resulting
from the product of shear viscosity and Gaussian curvature. In section 4.2.1, we found that
the impact of the surface geometry on the flow field can generally be captured by geometry-
dependent rescaling of flow and force fields, and of the viscosities and the friction coefficient.
In the following, we want to use this insight to investigate, where contractile points move to in
general surface geometries.

For simplicity, let us consider the regime of vanishing bulk viscosity (we discuss the effects of
bulk viscosity in Fig. J.3). In this regime, we calculate how the flow field due to an active tension
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density χ changes upon an infinitesimal deformation in appendix H.1.1. We find that the change
δ (1)v can be understood in terms of two contributions (Eq. H.12): First an effective force density
−2χðδφ. Second a hydrodynamic kernel Khyd that captures the effective change in viscosity and
friction we discussed in the previous section (Eq. H.13). Both terms result from shear viscosity.
The effective force density drives a flow and thus a movement of a contractile point down the
local gradient in δφ. Thus, this generalizes our findings for a torus in section 4.1.2 to general
surface geometries. Importantly, however, one has to take also the hydrodynamic kernel Khyd

into account.

The hydrodynamic coupling to the geometry results from the effective change in friction and
viscosity (Eq. 4.15) In section 4.2.3, we calculated the resulting change in the flow field δv for
a force monopole. We found that δv is generally oriented oppositely to the force that drives it,
when evaluated close to the position of this force. Furthermore, we found that δv scales with the
moduli of the Green’s functions and, thus, the distance between the site of the deformation and
the position of the force (Eq. 4.26). A contractile point may be understood as an infinitesimal
ring of forces fi that all point towards its center, i.e. the position of the contractile point (Fig.
4.6A). Let us consider an obstacle in the fluid film, i.e. a small patch where friction and viscosity
are locally increased. Introducing such an obstacle changes the flow field driven by the contractile
point. Due to linearity of the governing equations, we can understand the change δv as the sum
of the contributions from all the forces fi. For each force, the associated δvi points oppositely to
fi and thus, away from the center of the contractile point. The sum of all δvi evaluated at the
center of the contractile point yields the velocity δvmono with which the monopole is advected.
As vi generally scales with the distance to the obstacle, we expect that δvmono is dominated by
the contribution from the force that is closest to the obstacle. Thus, δvmono points towards the
obstacle. The contractile point is advected towards the obstacle (Fig. 4.6B). Thus, we expect
the hydrodynamic coupling to the geometry to result in a velocity of a tension monopole towards
maxima in effective friction and viscosity.

For locally translation-invariant geometries, where G0(z, z0) = G0(|z − z0|) we can make this
statement explicit (see appendix H.1.1). We consider an infinitesimal deformation δφ of the
surface at a distance to a tension monopole at z0. We find that δφ yields a velocity at the
tension monopole given by

δ (1)v0(z0)

δφ(z1)δχ(z0)
=

1

2
ðz0 |Khyd| = ðz0

(
2γ|G0(z, z0)|2 + η|ðG0|2

)
. (4.30)

|Khyd| quantifies how much two points in the surface are mechanically coupled due to viscosity.
For an expansion (δφ > 0), the above equation says that a contractile point moves in the direc-
tion, where mechanical coupling to the position of the expansion is strongest. In other words, it
is attracted by the expansion, which is expected given the associated increase in effective friction
and viscosity (Eq. 4.15, see Fig. 4.6C for the deformation of a flat reference surface). For a
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general surface geometries, the situation can be more complicated than the argument in the
previous paragraph suggests. Crucially, this argument does not incorporate the angles resulting
from parallel transport of the vi to the center. Still, we expect that the principle remains: Con-
tractile points are attracted at a distance by regions where the viscosities and friction coefficient
are (effectively) elevated. At the same shear viscosity pushes the contractile point down the local
gradient of φ as we discussed above.

For vanishing bulk viscosity (α = 0), this means that contractile points are attracted by maxima
in φ at a distance, corresponding to localized protrusions. Close to the maximum, however they
move down the gradient in φ. As a consequence, we expect contractile points to localize to the
saddle of a protrusion.

For simple surfaces such as a torus or a prolate sphere, the mapping in Eq. 4.12 is useful. It
yields an effective friction inversely proportional to the Gaussian curvature. We note that in this
case, no local term proportional to the gradient in φ arises in this mapping, because the rescaled
force ∂z̄χ is geometry-independent (Eq. 4.9). On such simple surfaces, the saddle that results
from a global contraction is at the same time the minimum in φ and κ. Thus, the saddle is
the maximum in the effective friction γeff and the effective viscosity ηeff , which drags contractile
points towards the saddle. Notably, this statement is independent of α. Thus, we expect that
contractile points generally move towards such saddle geometries, in agreement with the results
of section 4.1.1.

Together, these two effects yield that a contractile point moves towards points z where φ in the
neighborhood of z is large compared to φ(z). This means that the movement of a contractile
point maximizes the amount of surface area, quantified by φ, in the neighborhood of the con-
tractile point (see also Fig. 1.9). In section 4.4, we will test whether these effects allow us to
understand the patterns that form in an active fluid with complex surface geometry.

4.3.2 Flow field for a multipole of the surface geometry

A patch of active tension does not only move due to advection, but it may also rotate (section
3.3.2) or deform. For a small circular patch we have found that advection can yield a deformation
of the circle into a band, when the patch is located at the saddle of a prolate sphere (Fig. 3.5A).
This deformation is a consequence of a shear flow that results from the anisotropy of the surface
geometry. In the following, we investigate the effect of such surface anisotropies on the flow field
of a contractile point.

To this end, we consider a regime where the hydrodynamic length is small compared to the length
scales of the surface geometry. In this regime, we can understand the surface geometry in terms
of a slight deformation of an intrinsically flat surface. This deformation is captured by a field
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Figure 4.6: Shear viscosity attracts contractile points to protrusions and saddles. A: Illustration
of the forces (blue arrows) from a tension monopole Eq. 4.29). Such a localised force density can be
understood as an infinitesimal ring of forces that all point to the center of the ring. B: Inducing an obstacle,
i.e. a local increase in friction and viscosity (grey area), yields an anisotropic change in the flow field and
thereby the movement (green arrow) of a contractile point, i.e. a tension monopole (blue dot). The change
in the flow field can be decomposed in the contributions δv(f) (pink arrows) from each force monopole
(blue arrow). δv(f) is oriented oppositely to the force and scales with the distance to the obstacle. As a
consequence, the contractile point moves towards the obstacle. This allows to understand the movement
of contractile points in a curved surface using the effective gradients of viscosities and friction coefficient
(see Fig. 4.3). For details see main text. C-E: Change in the flow field (pink arrows) around a tension
monopole upon introducing a deformation of an otherwise flat fluid film with α = 0. C: Localised surface
expansion as in Fig. 4.5. We observe that a contractile point moves towards such an isotropic expansion,
corresponding to a small protrusion. D: Contractile point moves down the Gaussian curvature gradient
∇δκ, corresponding (1)K in 4.33. E: Nematic anisotropy ((2)K ) of the surface geometry yields shear flow,
where the fluid film extends along the axis of minimal Gaussian curvature. Flow field in C was obtained
analytically as in appendix H.4. For the flow fields in D, E, the change in the viscous force was calculated
analytically. From this the flow field was obtained by inverting the force balance equation in Fourier space
using periodic boundary conditions and using a 256x256 square grid of size 10lh.
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δφ(z) around the contractile point at z = 0, where as z = s1 + is2 is the complex coordinate.
δφ is only defined up to reparametrizations of the surface. When δφ is globally defined, it is
defined up to a constant by virtue of Liouville’s equation (Eq. 1.71, see also section 4.4). Due
to the small hydrodynamic length, the contractile point sees only an open subset of the surface.
On such an open subset, δφ is defined up to holomorphic reparameterizations. Without loss of
generality, we consider a parametrization of the surface such that

δφ
∣∣
z=0

= 0 and ∂nz δφ(z)
∣∣
z=0

= 0 for n ∈ N, (4.31)

corresponding to boundary conditions of δφ at z = 0. With this, we write δφ as a Taylor
expansion:

δφ = |z|2
∞∑
m=0

∞∑
n=m

(Pmnz
mz̄n + P̄mnz̄

mzn) =

∞∑
m=0

∞∑
n=m

rm+n+2
(
Pmne

i(m−n)θ + P̄mne
i(n−m)θ

)
,

(4.32)
where we use polar coordinates r, θ. The complex coefficients Pmn with m,n ̸= 0 correspond
to anisotropies of the surface geometries. They have a rotational symmetry with respect to the
position of the contractile point. This rotational symmetry can be denoted by |n−m| in the sense
of a spin-weight (Eq. 1.57). For example, the Pmn with |n −m| = 1 denote polar anisotropies
of the surface geometry such as a gradient of Gaussian curvature, the |n −m| = 2 components
corresponds to nematic anisotropies of the surface geometry such as a saddle, and so on. For
simplicity, we consider only the lowest order in r for a given spin-weight |n−m|, i.e. we omit all
Pmn with m > 0.

Using Liouville’s equation, we calculate the Gaussian curvature field from δφ, yielding

δκ =

∞∑
n=0

(
(n)Kz̄

n + (−n)Kz
n
)
. (4.33)

The spin quantities (n)K with positive n are given by

(|n|)K = −4(n+ 1)P0,n, (4.34)

and negative spins denote the complex conjugate. Again, these quantities denote anisotropies
of the surface geometry with the spin-weight denoting the rotational symmetry. In particular

(1)K denotes the gradient of Gaussian curvature. As such, Eq. 4.33 corresponds to a multipole
expansion of the surface geometry in terms of the Gaussian curvature. In the following, we in-
vestigate how this multipole of the surface geometry shapes the flow field of a contractile point,
i.e. a tension monopole. In section 4.5, we will consider also multipoles of (anisotropic) tension.

For simplicity, we consider the regime of vanishing bulk viscosity (α = 0). Then, regions of
positive δφ correspond to regions effectively increased viscositiy and friction. As discussed above,
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we expect the contractile point to drive a flow towards regions of positive δφ and thus negative
Gaussian curvature δκ. In order to evaluate the flow field δ (1)v that results from the anisotropy
of the surface geometry, we make use of the results in section 4.2.3 and appendix H. As we derive
in appendix H.4, we find that the local velocity of the contractile point is given by

(1)vmono = −4T

πη
l2h (1)K. (4.35)

Hence, the contractile point moves down the Gaussian curvature gradient. We note that the
regime we consider here is distinct from the regime in section 4.1.2. There we also considered a
small deformation, in the sense of δκl2h ≪ 1. However, we considered a regime where the length
scale of the Gaussian curvature gradient (δκ/|ðδκ|), corresponding to the smaller radius of the
torus, is on the order of the hydrodynamic length. With this, we found a velocity proportional
to the gradient δφ, which reflects that contractile point sees the fluid on a scale where δφ is
well defined. Here, in contrast, we consider a much smaller hydrodynamic length, where only
the gradient of Gaussian curvature is well defined. However the principle remains: A polar
anisotropy of the surface geometry yields a velocity that transports the contractile point towards
minimal Gaussian curvature, where points are surrounded by a maximal amount of surface area. .

The nematic anisotropy (2)K, in contrast yields a shear flow (see also Fig. 4.6E for a numerical
solution). We find that the shear rate at the position of the contractile point is given by

(2)vmono = ðδ(1)v
∣∣
z=z0

= −112

15

T

πη
l2h (2)K. (4.36)

This corresponds to a contraction along the axis of maximal Gaussian curvature and an extension
along the axis of negative Gaussian curvature. We have observed such a shear flow for a circular
patch on the saddle of a prolate sphere (Fig. 3.5A). Eq. 4.36 shows that such a flow generally
results from a contractile patch in such a saddle geometry.

Strikingly, we can generalize this phenomenon to general multipoles of the flow field, yielding

δ(ðmv ð̄nv

(1)v)
∣∣
z=z0

= −
4T ln+1

h

ηlmv+nv
h

Nδn,1+mv−nv (n)K, (4.37)

where the dimensionless number N > 0 depends on mv, nv and n (Eq. H.45). The minus sign
implies that the flow field yields an extension along axes of minimal Gaussian curvature.

We evaluated δ (1)v also numerically for polar and nematic anisotropies of the surface geometry.
We find that the flow towards sections of minimal Gaussian curvature is not limited to the po-
sition of the contractile point (see Fig. 4.6D,E) Thus, the contractile point does not only drive
a movement of itself, but also of the surrounding fluid film on the order of the hydrodynamic
length. For a nematic anisotropy, |δv| even increases away from the monopole up to a distance
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of about 3lh. For an extended domain of elevated active tension such a flow yields a spreading
of the domain along the axes of minimal Gaussian curvature. Hence, contractile patches do not
only move towards saddles, they also tend to spread over a saddle, as we have already observed
for the prolate sphere (see Fig. 3.5).

All the analytical results in this section are valid for vanishing bulk viscosity, i.e. α = 0. For
α ̸= 0, the kernels (1,0,±1)K can still be calculated analytically, but the integrals (Eq. H.38) need
to be calculated numerically. We used such numerical solutions for 0 < α < 10 to investigate
the velocity of a contractile point in Gaussian curvature gradient. We found that the movement
towards minimal Gaussian curvature persists (Fig.J.3C).

4.4 Pattern formation guided by the geometric potential

In chapter 3, we have found that surface geometry guides the formation of chemical patterns
in an active fluid model of the cell cortex. There, we have understood this geometry in terms
of a normal deformation δR of a reference sphere. However, δR becomes ill-defined for large
deformations of a sphere. Furthermore, δR an extrinsic, i.e. embedding-dependent, measure of
the surface geometry, whereas the physical model of the cortex we have proposed only depends
on the intrinsic surface geometry.

The intrinsic geometry of a surface can be understood in terms of the geometric potential φ. In
the previous sections, we have found analytically that a contractile point senses the geometric
potential φ: A contractile point moves down the local gradient of φ is attracted by maxima in φ
at a distance. We wondered, whether we can also understand the guiding of pattern formation
in the cell cortex in terms of the geometric potential. To investigate this, we need to calculate φ
for a given geometry of a cell cortex.

So far, we have understood φ in terms of the metric associated with an isothermal parametriza-
tion of the surface. This suggests that we first need to find isothermal coordinates for a given
surface geometry to understand where a contractile point will move to. Finding such isother-
mal coordinates amounts to solving the Beltrami equation that has been the subject of various
mathematical studies. As we will show in the following, Liouville’s equation offers an alternative
approach. With this, we calculate numerically the geometric potential of deformed spheres rela-
tive to a reference sphere. We then solve the active fluid model from chapter 3 on these complex
surfaces, to compare the resulting patterns to the intrinsic surface geometry in terms of φ and
κ.

4.4.1 Calculating the geometric potential using a reaction-diffusion model

Liouville’s equation (Eq. 1.71) links the geometric potential φ to the Gaussian curvature κ via
the Laplace Beltrami operator ∆LB. Any parametrization X(s1, s2) of a curved surface yields
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κ and ∆LB (see section 1.2.1). Given κ and ∆LB, Liouville’s equation is a differential equation
for φ. We propose here a physical interpretation of this equation in the spirit of Ricci flow: We
consider a time-evolution of the scalar field φ given by

∂tφ = ∆LBφ+ κ, (4.38)

corresponding to a reaction diffusion model with κ as a source term. Then, solving Liouville’s
equation corresponds to finding the steady state pattern φ with ∂tφ = 0.

Such a steady state does only exist, when the total flux to the surface vanishes,∫
S
dS κ = 0, (4.39)

which defines a toroidal topology of the surface. Only for toroidal surfaces, global isothermal
coordinates exist. For a spherical surface, isothermal coordinates are defined up to a point, where
φ diverges (Fig. 1.13A). In this case φ is only defined up to boundary conditions at some chosen
pole of the coordinate system. As such, the gradient of φ is not a truly intrinsic property of
the surface. However, we may consider the difference δφ = φ − φ0 with respect to a reference
sphere with φ0 and κ0 = const.. Thereby, we understand the given anisotropic surface geometry
as the result of a deformation of an isotropic surface by means of locally isotropic contractions
and expansions of the surface. δφ corresponds to the amount the reference surface needs to be
expanded or compressed. For a slightly deformed sphere (δR ≪ R0), we can calculate δφ from
the change in the metric:

δφ = δ(log
√
g) = −2

δR

R0
+O(δR2). (4.40)

Note that this equation is valid, because δgij ∼ δij for an isotropic reference surface with
Cij ∼ δij . Thus, the phenomena we have studied in chapter 3 in linear order of δR can equiva-
lently be understood in terms of δφ.

Beyond the linear regime, we need to calculate δφ by solving Liouville’s equation for φ = φ0+δφ.
This amounts to finding the steady state of

∂tδφ = ∆LBδφ+ κ− e−2δφκ0, (4.41)

where we used Eq. 1.72 yielding ∆LBφ0 = −e−2δφκ0. This corresponds to a reaction diffusion
system with a non-linear source term. We solve this dynamical equation on deformed spheres
numerically using a pseudo-spectral method (appendix F). To allow for a steady state, we adapt
the reference curvature κ0 dynamically such that that δφ relaxes towards a reference value
δφ0 = 0, i.e. we determine κ0 at each time-step from the following equation∫

S
dS (κ− e−2δφ(t)κ0) =

∫
S
dS δφ, (4.42)
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With this we find that the dynamics converge to a steady state for various geometries (see Fig.
4.7B,F for two examples). Thus, we have found a method that allows us to understand the
anisotropy of a complex (spherical) geometry in terms of the scalar field δφ.

4.4.2 Elucidating stress regulator patterns in complex surface geometries
using the geometric potential

We have found that δφ defines attractors of contractile points (see sections 4.1.2 and 4.3). In
the following, we investigate whether this rationale can explain the geometry-dependent pat-
terns that form in an active fluid model of the cortex (see section 3.3). To test this, we solved
this active fluid model in complex surface geometries with a spherical topology. These shapes
were obtained by randomly perturbing a sphere, in terms of a smooth field δR (see Fig. 4.7 for
two examples of such shapes). We considered Péclet numbers of 55 and 110 and hydrodynamic
lengths between R0/3 and 3R0. Otherwise, we used the same parameters as in section 3.3.4. In
this parameter regime, we found that the system converges to a steady state most of the time,
consistent with our observations for prolate spheres (see Fig. 3.5B). For a large hydrodynamic
length (lh = 3R0), we observed the formation of a single spot of elevated active tension (Fig.
4.7C,G). For smaller hydrodynamic lengths, we observed the formation of extended band-like
patterns (Fig. 4.7D,H). Again, these observations are consistent with our findings for prolate
spheres. Notably, different initial conditions yielded the same final pattern most of the time,
though we plan to check this more systematically in the future. Thus, the complex geometry,
does not fundamentally change the patterns that form, but the position and orientation of these
patterns are clearly defined by the surface geometry.

For the same surface geometries, we also calculated the Gaussian curvature κ and from this
the geometric potential δφ as described above. We wanted to test whether variations of δφ can
explain the position of patches with elevated active tension. In other words: Does the active fluid
film sense the geometric potential? To this end, we investigated to what extend the geometric
chemical pattern c of the stress regulator at steady state is correlated with δφ and κ. Specifically,
we calculated for each realization of the model the correlation coefficient

Cc,φ =
⟨(c− ⟨c⟩)δφ⟩√

⟨(c− ⟨c⟩)2⟩, ⟨δφ2⟩
, (4.43)

and equivalently for κ. Here ⟨. . . ⟩ denotes the surface average

⟨x⟩ = 1

A

∫
S
dSx. (4.44)

These surface integrals were evaluated numerically using the spherical harmonic decomposition
of the fields.

We have found in the previous section that a localised source of active tension tends to move
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Figure 4.7: Geometric potential guides the formation of patterns in an active fluid model.
A-H: Two examples of randomly deformed surfaces for which we determined the geometric potential and
simulated the formation of patterns in an active fluid model (section 3.3) using a pseudo-spectral method.
A,E Gaussian curvature with blue (red) color denoting negative (positive) values. B,F Geometric potential
δφ as determined from the reaction diffusion equation 4.41. C,G: Steady state patterns of the stress regulator
for a large hydrodynamic length lh = 3R0 and Pe = 55. Otherwise, we used the same parameters as in
Fig. 4.1. D, H: Steady state patterns for a small hydrodynamic length lh = R0/3. I: Correlation coefficient
between Gaussian curvature κ and the stress regulator pattern c revealing a negative correlation. Data
points correspond to steady state patterns for 20 different spherical geometries as in A-H. J: Correlation
coefficient between geometric potential δφ and c. K: Correlation between δφ and c as in J, but as a
function of the correlation between δφ and κ. Colors denote hydrodynamic lengths. We observe that for
large hydrodynamic length (yellow circles), a small correlation between δφ and κ yields a positive correlation
between δφ and c. Colored circular outlines indicate the examples shown in in C,D,GH.

114



4.5. GEOMETRY SENSING BY ACTIVE P-ATIC PARTICLES

towards minimal Gaussian curvature and drives a flow that yields an extension along axes of
minimal Gaussian curvature. Indeed, we find that c and κ are negatively correlated in most of
the surface geometries we studied. In particular for small hydrodynamic lengths lh < R0, we
find that Cc,κ < 0 for all the geometries (n=20) and physical parameters we have tried. In this
regime extended bands of elevate tension form, which extend as expected along the saddles of
the surface, i.e. along minima and Gaussian curvature (compare Fig. 4.7A,E to Fig. 4.7D,H).

However, the intrinsic geometry and thus the attractors of contractile patches are defined by the
geometric potential. In the previous sections, we have found that a localised source of active
tension moves down the local gradient of φ, but that is also attracted by maxima in φ at a
distance. Whether these effects lead to a colocalization of contractile points with minima or
maxima in φ depends on the hydrodynamic length as well as the surface geometry. When the
size of the contractile patch is small compared to the hydrodynamic length, we expect maxima
in φ to attract contractile patches, However, when the surface geometry is such that κ increases
monotonously with φ, we have found that contractile points move down the gradient in φ,
irrespective of the hydrodynamic length (see sections 4.1.2 and 4.3). Taken together, we expect
a positive correlation between φ and the active tension for large hydrodynamic lengths, but only
when κ and φ are not strongly correlated. To test this, we calculated the correlation coefficient
Cκ,φ between κ and δφ. For a large hydrodynamic length (lh = 3R0), we indeed find that
Cc,δφ > 0, when Cκ,φ is small (Fig. 4.7K). In these cases, a single contractile spot forms and
moves towards the global maximum in φ (Fig. 4.7C). On surfaces where κ and δφ are more
strongly correlated, we find the spot to localize to a saddle (Fig. 4.7G). This saddle may be far
away from the maximum φ, such that Cc,φ ≤ 0. Notably, we find that the magnitude correlation
between φ and c is often stronger than between κ and c, when the hydrodynamic length is large
such that the stress regulator localizes to a single spot. This provides further evidence, that
localized sources of active tension act as sensors of the geometric potential.

4.5 Geometry sensing by active p-atic particles

So far we focused on contractile points, i.e. isotropic localized sources of mechanical activity,
However, sources of mechanical activity in a living system are often, if not always, anisotropic.
This anisotropy fundamentally changes the way such active particles couple to the surrounding
flow. In the following, we investigate how this flow coupling gives such active particles a sense
of the surface geometry of the fluid film they are embedded in.

4.5.1 Stress multipole in a curved surface

We consider a force multipole which we understand as a force density of the form

(1)f(z) = (−1)nf+mf ðnf ð̄mf

(s)Pδz,z0 , s = 1− nf +mf , (4.45)
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where (s)P denotes a spin quantity at z0 that captures the orientation and magnitude of the
stress multipole with |s|-fold rotational symmetry. The flow field of such a force multipole can
be expressed in terms of gradients of the Green’s functions as

(1)v = (s)P ð̄mf

z′ ðnf

z′ G0(z, z
′) + (−s)Pðmf

z′ ð̄nf

z′ G2(z, z
′). (4.46)

For simplicity, we focus on the lowest order multipole for a given orientational symmetry |s| of
the particle. Furthermore, we focus on anisotropic non-polar particles which do not move in the
absence of an anisotropy of the surface geometry. Thus, we have mf = s− 1 > 0, nf = 0. Then,
Eq. 4.45 corresponds to a monopole of the nematic stress (2)t for s = 2. For s > 2, we obtain
multipoles of nematic stress.

4.5.2 Anisotropic particles align with gradients of the Gaussian curvature

We consider a slight anisotropy of the surface geometry as in section 4.3.2. In appendix H.4,
we calculate the resulting flow field δ (1)v analytically. We evaluate the flow field in terms of
multipoles (s)V (a) of δ (1)v at a distance a from the stress multipole (see appendix I for details).
These multipoles correspond to the Fourier components of the angular dependence of the flow
field. They define spin-weighted quantities at the position of the stress multipole. In contrast to
the spin-weighted quantities in the previous sections and chapters, quantities with positive and
negative spin-weights are distinct, i.e. (s)V ̸= (−s)V . This reflects that the underlying flow field
δ (1)v already is a complex field.

Due to symmetry we have

(t)V = N
(1)
ts (s)P (t−s)K +N

(2)
ts (−s)P (t+s)K (4.47)

where we omitted the a dependence for simplicity. The constants N (1)
ts , N (2)

ts depend on the vis-
cosities and friction coefficient of the fluid film. Due to chiral symmetry, they are real numbers.
For vanishing bulk viscosity (α = 0), we find N

(2)
ts = 0, as a consequence of G2 = 0. Strikingly,

we find in this case N (1)
ts > 0 (see appendix H.4). This reflects that an expansion δφ > 0 yields

a flow field δ (1)v that is opposed to the forces that drives it (see 4.2.3).

The imaginary component of (0)V defines a rotation Ω which can be written as

Ω = Ωs0 Im[(s)P (−s)K] = Ωs0| (s)P || (s)K| sin(s(θP − θK)), (4.48)

where the angles θP and θK denote the phases of (s)P and (s)K, respectively. When couplings
of the active particles to the substrate are negligible, the active particle will rotate with the
local flow field, i.e. ∂tθP ∼ Ω. As a consequence, the active particle rotationally aligns with the
local anisotropy. This is the local analog to the global rotation we studied in section 3.3.2. The
angular velocity Ω0 is given by Ω0 = N

(1)
0,s − N

(2)
0,s . For α = 0, we have Ω0 > 0 due to N1

ts > 0.
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Figure 4.8: Rotation and translation of anisotropic active particles in multipoles of the surface
geometry. A: Active particle with nematic symmetry (s = 2), corresponding to a monopole of active
nematic stress, in a nematic anisotropy of the surface geometry ((2)K). When the axes of stress and surface
geometry are not parallely or perpendicularly aligned, a rotational flow arises (middle panel, Eq. 4.48).
When the active particle rotates with this flow, it aligns with the surface geometry such that it contracts
along the axis of maximal Gaussian curvature. In this configuration (lower panel), the active particle drives
a contraction of the fluid film. Pink arrows correspond to flow field δ (1)v that results from an anisotropic
deformation δφ of an otherwise flat flow field. Color denotes log |δv|. Blue arrows illustrate the forces the
active particle exerts on the fluid film. Flow fields were obtained numerically for α = 0 as in Fig. 4.6D,E.
B: Analogous to A, but for a multipole of nematic stress with 3-fold rotational symmetry (s = 3) in a
gradient of Gaussian curvature ((1)K). Middle and lower panel correspond to different orientations of the
active particle, as indicated by the blue arrows that illustrate the forces exerted by the active particle. In
both cases, we observe that the flow field is dominated by a shear flow. C: Such a shear flow yields a
translation (red arrow) for such an anisotropic particle. D: Depending on the orientation of the active forces
with respect to the shape of the particle, the particle moves up or down the gradient of Gaussian curvature.
For details see main text.

As a consequence (s)P aligns perpendicularly with (s)K. Hence, the axes along which the active
particle contracts align with the axes of positive Gaussian curvature (see Fig. 4.8A for the
example of a nematic monopole, i.e. s = 2). We note also that that the projection Re[(s)P (−s)K]

yields scalar, i.e. an isotropic contraction or expansion depending on the angle between surface
anisotropy and stress multipole. For α = 0, we obtain a contraction when the active particle is
orientationally aligned with the surface anisotropy, i.e. for cos[s(θP − θK)] = −1.

4.5.3 Flow coupling controls movement along gradient of Gaussian curvature

We consider a particle that moves by coupling to the local flow field. The velocity (1)V p of the
particle is a vector. For an isotropic particle such as a contractile point, only a polar component
of the local flow field, i.e. (±1)V , can define such a vector. For an anisotropic particle, also a
non-polar flow can yield a translation of the particle. For example, a bacterium drives a shear
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flow that yields a translation of the bacterium due to its polar shape [170]. Here, we consider a
non-polar particle that has s-fold orientational symmetry, both in terms of the forces it exerts on
the fluid film and in terms of its shape by which it couples to the flow. This scenario is motivated
in particular by active nematic fluid films and the topological defects in these systems. With
this, the velocity of the active particle in linear order of the local flow field can be written as

(1)V p =β0 (1)V
(0)
eff + β1 (s)P (−s+1)V

(1)
eff + β2 (−s)P (s+1)V

(2)
eff , (4.49)

where

(t)V
(i)
eff = (t)V + ϵi(−t)V . (4.50)

βi, ϵi are constants that determine how the active particle moves in response to the local field.
For a non-chiral particle, they are real.

In an isotropic surface geometry only the flow multipoles (±s)V are non-vanishing, such that a
non-polar particle does not move, i.e. (1)V p = 0 for s ̸= 1. However, the anisotropy of the surface
geometry can yield such a translation. We consider here a gradient of Gaussian curvature. We
have found in section 4.3.2 that a contractile point moves down a gradient of Gaussian curvature.
Here we consider the movement of an anisotropic particle in first order of the gradient of Gaussian
curvature (1)K. Due to symmetry, the resulting velocity of a non-polar particle can be written
as

(1)V p = ζ0δs,0 (0)P (1)K + ζ2δs,2 (2)P (−1)K + ζ| (s)P |
2
(1)K, (4.51)

where for a non-chiral system ζ, ζ0, ζ2 are real coefficients. In our model, they correspond to
products of the coefficients in Eq. 4.47, 4.49 and 4.50. In particular, ζ0 and ζ2 result from the
coupling β0, i.e. a polar flow (±1)V that the stress multipole drives in an anisotropic geometry.
ζ0 corresponds to the velocity of the contractile point we considered in the previous sections,
whereas ζ2 yields an orientation-dependent velocity of a nematic stress monopole. The hydro-
dynamic coupling to the surface geometry we consider here only becomes particularly relevant
for a hydrodynamic length that is large compared to the size of the particle. In this regime,
where coupling to the substrate is weak, we expect the particle to move in the same direction of
the fluid, i.e. β0 > 0. Thus, the sign of ζ0 and ζ2 is determined by the viscosities of the fluid
film through the coefficients N (1,2)

ts in Eq. 4.47. When bulk viscosity is negligible, we find that
contractile points move down the Gaussian curvature gradient, whereas nematic monopoles that
are aligned according to Eq. 4.48 move up the Gaussian curvature gradient. Again, this is a
consequence of N (1)

ts > 0.

For s ̸= 0, 2, a particle velocity arises only from ζ which is proportional to the coefficients β1 and
β2. Such couplings arise in particular from the anisotropic shape of the active particle. Hence,
the sign of β1 and β2 reflects a relation between the forces given by 4.45 and the shape anisotropy
of the particle. This is similar to active nematics, where the sign of the active stress relative to
the flow coupling defines whether an active nematic is extensile or contractile. Extensile particles
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push the fluid along their long axis, whereas contractile particles pull. Strikingly, the velocity
arising from this flow coupling is independent of the orientation of (s)P , i.e. (1)V p ∼ | (s)P |2.
The sign of ζ and hence β1/2 determines whether the active particle will move up or down the
gradient of Gaussian curvature (1)K. Hence, the coupling to the flow determines, whether an
anisotropic particle is attracted or repelled by a saddle of the surface.

As an illustrative example, we consider an active particle with 3-fold rotational symmetry, con-
sisting of three rigidly connected rods. The particle may pull or push the surrounding fluid
along these rods. As before, we represent these forces as a multipole of the active nematic stress
((2)tact ∼ ð̄δz,z0). Such a particle drives a shear flow in a gradient of Gaussian curvature, which
yields a translation of the a particle along this gradient (Fig. 4.8B,C). When the particle is
contracting along the rods, we find that shear viscosity makes it move towards positive Gaussian
curvature. An extensile particle, in contrast, moves towards negative Gaussian curvature (Fig.
4.8D).

4.6 Discussion

In this chapter, we have investigated how the intrinsic geometry of a surface shapes the flow
field around localised sources of mechanical activity. To this end, we used isothermal coordi-
nates, where the intrinsic geometry of the surface is defined by a single scalar field, the scalar
potential φ. Variations in φ correspond to expansions (φ > 0) and contractions (φ < 0) of
the surface relative to an isotropic reference surface. We found that such anisotropies in the
surface geometry can be mapped to effective gradients in the viscosities and the friction coef-
ficient. In particular, we found that expansions effectively increase the resistance to flow due
to shear viscosity, i.e. they yield an effective increase in shear viscosity and friction. In other
words, adding more surface area in a given distance to a point makes it harder to move the fluid
film at that point. Importantly, these analytical results are valid for any closed surface geometry.

With this insight, we studied the movement of contractile patches in an active isotropic fluid
film. We focused on monopoles of active tension. In an anisotropic surface geometry, such a
contractile point moves towards certain points in the geometry. These attractors of contractile
points are defined by the intrinsic surface geometry, i.e. φ. We found that a contractile point
moves down the local gradient in φ, and is at the same time attracted by maxima in φ at a
distance. In effect, contractile points tend to move towards points that are surrounded by a
maximal amount of surface area. In particular, contractile points move towards the saddles of a
torus or a prolate sphere, and towards the saddle of a protrusion.

We also tested whether these analytical calculations allow us to understand the patterns that
form in an active fluid model of the cortex We obtained numerical solutions of this model in
complex surface geometries. These geometries define friction and viscosity gradients through the
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geometric potential φ and the Gaussian curvature κ. Mapping Liouville’s equation to a reaction
diffusion system, we calculated φ. With this we found that the geometric potential and the
Gaussian curvature guide the formation of patterns in an active fluid model of the cell cortex as
expected from the analytical calculations.

The mapping of intrinsic geometry to material properties we found is a mathematical result.
However, it may also be interpreted physically: Material properties and geometry together de-
termine how forces are transmitted within a surface. In this sense, it is not surprising that the
impact of the geometry on the flow field can be understood analogously to the impact of the
material properties, i.e. the viscosities and the friction coefficient. The striking result of this
chapter is that we can understand the combined effects in mathematically simple and physically
intuitive terms. In particular, we found that the product of Gaussian curvature and shear viscos-
ity yields an effective friction. Importantly, this result allowed us to understand the movement
of contractile patches in an active fluid film. Notably, it has recently been found that contractile
patches localize to maxima in friction in reconstituted actomyosin networks [194], as expected
from the argument we gave in section 4.3.1. Here, we propose that the impact of the geometry
on flows and patterns in the actomyosin cortex can be understood analogously.

In this chapter, we have focused solely on the effects of the intrinsic geometry of a surface. In
a model of an active surface, a coupling to the extrinsic geometry, e.g. a curvature dependent
binding rate, requires that a small segment of the surface is capable of sensing the geometry on
its own. Such a local sense of geometry is distinct from the viscosity-mediated sense of geometry
we studied here. Viscosity yields a sense of length scales and angles on the order of the hydro-
dynamic length. Hence, we expect the phenomena of this chapter to be particularly relevant in
systems where the hydrodynamic length is large compared to the length scales of the constituent
entities, i.e. cells or filaments.

A typical example is the cell cortex of the C. elegans zygote. In this system, a ring of cortical
tension drives a rotation that aligns the AP axis with the long axis of the egg shell, as we have
discussed in the previous chapter. Thereby, the contractile ring rotates towards the saddle, as
expected also from the results of this chapter. Notably, such an alignment, albeit slower, is also
found, when the contractile ring is removed by genetic perturbations [99]. Under these condi-
tions, cortical flows result only from the relaxation of cortical tension at the posterior side (see
section 1.1.2). Based on the results of this chapter, we propose that the viscosity of the cortex
is sufficient to explain why this point of minimum cortical tension moves towards the maximum
in Gaussian curvature.

Also epithelia often exhibit a large hydrodynamic length. For example, in the embryo of the fruit
fly a localised source of mechanical activity has recently been found to move along a gradient
of curvature [195]. Using a one-dimensional model, it has been suggested that this movement
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results from active moments. These active moments result from apical myosin activity that yields
also a contraction within the plane. We wonder, whether this contraction could be sufficient to
explain the curvature-dependent movement. Notably, the large-scale movements of the epithelial
tissue reveal a hydrodynamic length on the order of the system size. Importantly, our mechanism
relies on the global geometry of the surface and is, thus, not limited by the curvature gradient at
the position of the source of mechanical activity. Thus, future experiments could test, whether a
local coupling to the geometry, as proposed in [195], is sufficient to explain the robust alignment
with the geometry they found.

We have studied here also anisotropic sources of mechanical activity. We have found that such
anisotropic active particles align with the anisotropy of the surface geometry. Notably, such an
alignment has indeed been found for actin filaments in migrating cells [196]. Again this has so far
only been understood in a one-dimensional model. Furthermore, we have found that anisotropic
particles move along gradients of Gaussian curvature. Importantly, we have found that the di-
rection is controlled by the sign of the flow coupling. We have found that extensile particles
move towards minimal Gaussian curvature, whereas contractile particles moves towards positive
Gaussian curvature. Recently, an extensile nematic fluid film on a torus has been studied using in
vitro experiments and numerical simulations [144]. Strikingly, it has been found that topological
defects accumulate at the saddle of the torus, thus at minimal Gaussian curvature, as expected
from our particle model. So far, no fundamental explanation of this non-equilibrium phenomenon
has been suggested. Based on the results of this chapter, we wonder whether topological defects
in a contractile nematic move towards positive Gaussian curvature. We plan to use the tools of
this chapter to investigate the movements of topological defects in the future.

We have shown here and in the previous chapter that the intrinsic geometry of an active sur-
face has a profound impact on patterns and flow fields. In most biological studies, in contrast,
geometry is understood in a one-dimensional picture, where all information about the intrinsic
geometry is lost. Here, we have also shown, that the impact of the intrinsic geometry is not only
profound, but also but also understandable by considering the Gaussian curvature and the geo-
metric potential. Thereby, we hope to motivate future studies to take the effects of the intrinsic
geometry into account.

In this thesis, we focus on the impact of a static geometry on flows and patterns. However,
these insights are also valuable to understand the interplay between patterns and shape, when
the surface is dynamically deforming. We will elaborate on this further in chapter 6.
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Chapter 5

Chiral flows controlled by embryo
geometry

Proteins like filamentous actin are chiral molecules, i.e. their structure is distinct from its mirror
image. The actomyosin cortex is an active gel that consists of these chiral molecules (see section
1.1.3). In general, we expect the molecular chirality to manifest in a chirality of the mechanical
properties and dynamics of the actomyosin cortex (see section 1.2.4). Such a chirality has indeed
been observed in cells across the animal kingdom. For example, in the nematode C. elegans,
chiral counter-rotating flows in the actomyosin cortex arise during various cell divisions. These
chiral cortical flows facilitate also the definition of the left-right body axis (see section 1.1.4).
Thereby, the molecular chirality is translated into a chirality (=handedness) of the body plan.
Similar phenomena have also been observed in snails.

Also cells from mouse embryos and human cell cultures have been found to have an actomyosin-
based sense of handedness. Such cells assemble into chiral structures in vitro. Repeating these
experiments with cells from a certain cell type produces structures with a consistent handedness,
as long as the actomyosin cortex is not perturbed [127, 40]. Intriguingly, this actomyosin-based
cellular chirality does not appear to contribute to defining the left-right asymmetry of the visceral
organs in the mouse [59, 197]. Instead, the handedness of the body plan of mouse and potentially
also human embryos is established by a cilia-based mechanism, as in fish and frog embryos (see
section 1.1.4 for details).

Only in birds an actomyosin-dependent mechanism of left-right symmetry breaking is evident
[67]. There, a leftward movement around the Hensen’s node establishes the left-right asymmetry
of the body plan by shifting domains of gene expression. Also in chameleon embryos, left-right
symmetry breaking has been found to be cilia-independent [69]. Instead, left-right asymmetric
tissue deformations are found that are likely due to mechanical activity of the actomyosin cortex.
Notably, chameleon embryos also contain a structure akin to the avian primitive streak unlike
frog or fish embryos [86]. This suggests that the evolution of an actomyosin-based mechanism of
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left-right symmetry breaking is linked to the innovation of the primitive streak.

In this chapter, we analyze data from quail embryos to understand how the tissue architecture
of the primitive streak facilitates the leftward movement of cells in these embryos (section 5.1).
To this end, we use the mechanical model of the primitive streak we developed in chapter 2. We
generalize this model of an active viscous crack to a chiral active crack (section 5.1.2). Based on
this model, we hypothesize that the primitive streak facilitates left-right symmetry breaking by
providing a mechanical link between tissue layers. In section 5.1.3, we test this hypothesis using
data from mechanically perturbed embryos.

In section 5.2, we ask whether also tissue curvature may facilitate chiral flows at the avian
Hensen’s node and beyond. To this end, we consider a generic mechanical model of a chiral
active fluid film to understand the impact of curvature on the flow field (section 5.2.1). With
this, we investigate also the impact of cell geometry on the chiral cortical flows that have been
observed in C. elegans embryos (sections 5.2.3 and 5.2.4).

Based on all these physical insights, we ask whether embryo geometry may explain why some
embryos make use of the actomyosin cortex to define the handedness of the body plan, whereas
many others do not (section 5.3).

5.1 Mechanical model of avian left-right symmetry breaking

In the following, we analyze data from quail embryos as in chapter 2. As before the data was
obtained by Julia Pfanzelter and Adrian Lahola-Chomiak from the lab of Stephan Grill at the
MPI-CBG Dresden. The raw data was then analyzed by me as described in appendix C. In
contrast to chapter 2, we focus here on the left-right asymmetric component of the measured
flow field to infer a mechanical model of avian left-right symmetry breaking.

5.1.1 Deciphering the forces and torques driving avian left-right symmetry
breaking

Left-right symmetry breaking has been found to rely on a leftward movement of cells around the
Hensen’s node in chick embryos [67]. Here we want to obtain a physical and, hence, quantitative
understanding of this process. To this end, we consider the median flow field of 15 embryos in a
local reference frame, as described in appendix C.2. At the time of maximum primitive streak
extension (tPS = 0h), we observe a rotational flow around the Hensen’s node such that cells
on the anterior side of the node move to the left (see Fig. 5.1A and appendix Fig. C.2). This
suggests that as in chick embryos, left-right symmetry is broken by chiral flow of the epiblast
tissue around the node.
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Figure 5.1: A torque at the Hensen’s node drives the chiral flow of the avian epiblast. A: Left-
right antisymmetric component of the average flow field (red arrows) of the epiblast of 15 quail embryos at
the time point of maximum streak extension. (see appendix C for details). Color code denotes the modulus
of the velocity. Note that we consider here a local reference frame, i.e. we subtract any global translations or
rotations of the epiblast (see appendix C.2). B: Flow field of homogeneous fluid film with lh = 100µm and
α = 3 calculated with measured boundary velocities as in Fig. 2.2B. C: Residual of measured flow field (A)
after subtracting the flow field in B. E: Flow field (red arrows) of a homogeneous fluid film around a crack
(black line). Boundary conditions are such that the flow field vanishes along the crack and that the crack
tip (black circle) exerts a torque (pink arrow, TT /η = 4.4µm2/h) onto the fluid film. Color code denotes
the modulus of the fluid velocity. Physical parameters are α = 3, lh = 100µ and we consider a crack tip size
a = 75µm. F,G: Comparison of the measured flow field (A, black lines) to the flow field of the crack model
in E (red lines). Gray area corresponds to [5%, 95%] confidence interval from bootstrapping (see appendix
C.3). F: leftward velocity vx along the midline (x = 0) as a function of the anterior coordinate y relative
to the node/cracktip. G: anterior velocity vy along the left-right axis at the anterior position of the node
(y = 0). x > 0 corresponds to right half of the embryo or fluid film.

Such a flow that involves the shearing of tissue needs to be driven by mechanical forces. Based
on the results of chapter 2, we hypothesise that the forces driving the chiral flow of the tissue
are generated within the primitive streak and the Hensen’s node. To test this hypothesis, we use
the same method as in section 2.1.3. Briefly, we model the epiblast as a homogeneous flow field
and calculate the flow field from measured boundary velocities. We then compare this calculated
flow field (Fig. 5.1B) to the measured flow field (Fig. 5.1A) . We find that the calculated flow
field is in quantitative agreement with the measured flow field, when considering a compressible
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A B C D

Figure 5.2: Mechanical model of an active chiral crack. Illustration of the terms that correspond
to active chiral mechanical activity in Eq. 5.1-5.4. Black outline corresponds to crack with cracktip on top.
A, B illustrate torque dipoles (Mact) and chiral force dipoles (Qact) in the plane of the fluid film. C,D
illustrate forces (fact, Fact) and torques (τact, Tact) the substrate exerts on the crack and the cracktip. We
hypothesize that the chiral flow in the avian embryo is driven by an active torque Tact generated within the
Hensen’s node. For further details see main text.

fluid film with a hydrodynamic length of 100µm (Fig. 5.1C,D). This small hydrodynamic length
is in stark contrast to our findings for the symmetric flow field (see Fig. 2.2D). It suggests that
the chiral flow around the node involves the movement of the epiblast relative to a substrate that
the epiblast adheres to. We will elaborate further on this observation in section 5.1.4.

Taken together, our quantitative analysis of tissue movements suggests that left-right symmetry
breaking in birds is driven by chiral forces and torques localised to the streak and the node.

5.1.2 Constitutive equations of an active chiral crack

In the following, we want to obtain a mechanical understanding of how these forces are generated.
To this end, we consider a coarse-grained model of the streak as a one-dimensional line of active
material embedded in a fluid film that is the epiblast. In section 2.2, we developed a mechani-
cal model of such an active viscous crack. Here we want to generalize this theory to a chiral crack.

As before, we consider a crack that is constrained to the flat plane of the fluid film it is embedded
in. Chirality or left-right asymmetry of the crack implies that we have to take into account the
crack moment, specifically its normal component mC (Eq. 2.15). We consider the following
constitutive equation

mC = −Kκg +Mact
C , (5.1)

where K is a bending stiffness and κg is the geodesic curvature (Eq. A.1). The active moment
Mact
C is a tangential pseudo-vector. It corresponds to dipoles of normal torques (see Fig. 5.2A).

Starting from configuration with κg = 0, a Gradient of Mact
C yields a torque (Eq. 2.15). This

torque may be exerted on the fluid film (corresponding to τC) resulting relative sliding of the
fluid film on the two sides of the crack (see Eq. 2.16). However, the torque may also act on the
crack in terms of a normal stress tνC , which may drive a bending of the crack. Importantly, we
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have to specify the balance between these torques. For this we consider the following constitutive
equation

τC + tνC = Qact + ηC,ν

[
∂λ(v

ν
L + vνR)−

1

d
(vλL − vλR)

]
. (5.2)

Here Qact is an active force dipole line density. Qact may be understood as an active nematic
stress that drives a contraction or extension along an axis that forms an angle of 45 degree with
the crack axis (See Fig. 5.2B). The one-dimensional viscosity ηC,ν quantifies the dissipation
associated with the corresponding shear flow.

As the chiral flow appears to be limited by mechanical interaction with a substrate, we take
also substrate interactions of the crack, i.e. the streak, into account. To this end, we consider
the following constitutitve equations for the force density fsub and the torque density τsub the
substrate is exerting onto the crack material:

fsub =fact −
γ1
2
(vL + vR), τsub = τact −

dγ2
2

(vλL − vλR), (5.3)

where as before vL/R are the velocities on the left and right side of the crack (Eq. 2.5), d is the
thickness of the crack, and the superscript λ denotes the projection onto the tangent vector of
the crack. γ1 and γ2 are friction coefficients that quantify the dissipation associated with the
movement of the two sides of the crack relative to the substrate. In contrast, fact and τact result
from mechanical activity of the crack material that propels the fluid film relative to the substrate
(see Fig. 5.2C,D). We elaborate on the nature of this substrate in the next section.

Also at the crack tip corresponding to the Hensen’s node, we consider a force Fsub and a torque
Tsub the substrate exerts onto the crack tip. Again we consider two friction coefficients (γT1 , γT2 )
as well as active contributions such that force and torque read

Fsub = Fact − γT1 VT , TT = Tact − γT2 dΩT . (5.4)

In a non-chiral left-right symmetric crack, the forces fact and Fact point along the tangent vector
of the crack and the torques τact, Tact,Mact

C , Qact have to vanish. Here we consider a chiral flow
that results from the chirality of a mechanically active material, i.e. the actomyosin cortex that
drives cell rearrangements. Thus, all those torques and chiral forces may in general be non-
vanishing.

However, we observe that the chiral flow in the quail embryo is localised to the crack tip, i.e.
the Hensen’s node. Therefore, we hypothesize that the chiral flow is driven by a leftward force
FC ∼ −ν and a torque TC the node exerts on the epiblast. These are related to the substrate
forces and torques that the substrate and the streak exert on the node by force and torque bal-
ance (Eq. 2.13, 2.17). Away from the node, no consistent left-right antisymmetric flow at the
streak is observed. Thus, we consider the substrate force and torque densities to vanish along the
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streak, i.e. fact = 0 = τact = Qact. At the same time, we consider strong coupling of the streak to
the substrate such that γT1 , γT2 → ∞, and a large streak viscosity ηC,ν . This regime corresponds
to no-slip boundary conditions along the crack that is the streak. With this, we fit a force ν ·FC
and a torque TC to the flow field using numerical solutions of the crack boundary conditions
(appendix G). Strikingly, we find that a torque TC is sufficient to quantitatively capture the
experimental flow field (Fig. 5.1E-G). This suggests that avian left-right symmetry is broken by
a torque the Hensen’s node exerts on the epiblast.

Using the constitutive equations above and torque balance at the crack tip (Eq. 2.17), this torque
is given by

TC = Tact +Mact
C − γT2 dΩT −Kκg. (5.5)

We observe that the torque the node exerts on the epiblast could rely on active mechanical in-
teractions within the streak (Mact

C ) or at the interface of the node to the substrate (Tact). In the
experiment, it is sometimes oberved that the streak ruptures without affecting the chiral flow
(data not shown). This suggests that the chiral flow relies on a torque Tact the substrate exerts
on the node.

5.1.3 Mechanical coupling of tissue layers facilitates chiral tissue flows

Importantly, the Hensen’s node is the point where all tissue layers of the embryo are connected
through cell-cell connections (see section 1.1.5 and Fig. 1.5). We hypothesize that this allows for
the generation of a torque dipole between the dorsal and ventral layers of the node (Fig. 5.3A).
Thus, we interpret the rigid substrate in our model as the mesodermal and endodermal tissue
that underlies the epiblast. To test, whether this substrate is indeed crucial to driving the chiral
flow, we analyze data from experimentally perturbed embryos. As before this data was obtained
by Julia Pfanzelter and Adrian Lahola-Chomiak and analyzed by me.

Using a human eye-brow the ventral tissue was scraped away 2-5h before the time point of
maximum streak extension. This yields an embryo that consists of only one mostly unicellular
epithelium (Fig. 5.3B). Importantly, we find that this profound perturbation of the embryonic
tissue leaves the epiblast intact. As before, we obtained flow fields using particle image ve-
locimetry (appendix C). However, we find that the flow field varies more strongly between time
points and embryos than in the control condition. This complicates the analysis of the chiral
flow. Therefore, we focus only on the movement of the node relative to the surrounding epiblast,
which we obtain by averaging the flow field in a 100µm circle around the center of the node. As
under control conditions, we observe that the node moves first anteriorly as the streak extends,
and then posteriorly as the streak regresses (Fig. 5.3G). We find that the associated velocities
are on the same order as under control conditions. However, we observe that the transition be-
tween the phases of streak extension and streak regression is considerably faster in the perturbed
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Figure 5.3: Leftward movement of the node relies on the mechanical coupling of tissue layers.
A-C: Schematic cross-section of the primitive streak of the quail embryo as in Fig. 1.5F for different
experimental conditions. Pink arrows denote dipole of torques that drive the chiral flow of the epiblast
(violet) relative to the more rigid underlying material. (Prospective) meso- and endoderm tissue is drawn
in orange, whereas the extra-embryonic hypoblast is colored in cyan. A: Unperturbed embryo, where
mechanical coupling of tissue layers at the streak and the node facilitates the chiral flow of the epiblast. B:
Embryo after mechanical removal of most of the hypoblast, endoderm and mesoderm tissue. C: Embryo
that has been placed onto a protein membrane, specifically the vitelline membrane of another embryo, after
removing the ventral tissue as in B. Cells adhere to this elastic membrane, facilitating the generation of a
torque dipole between the epiblast and the vitelline membrane. D-F Microscopy images of quail embryos
under the conditions described in A-C about 4h after the onset of the chiral flow. Cell debris in the middle
of the streak is visible as a bright region. Black dashed lines denote morphological midline of the embryo
as determined from the streak. The center of the Hensen’s node is drawn as an orange filled circle. We
observe that the node is displaced to the left of the midline in D and F. G-J: Quantification of node velocity.
Solid lines correspond to medians of 15 control embryos (black), 15 perturbed embryos (blue) and 9 rescued
embryos (yellow). Gray area denotes confidence interval of control data from bootstrapping (appendix
C.3). G: Anterior node velocity as a function of time. Note that we consider the reference frame of the
surrounding epiblast as in Fig. 5.1A. H: Leftward node velocity as a function of time. I: Leftward node
velocity at the time point of maximum streak extension (tPS = 0). Black points denote single embryos.
J: Leftward displacement of node obtained by integrating the leftward velocity (H) over time, starting at
tPS = −5h. As before, microscopy images (in particular D-F) were obtained by Julia Pfanzelter and Adrian
Lahola-Chomiak from the lab of Stephan Grill. This experimental data was then analyzed by me as shown
in G-J.
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embryos. This indicates that the initialization of streak regression does not rely on interactions
of the epiblast with the underlying tissue.

Around the time-point of maximum streak extension, the chiral flow of the epiblast emerges.
Under control conditions, the chiral flow of the epiblast involves a leftward movement of the
node (Fig. 5.1A,F). As a consequence, the most anterior part of the streak is kinked to the
left such that the node is positioned leftward compared to the axis of the posterior streak (Fig.
5.3D). Due to the bending stiffness K of the streak, such a kink (κg ̸= 0) yields a torque (and
also a force) that the node needs to balance (Eq. 5.5). In the perturbed embryos, where the
ventral tissue has been removed, we expect that the node cannot exert such a torque or force
on streak and epiblast. Strikingly, the leftward kink of the streak is indeed absent in some per-
turbed embryos (Fig. 5.3E). Furthermore, the quantification of the node velocity shows that the
leftward movement of the node is inhibited after removing the ventral tissue: The average flow
field of the perturbed embryos contains still a considerable leftward movement of the node, but
the leftward velocity is reduced compared to the control condition (Fig. 5.3H,I). This reduction
is evident in particular from the integrated leftward movement of the node (Fig. 5.3J). These
observations are in agreement with our hypothesis that the leftward movement of the node is
facilitated by a mechanical coupling of the tissue layers.

However, the removal of the ventral tissue perturbs also chemical interactions between tissue
layers. Such chemical interaction may also affect the chiral flow of the epiblast. To test, whether
the chiral flow relies primarily on mechanical interactions between the epiblast and some rigid
substrate, perturbed embryos were placed onto an elastic protein membrane (Fig. 5.3C). In
these embryos, we observe that overall tissue movements are reduced compared to the control
condition (Fig. 5.3G). This indicates that the tissue is mechanically coupled to the surrogate
substrate. Strikingly, this mechanical coupling appears to facilitate a leftward movement of the
node: After placing the perturbed embryos on the surrogate substrate, timing and magnitude
of the leftward movement are identical to the control condition (Fig. 5.3H-J). Thus, introducing
a mechanical substrate rescues the control phenotype in terms of the leftward movement of the
node.

Taken together, we conclude that the leftward movement of the node is facilitated by mechanical
coupling of the epiblast to the underlying tissue layers. The underlying tissue acts like a rigid
substrate that allows for the generation of an active torque at the node.

5.1.4 Two-layer model of the avian embryo

Together with the results from chapter 2, these observations motivate the following mechanical
model of the avian embryo around the time point of maximum streak extension: We consider two
flat fluid films with viscosities ηd and ηv corresponding to the dorsal epiblast and the underlying
ventral tissue, respectively. We consider a bulk to shear viscosity ratio α = 3 for both fluid films.
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The tissue layers grow with growth rates Gd and Gv respectively. In the following we consider
the growth rates to be spatially homogeneous. We model the mechanical coupling between the
tissue layers away from the streak by a force density fd→v that the dorsal tissue exerts on the
ventral tissue. It is balanced by a force density fv→d that the ventral tissue exerts on the dorsal
tissue. We consider a linear constitutive equation,

fd→v = −fd→v = γdv(vd − vv), (5.6)

that yields a coupling of the flow fields of dorsal (vd) and ventral (vv) tissue. With this, tangential
force balance yields the following governing equations of the flow fields:

∆(vd + vv) + α∂i [div (vd + vv)] =− γdv
ηd

ηv − ηd
ηv

(vd − vv) (5.7)

∆(vd − vv) + α∂i [div (vd − vv)] =− γdv
ηd

ηv + ηd
ηv

(vd − vv), (5.8)

where ∆ denotes the Laplace operator. Eq. 5.8 yields that the difference of the flow fields vd−vv

decays on the hydrodynamic length scale

lh =

√
ηdηv

γdv(ηv + ηd)
. (5.9)

Beyond this length scale, ventral and dorsal tissue move together as one fluid film with infinite
hydrodynamic length.

This allows to reconcile the models for the left-right symmetric and antisymmetric components
of the flow field. The torque dipole between the dorsal and the ventral half of the tissue drives
a movement of the dorsal tissue (the epiblast) relative to the ventral tissue. Thus, it results in
a velocity vd − vv that decays on the hydrodynamic length scale lh away from the node. This
relative velocity implies also a net velocity vd + vv, when the viscosities of ventral and dorsal
tissue differ. When shearing the ventral tissue requires much larger forces than shearing the
dorsal epiblast (ηv ≫ ηd), only the dorsal tissue moves while the ventral tissue acts as a rigid
substrate.

Beyond the hydrodynamic length scale, however, dorsal and ventral tissue behave as a single
fluid film. This fluid film is set into motion by the sum of the forces and force dipoles that the
streak exerts on the dorsal and ventral tissue. In the model we consider here, chiral activity
results only in a torque dipole. This torque dipole yields no effect when considering the sum of
the dorsal and ventral torque. Thus, the active torque dipole that drives the rotation of the dor-
sal epiblast does not drive any velocities beyond the hydrodynamic length scale. This contrasts
with the active force dipole pactC that drives the left-right symmetric flow towards the streak (see
section 2.2.2). We do not expect this force-dipole to act equally on the dorsal and the ventral
tissue. In fact, the actomyosin cables that are responsible for these forces are found only at the
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most dorsal (apical) surface of the tissue. Beyond the hydrodynamic length scale, however, such
dorso-ventral asymmetries do not contribute to the flow field. Thus, the model of the left-right
symmetric flow of the epiblast (see chapter 2) is in fact a model for the flow field of dorsal and
ventral tissue layers vd + vv.

Taken together our two-layer model of the avian embryo provides two predictions: First, the
two layers move together on the scale of the embryo. Second, the chiral flow involves a counter-
rotation of the two layers. Strikingly, it has recently been found that the two layers move
indeed together on a large scale (Aurelien Villedieu, personal communication). Preliminary data
suggests also that the ventral tissue of the node does not rotate. Hence, the rotation of the
dorsal tissue implies a counter-rotation of the layers. It remains to be seen, whether it is possible
to isolate a viable node where the ventral tissue is unconstrained. In such a setting, we would
expect the ventral tissue to rotate against the dorsal tissue.

5.2 Chiral flows facilitated by curvature gradients

In the previous section, we have found that the chiral flow of the avian epiblast is driven by
a torque dipole generated at the Hensen’s node. Notably, the tissue geometry at the Hensen’s
node is quite peculiar. In particular the surface of the tissue is curved in contrast to the bulk
of the surrounding epithelium [68]. We wondered, whether this curvature may contribute to the
generation of the torque dipole. Intriguingly, also left-right symmetry breaking in the nematode
C. elegans relies on the generation of chiral flows by a curved structure, namely the cytokinetic
furrow. This motivated us to consider a generic mechanical model of a chiral curved active fluid
film (section 5.2.1). With this we investigate the impact of curvature on chiral flows (section
5.2.2), in particular in the context of chiral cortical flows observed in the C. elegans embryo
(sections 5.2.3 and 5.2.4).

5.2.1 Constitutive equations

As in chapter 4, we adopt the formalism of spin-weighted quantities (see section 1.3.1). Briefly,
real tensor and vector fields are understood as complex fields, with a prescript, the spin-weight,
denoting the local rotational symmetry of the field. In particular, the symmetric tension tensor
t̃ij (Eq. 1.33) is decomposed into its symmetric traceless-symmetric components (2)t̃ ∈ C and
its trace (0)t̃ ∈ R (Eq. 1.58). Analogously, we have the trace-less symmetric bending moment

(2)m̃, whereas (0)m̃ ∈ C denotes the trace and the antisymmetric component of m̃ij (Eq. 1.34).
The normal moment (1)mn, a (pseudo-)vector field, defines the spin-1 quantity (1)mn. We have
found this formalism to be particularly elegant for chiral systems. It allows us to generalize
the governing equations of an achiral system (see e.g. section 3.1) to a chiral system by simply
replacing real coefficients by complex coefficients. This can be understood as a consequence of
mapping the Levi-Cevita tensor ϵij to the imaginary unit i (Eq. D.2).
With this, we consider a chiral active fluid film that is in contact with a rigid substrate that
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imposes the static shape of the fluid film. We consider the following constitutive equations for
mechanical interactions within the fluid

(2)t̃ =2ηeiβ (2)v + χQe
iε1

(2)Q (5.10)

(0)t̃ =2ηαRe[(0)v] + 2χisoc (5.11)

(2)m̃ =ζQe
iε2

(2)Q, (0)m̃ = 2(ζRiso + iζIiso)c (5.12)

(1)mn =iζpe
iε3

(1)p (5.13)

Here, η > 0 is the viscosity of the fluid film that yields a shear viscosity η cosβ and a bulk
viscosity αη. In a non-chiral fluid film, the phase β ∈ [−π/2, π/2] vanishes such that cosβ = 1

and sinβ = 0. When chiral symmetry is broken, however, sinβ is in general non-vanishing,
which yields an odd viscosity η sinβ [198]. The odd viscosity yields boundary forces that are
perpendicular to the forces from shear viscosity. Combining the stresses from odd and shear
viscosity, we obtain a shear stress along an axis that is rotated by 2β with respect to the axis of
the shear rate tensor (2)v = ð (1)v.

The flow field is driven by active stresses and moments. In chapters 3 and 4, we focused on an
isotropic active stress controlled by a scalar field c and a real coupling constant χiso. In partic-
ular, we considered a contractile active fluid where χiso > 0. Here we consider also an isotropic
active moment (0)m̃ controlled by the real constants ζRiso and ζIiso. Importantly, the antisymmetric
bending moment, Im m̃, controlled by iζIiso breaks chiral symmetry, as it couples the scalar c to
a pseudoscalar (see section 1.2.4).

Furthermore, we consider also a vector field (1)p and a nematic field (2)Q, corresponding to local
order parameters. These fields allow to define anisotropic active stresses and moments controlled
by χQ, ζQ and ζp. The phases εi ∈ [−π, π] yield an angle between an active moment or stress
and the corresponding order parameter, similarly to the viscous phase β. Such an angle breaks
chiral symmetry, whenever sin εi ̸= 0. Note that iζp does not break chiral symmetry for ε3 = 0,
as it couples a vector, (1)p, to a pseudo-vector field, (1)mn (see also section 1.2.4).

Finally, we consider also friction with the substrate controlled by a friction coefficient γ. For
completeness, we consider also an active force density (1)fact and an active torque

Γn = τactc (5.14)

that the substrate exerts on the fluid film. The real constant τact breaks chiral symmetry as it
couples the scalar c to the pseudoscalar Γn. It corresponds to the active torque density that
was used to explain chiral cortical flows in [39]. Here, however, we focus on chiral mechanical
interactions within the fluid film, as given by Eq. 5.10-5.13.
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5.2.2 Chiral active moments yield curvature-dependent chiral flows

With these constitutive equations, we derive the governing equations of the flow field using force
and torque balance equation (see appendix D.4 for details). We obtain

η

[
ðð̄ð(eiβF + αReF ) +

(
2κeiβ − γ

η

)
(ðF + (1)vh)

]
= − (1)fact + ζRisoc ð (0)C +

ζQ
4

(
(2)Qe

iε2ð (−2)C + (−2)Qe
−iε2ð (2)C

)
+ ið

(
τactc+

ζQ
2

Im[(2)Qe
iε2

(−2)C]

)
− 1

2
ð̄
(
χQe

iε1
(2)Q− 2iζIisoc (2)C + ζpe

iε3ð (1)p
)

− ð
(
χisoc−

1

2
ζpRe[ð̄eiε3 (1)p]

)
. (5.15)

The left-hand side yields the force density that results from friction and the divergence of the
viscous stresses. Note that we use here as before a Hodge decomposition of the flow field (Eq.
1.67). The right hand side yields an active force density resulting from active substrate interac-
tions ((1)fact, τact) as well as the active stresses and moments of the fluid film. The first row of
the right hand side contains terms that cannot generally be written as the divergence of an active
stress. The second row corresponds to the divergence (ð) of an effective active antisymmetric
stress and thus an effective active torque density. The third row, in contrast, corresponds to the
divergence (ð̄) of an effective trace-less symmetric active stress. Finally, the fourth row contains
terms that can be written as the gradient of a scalar field corresponding to an effective isotropic
active stress. We observe that the active normal moment (1)mn ∼ (1)p can be mapped to an
equivalent active symmetric stress. Therefore, we will neglect (1)mn in the following. Also the
active antisymmetric bending moment (∼ ζIiso) can be mapped to an active symmetric stress.
The axis of this active nematic stress is given by the axis of the anisotropic curvature (2)C.
Thus, the active antisymmetric bending moment yields a curvature-dependent effective active
stress. Also for the other components of the active bending moment, we observe that they yield
a curvature-dependent effective (tangential) force density. This reflects that the curvature of
an active surface couples the normal and tangential components of a vector valued flux such
as the stress tensor ti and the moment tensor mi (see in particular Eq. 1.25 and 1.29). As a
consequence, active moments drive in-plane flows in a curved fluid film.

We observe that the symmetric components of the active bending moment (i.e. (2)m̃ and
Re[(0)m̃]) yield an effective force and torque density:

τeff =
1

2
Im
[
(2)m̃ (−2)C

]
, (1)f eff =

1

4

(
(2)m̃ð (−2)C + (−2)m̃ð (2)C

)
(5.16)

These terms cannot be mapped to a symmetric stress. As such they can yield a net force and
torque, when integrating the effective tangential force density over the entire surface. When the

134



5.2. CHIRAL FLOWS FACILITATED BY CURVATURE GRADIENTS

flow field is only friction limited, this yields a net force and torque the fluid film is exerting on
the substrate, seemingly violating (angular) momentum conservation. Importantly, however, the
active bending moments contribute also to the normal force density the substrate exerts on the
fluid film (Eq. D.17). These normal forces yields a net force and torque that balances the force
and torque from the tangential force density, similarly to what we discussed in section 3.3.3.
There, we found that this results in a rotation of the entire surface that aligns the pattern for
normal forces with the geometry of the surface. Eq. 5.15 yields a local analog: By considering
an effective free energy, we find that the effective forces and torques from the active bending
moments drive translational and rotational alignment of the pattern of active moments with the
local curvature of the surface (see appendix D.5). Hence, localised sources of active moments can
act as sensors of the (extrinsic) curvature. In particular, isotropic active bending moments drive
flows along the local gradient of mean curvature, a scenario that may apply to tissue movements
during fruit fly development [195] (see also section 4.6).

Importantly, the rationale of minimizing an effective free energy also applies to a chiral active
bending moment (2)m̃, i.e. with ε2 ̸= 0. Hence, the chiral flow may be understood as aligning
the pattern (2)Q with the curvature (2)C rotated by the angle 2ε2. We wonder whether this
may explain the chiral morphology of the avian node [67]. Notably, this equilibrium rationale
does not apply to the effective active nematic stress resulting from the isotropic chiral bending
moment (∼ ζIiso).

5.2.3 Chiral counter-rotating flows facilitated by cell elongation

In the C. elegans embryo, chiral counter-rotating flows have been observed in the actomyosin
cortex during symmetric cell divisions [22] (Fig. 5.4A). These chiral flows result from the me-
chanical activity of myosin motor molecules acting on the meshwork of helical actin filaments
[39, 22, 44] (see section 1.1.3). On a hydrodynamic scale, this mechanical activity has been
modeled in terms of an active torque density τact [39, 22]. Such a torque density requires the
mechanical interaction of the cell cortex with a rigid substrate, presumably the egg shell. In-
triguingly, the whole-embryo rotation we studied in section 3.3.2 suggests that the forces between
the actomyosin cortex and the egg shell are negligible compared to the mechanical interactions
within the cortex. Thus, we wondered whether the chiral counter-rotating flows may also be
explained in terms of chiral interactions within the cortex.

To test this hypothesis, we consider a mechanical model of an active chiral fluid film as given by
Eq. 5.10-5.12. For simplicity, we consider the active moments and stresses to be controlled by a
single scalar field c, which may be understood as the concentration of a master stress regulator
such as RhoA. We define the polar and nematic order parameters in terms of gradients of c:

(1)p = ðc, (2)Q = ððc. (5.17)
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A Chiral flows during
C. elegans AB cell division
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Figure 5.4: Chiral counter-rotating flows driven mechanical activity in the actomyosin cortex.
A: Cortical flows (red and green arrows) during cytokinesis of the C. elegans AB cell. Blue dashed line
denotes the outline of the cell, where an ingression of the cytokinetic furrow is evident. Shading is intensity
of fluourescently labelled myosin. Image taken from [22] with permission, Scale bar 10µm. B-J Numerical
solutions of the flow field (red arrows) for a ring pattern of mechanical activity in chiral fluid films. Color
denotes the concentration c that controls the active stresses and moments according to Eq. 5.10-5.12 and
5.17. The (static) pattern c is given by the spherical harmonic Y20. In B, D, F and H, we consider a spherical
geometry, whereas in C, E, G, I and J, we consider an axisymmetric deformation of the sphere given by
Eq. 3.13 with δR20 = R0/2. We consider here different scenarios, where in each scenario only one type
of mechanical activity and only one chiral coupling constant is non-vanishing. B,C: Active torque density
(τact < 0). D,E: Active isotropic stress (χiso > 0) in a chiral fluid film with odd viscosity (β = −π/3). F,G
Chiral active nematic stress (χQ < 0, ε1 = π/2). H,I: Chiral active isotropic moment (ζIiso > 0). J: Chiral
active nematic moment (ζQ < 0, ε2 = π/2).

For simplicity, let us consider a cell with a perfectly spherical shape. In such a spherical geome-
try, the flow field can be understood in terms of spherical harmonic components Alm and Blm of
the irrotational and the rotational flow field, respectively (see appendix E.3). Due to viscosity,
the flow field is dominated by the modes with small l. A counter-rotating flow corresponds to
the l = 2,m = 0 component of the rotational flow field, i.e. B20. When the flow is driven by an
active torque density, this flow component results from the component c20 of the torque density
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c corresponding to an enrichment of c relative to the poles (Fig. 5.4B). Importantly such a
pattern of actomyosin activity is indeed observed. It corresponds to the enrichment of RhoA and
thus myosin and actin at the cytokinetic ring (see gray shading in Fig. 5.4A). Thus, considering
an active torque density explains the experimentally found relationship between the pattern of
myosin activity and flow field [39, 22]. However, this relationship is a consequence of symmetry
and as such results from any linear model. Consider for example a chiral nematic active stress.
Also in such a scenario, c20 yields a counter-rotation (Fig. 5.4F). Alternatively, we may consider
a fluid film that is driven by an isotropic active stress. In a non-chiral fluid film, this drives a
flow towards the contractile ring, corresponding to the A20 component of the irrotational flow
field [135]. In a chiral fluid film with non-vanishing odd viscosity, however, the contractile ring
drives also a counter-rotation (Fig. 5.4D). Thus, the chiral counter-rotating flows may indeed be
explained in terms of chiral interactions within the cortex, even if cortex is isotropic, i.e. (2)Q = 0.

When considering a spherical cell, the active bending moments do not contribute (Fig. 5.4H),
since they do not drive active flows in an isotropic surface geometry, where (2)C = 0 = ð (0)C

(see Eq. 5.15). However, the counter-rotating flows appear to arise only when the shape of the
cell is markedly non-spherical, i.e. when the cytokinetic furrow has already started to ingress
[22]. Thus, we need to evaluate our model for a non-isotropic surface geometry. As before,
we use a pseudo-spectral method to calculate the flow field numerically for a given pattern of
active stresses and moments (appendix F). As in the previous paragraph we consider a pattern
c given by the l = 2, m = 0 spherical harmonics component. This time, however, we evaluate
the spherical harmonics not on a sphere but on a spherical grid of a prolate axisymmetric sur-
face. In such an anisotropic geometry, active moments drive tangential flows. In particular, we
find that active chiral moments resulting from the component c20 of the stress regulator pattern
drive counter-rotating flows (Fig. 5.4I,J). These flows are qualitatively indistinguishable from the
counter-rotating flows that result from chiral stresses and torques. This is a consequence of our
choice of the surface geometry, that is given by l = 2, m = 0 deformation of a sphere in the sense
of Eq. 3.13. However, such a choice is not unrealistic since we expect that the deformation of the
cell results from the same pattern of stresses that drive the in-plane flows [135, 23]. Importantly,
the magnitude of the counter-rotating flows is highly sensitive to the surface geometry, when
they are driven by active moments, as they are proportional to the anisotropy of the surface
geometry. When such flows result from active stresses and torques, in contrast, the flow field
depends only weakly on the geometry (see Fig. 5.4C,E,G). Thus, active chiral moments may
explain, why the magnitude of chiral counter-rotating flows is correlated in time with the level
of cytokinetic furrow ingression as observed in [22].

5.2.4 Chiral net rotation triggered by cell deformation

So far, we have focused on symmetrically dividing cells during C. elegans development. There,
the nematic symmetry of the global pattern of actomyosin activity yields a chiral flow with
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pseudo-nematic symmetry, i.e. a counter-rotation. Importantly, also during asymmetric cell di-
visions chiral flows in the cortex have been observed. There the pattern of actomyosin activity is
dominated by a polar asymmetry, corresponding to the c10 spherical harmonics component. As
expected from symmetry, such cells exhibit a chiral flow with pseudo-polar symmetry, i.e. a net
rotation (corresponding to the B10 component of the rotational flow) [22]. Intriguingly, such a
net rotation cannot be driven by cell-internal mechanical activity, when the surface of the cell is
axisymmetric around the axis of rotation [167] (see section 3.3.3 for a derivation for the special
case of a spherical surface). Thus, a net rotation of the cortex of an axisymmetric cell would
provide clear evidence for an active torque density that spins the embryo inside the egg shell.

However, it is unclear whether such a rotation has been observed [169, 49]. To the contrary, it has
been shown, that a chiral rotation of the P0 cell requires a non-axisymmetric egg-shell geometry
[49]. During this chiral rotation, a band of actomyosin activity moves into the imaging plane,
much like during the rotation of the 2-cell embryo we studied in section 3.3.2. This suggests that
the net rotation of the P0 cells is primarily driven by (non-chiral) actomyosin contractility. Such
a tension-driven rotation aligns the pattern of active tension with the surface geometry (see Eq.
3.29). Prior to the rotation, it is found that myosin is enriched at the bulges of the compressed
embryo [49]. Such a configuration corresponds to an unstable fixed point, where we expect any
sort of chiral material property to be sufficient make the system rotate in one direction most of
the time. In particular, a counter-rotating flow results in a rotational flux of the stress regulator
concentration c, when c is asymmetrically distributed along the axis of rotation. In such a sce-
nario, the chirality of the cortex contributes to triggering the rotation of the cortex and defines
its handedness, but the net rotation of the cortex is driven by isotropic non-chiral mechanical
activity.

Notably, we find that active moments can also drive a chiral net rotation on their own (see
Fig. 5.2.4). This rotation can be understood from a torque that results from normal forces as
in section 3.3.3. In contrast to chiral nematic stresses or odd viscous stresses, active moments
contribute to the normal force even in an isotropic geometry (see Eq. D.18). Thereby, active
chiral moments shift the pattern of normal forces relative to the pattern of the stress regulator c.
Thus, in a configuration where the pattern of normal forces is aligned with the surface geometry
in the sense of Eq. 3.40, active chiral moments yield a chiral shift of the pattern c with respect
to the surface geometry.

Taken together, we suggest that the chiral cortical flows observed in the C. elegans embryo are
consistent with a model where these flows result from chiral mechanical interactions within the
cell cortex. We find that in such a scenario, chiral flows are highly sensitive to the geometry
of the cell surface. This is a prediction that should be tested by future experiments, where the
relationship between cell shape and chiral flows is quantitatively analyzed.
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A B

Figure 5.5: Capturing chiral flows in cell cortex and epithelium with active chiral moments.
A Schematic of a patch of chiral mechanical activity in a fluid film such as the cell cortex. Pink arrows
denote the torques the patch exerts on the surrounding fluid film and vice versa due to chiral active isotropic
moments. Such moments result from molecular torque dipoles that are aligned with the tangential plane of
the surface. Tangential torque dipoles result in particular from the action of myosin (red) interacting with
actin filaments. B: Schematic of the surface geometry of the avian Hensen’s node. Image in the lower right
is a microscopy picture of the node of the quail embryo in Fig. 5.3D at the onset of chiral flow (red arrow).
Away from the node and the streak, the surface of the embryo is mostly flat. At the streak and the node,
cells are mechanically connected to the lower layers, whereas cells on the right and the left side of the streak
are separated [78]. In section 5.1, we have shown that a torque dipole between tissue layers at the node
drives the chiral flow. When considering the surface of cell connections, such torque dipoles are captured by
an active chiral moment. At the node, the plane of inter-layer cell connections is curved, thereby connecting
the left and the right halves of the streak. This curvature allows flows (red arrow) to be driven by torques
(pink arrows) that are tangential to the plane of cell connections. Gray shading denotes the rotationally
constrained lower layers.

5.3 Discussion

In this chapter, we have investigated actomyosin-driven chiral flows that facilitate left-right sym-
metry breaking in birds and nematodes. Analysing experimental data from quail embryos, we
have found that the leftward movement of cells around the avian Hensen’s node results from
a torque that is generated within the node, presumably by actomyosin activity. Such a torque
requires a substrate to act on. We have suggested that this substrate is the underlying ventral
tissue. Importantly, this hypothesis is supported by perturbation experiments we analyzed here.
These experiments have revealed that the presence of the ventral tissue is crucial to the leftward
movement of the node. Strikingly, we found that replacing the ventral tissue by an elastic protein
does not inhibit this leftward movement. Thus, the leftward movement requires a mechanical
connection between the dorsal and the ventral tissue, but no chemical interactions between the
tissue layers. Taken together, we find that the mechanical coupling of tissue layers provided by
the primitive streak and the node is crucial to the chiral flow around the node and, thus, avian
left-right symmetry breaking.

In the nematode C. elegans, chiral flows emerge in the actomyosin cortex at several time points
in development [39, 22, 169]. While these flows have been understood as a result of actomyosin-
driven torque generation [39], it has remained unclear what substrate they act on. Here, we find
that these chiral flows may in fact not require such an external substrate. Instead, we propose
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that chiral flows result from chiral mechanical interactions within the cortex. In particular, we
find that the chiral flows may result from an active isotropic chiral moment, corresponding to a
density of torque dipoles. We understand such an isotropic moment (corresponding to Im (0)m

′

in our notation) as the result of molecular torque dipoles that are aligned with the plane of the
cortex. Most actin filaments are aligned with the plane of the cortex [23]. Hence, we expect tan-
gential torque dipoles to result from myosin acting on these chiral filaments (see Fig. 1.3). Thus,
a patch of increased actomyosin activity exerts torques on patches of the surrounding cortex
where the torques are oriented along the line that connects the patches (see Fig. 5.5A). Impor-
tantly, such in-plane torques in a surface drive in-plane flows, only when the surface is curved.
We propose that this explains why chiral flows arise primarily after the cytokinetic furrow has
ingressed. More generally, we find that flows that result from different kinds of chiral mechanical
interactions respond to changes in the surface geometry in a markedly distinct way. Thus, we
suggest that understanding the mechanical nature of actomyosin chirality requires experimental
investigations of the geometry-dependence of chiral flows.

Also in the avian embryo, we propose that it is not just the mechanical coupling of tissue layers
but also the geometry of the Hensen’s node that facilitates avian left-right symmetry breaking
(see Fig. 5.5B). This physical picture suggests that the chiral flow may not require the localiza-
tion of chiral activity to the node. Instead, the chiral flow may reflect the geometry of the node
and the overall actomyosin-based chirality of the entire embryonic tissue.

The findings of this chapter have intriguing implications for the evolution of actomyosin-based
left-right symmetry breaking. All animal cells have an actomyosin cortex [24]. Thus, Curie’s
principle implies that all cells are chiral in terms of their mechanical properties due to the chiral-
ity of the actin helix. Our study demonstrates that the extent to which chirality in an active fluid
film manifests as chiral flows is highly dependent on the surface geometry. Based on these results,
we suggest that whether an embryo makes use of the actomyosin cortex for left-right symmetry
breaking crucially depends on the geometry of the embryo. For example, the actomyosin-based
mechanism of left-right symmetry breaking found in birds may have co-evolved with a certain
structure called the primitive streak, as we have discussed in the introduction of this chapter.
Here we propose that this evolutionary link may be a consequence of the mechanical link between
tissue layers provided by the primitive streak. Furthermore, the geometry of the Hensen’s node,
the tip of the streak, may have facilitated the evolution of the avian mode of left-right symme-
try breaking. This hypothesis asks for further investigations of left-right symmetry breaking in
chameleon embryos, where a blastopore is found instead of a Hensen’s node at the tip of the
streak [69, 86].

The evolutionary history of left-right symmetry breaking in nematodes is entirely unclear to the
best of our knowledge. Here we find that the chiral flows that facilitate left-right (and dorso-
ventral) symmetry breaking in the nematode C. elegans may relie on an anisotropic shape of
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the cell. The shape of the cell is determined in particular by the egg shell that tightly confines
the C. elegans embryo. Intriguingly the degree to which embryos are confined by the egg shell
differs considerably among nematodes (see [199] and references therein). We wonder whether
this might impact on chiral flows and thus left-right symmetry breaking in nematodes.
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Chapter 6

Conclusion and Outlook

In this thesis, we have studied flows in the surfaces of cells and embryos. In particular, we have
investigated how the geometry of a cell or an embryo guides such surface flows, when they are
driven by mechanical activity within the surface. Directed movements of cells and molecules
need to be driven by mechanical forces. The geometry of a cell or embryo, i.e. the angles and
distance between constituents, determines how forces and torques can be transmitted. Conse-
quently, the geometry of a living system profoundly influences where cells and molecules move to
in response to forces and torques that are generated within such a system. Here, we elucidated
this geometric control of active flows using the hydrodynamic theory of active surfaces.

We analyzed experimental data from quail and nematode embryos to decipher the forces that
drive flows of cells and molecules during gastrulation and body axis specification. We then used
analytical and numerical calculations to understand how embryo geometry impacts on the rela-
tion between mechanical forces and the resulting flows. To this end, we utilized concepts and
tools from cosmology, quantum physics and fracture mechanics, as well as differential geometry
and complex analysis. Thereby, we uncovered general principles that may allow us to under-
stand various other living and artificial active systems. In the following, we briefly explain these
principles once again.

In chapter 2, we developed a hydrodynamic theory of active viscous cracks, i.e. lines of mechan-
ically active material embedded in a fluid film. With this, we inferred a mechanical model of the
primitive streak from experimental flow fields. Within this model, we found that an elongation
of the streak does not require extensile forces along the streak. Instead the flux into the streak
yields a viscous force that drives its elongation against a line tension of the streak. Thus, it is the
propagation of forces in the surrounding material that translates the forces generated within the
streak into an elongation of the streak due to the polar geometry of the streak. Importantly, we
could generalize these findings to the following principle governing the growth of active viscous
cracks such as epithelial folds or the cytokinetic ring: Forces that drive a flux towards a crack
drive also an extension of the crack due to the viscosity of the surrounding fluid.
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In chapter 3, we investigated how the shape of a cell guides flows and pattern formation within
the cell surface. To this end, we considered a minimal model of the actomyosin cortex as an
active isotropic fluid film with static shape. We obtained exact results for slight anistropies of
the cell shape and analyzed data from the C. elegans embryo during dorso-ventral axis specifi-
cation. We found active cortical tension drives a whole-cell rotation, when the pattern of the
cortical stress regulator is not aligned with the geometry of the cell. Notably, this rotation re-
sults from shear viscosity in an active fluid model of the cortex. Thus, it is the mechanics of
the cortex that yield an alignment of chemical pattern and surface geometry. In particular, we
found that a contractile ring aligns with the plane that is perpendicular to the long axis of the cell.

In chapter 4, we generalized these findings to more complex surface geometries to uncover general
principles that govern the movement of localized sources of mechanical activity in a curved fluid
film. We found that the impact of the surface geometry on the flow field can be understood in
terms of effective gradients of friction and viscosity. This mathematical analogy between geomet-
ric and physical properties of fluid film reflects that they both together determine how forces are
transmitted within the surface. In particular, we found that shear viscosity yields the following
principle: When the surface area within the hydrodynamic distance to a point expands, moving
the fluid at this point requires larger forces. Using this insight, we found that shear viscosity
yields an advection of contractile points towards protrusions and saddle geometries. Further-
more, we found that the way an active anisotropic particle couples to the flow, e.g. whether it
is extensile or contractile, controls whether the particle moves towards or away from a saddle
geometry.

In chapter 5, we studied chiral flows in the avian embryo and in the cell cortex. This chiral
flows are crucial to left-right symmetry breaking in avian and nematode embryos. Analyzing
experimental flow fields from quail embryos with the active crack model, we revealed that the
leftward movement of cells at the avian Hensen’s node is driven by a torque dipole between
tissue layers. Thus, left-right symmetry breaking in the avian embryo relies on the mechanical
coupling of tissue layers provided by the structures of the primitive streak and the Hensen’s
node. Importantly, perturbation experiments have confirmed this theoretical prediction.
Using a generic mechanical model of an active chiral fluid film, we showed that chiral flows in
the C. elegans cell cortex may be attributed to molecular torque dipoles within the cell surface.
As a consequence of force and torque balance, such in-plane torques drive in-plane flows in a
surface, but only for non-vanishing curvature. Hence, these chiral flows are highly sensitive to
the curvature of the cell surface. Taken together, our findings reveal that the geometry of an
embryo or a cell controls to what extent the chirality of mechanical interactions within such a
living system gives rise to chiral flows of cells and molecules, as the geometry of an embryo or a
cell determines how torques are transmitted.
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While the principles uncovered in this thesis are inherently physical, they have clear implications
for how embryo geometry impacts on developmental processes. Such an impact can arise on
two distinct time scales: During the development of an embryo and on an evolutionary time
scale. During the development of an embryo, anisotropies in the embryo geometry at a certain
time point may guide subsequent processes, not unlike a morphogen gradient established early in
development guides subsequent morphogenetic processes. Here, we found that the geometry of
the egg shell of the C. elegans embryo guides the establishment of the body axes due to the me-
chanics of the cell cortex. Notably, these processes are examples of a more general phenomenon
known as Hertwig’s rule: Cells tend to divide along their longest axis. Here, we found that
tension in the cytokinetic ring ensures that a cell divides along its longest axis, whenever the cell
is free to rotate. Previous studies have shown that also microtubule-based force generation can
ensure long-axis alignment of the division axis before the cytokinetic ring forms. However, here
and in [167], we have shown that microtubule-based forces can also drive short-axis alignment.
When the cell is free to rotate, however, we found that the cytokinetic ring ensures long-axis
alignment independently of microtubule-based alignment. Importantly, we understand this as a
general result of angular momentum conservation. This suggest that the generality of Hertwig’s
rule is a consequence of the cytokinetic ring.

Such general physical results provide also the ground for speculations on an evolutionary time
scale. As the cytokinetic ring drives a rapid rotation of the cell in the case of misalignment,
microtubule-based force generation may have evolved to avoid this rotation by ensuring long-
axis alignment of the spindle prior to the formation of the cytokinetic ring. Also our investigation
of chiral flows during left-right symmetry breaking has clear implications for the evolution of left-
right symmetry breaking. We found that chiral flows resulting from molecular torque dipoles are
highly sensitive to the geometry of a cell or an embryo. Thus, we speculate that differences in
embryo geometry may explain why some embryos make use of the actomyosin cortex to break
left-right symmetry and many others do not. Furthermore, these results may also help to ex-
plain why the chirality of the actomyosin cortex most of the time does not contribute to the
left-right asymmetric morphogenesis of the visceral organs. Both on an developmental and on
an evolutionary time scale, most developmental processes appear to be fairly robust with respect
to changes in embryo geometry. Such a robustness seems incompatible with chiral flows that are
highly sensitive to the geometry. Taken together, the mechanical principles found in this thesis
help us to understand how embryo geometry impacts on developmental process on developmental
and evolutionary time scales.

Importantly, the shape of an embryo does not only impact on developmental processes, but it
is at the same time also the result of such processes. Many such morphogenetic processes are
understood as being controlled by a pre-defined chemical pattern (see section 1.1.6). Here, we
have turned this rationale on its head, by studying how the shape of an embryo controls the
formation of patterns. Combining these two approaches yields a self-organized picture of mor-
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phogenesis, where pattern formation and shape deformations are coupled at all times. A few
examples of such feedback loops in morphogenesis have already been studied, as we discussed
in section 1.1.6 (see also [94] for a review). Notably, these examples of geometry sensing have
so far been explained with one-dimensional models and pictures. This may explain, why the
mechanisms proposed there rely on chemical fluxes between the surface and the underlying bulk
material. Here, in contrast, we have shown how geometry sensing results from active flows within
a surface. Strikingly, these flows are driven by the same sort of active stresses and moments that
drive shape deformations of an active surfaces. Thus, we expert the result of this thesis to apply
to various morphogenetic processes. Specifically, we expect geometry sensing by active flows
to be relevant, whenever the morphogenesis of an epithelial sheet is accompanied by large-scale
movements of cells within this surface.

Recently, theoretical studies have investigated the self-organized morphogenesis of active nematic
and polar surfaces. In [200], the dynamics of deforming active liquid crystals has been studied
numerically and in terms of linear stability analysis. In [150], in contrast, the concept of the
geometric potential has been used to get some analytical insight into the self-organized mor-
phogenesis of nematic surfaces beyond the linear regime. However, in this case the viscosity of
the surface was neglected. Importantly, the impact of curvature on an active nematic surface,
in particular the positioning of topological defects does not differ qualitatively from its passive
analog [192]. As a consequence the results of [150] do not differ qualitatively from what one
would expect from an equilibrium rationale. In viscous active nematic surfaces, in contrast,
it has been found that the positioning of topological defects can be in stark contrast to the
equilibrium configuration [144]. Intriguingly, no explanations for this phenomenon have been
found. Here, we developed a framework to understand the impact of the surface geometry on
active flows due to viscosity beyond the linear regime of the surface geometry. With this, we
have shown that extensile active particles move towards saddle geometries, in agreement with
the positioning of topological defects in an active extensile nematic fluid [144]. More generally,
our framework allows to understand the impact of the surface geometry on flows and thus pat-
tern formation in active fluid films. Thereby, we have laid the ground for understanding the
self-organized morphogenesis of active surfaces.
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Appendix A

A crack in a surface

This appendix supplements chapter 2. We provide conservation laws for a crack in a curved
surface, generalizing the results of section 2.2.1.

A.1 Differential geometry

As in section 2.1.1, we consider a crack represented as a line C embedded in a curved surface
S. The line is parametrized as Y(λ), where λ is the coordinate of the crack. For simplicity an
arc-length parametrisation such that |eλ| = |∂λY| = 1. In general, the line C has a curvature,
which we define as

Cλ = eλ × ∂λeλ = κgn− κnνC , (A.1)

corresponding to the axis of rotation of the tangent vector eλ, when walking along the crack.
κg, κn are the geodesic and normal curvature of C. eλ, νC and n form the so called Darboux
frame. The derivatives of these basis vectors along the crack read

∂λeλ =Cλ × eλ = κnn+ κgνC (A.2)

∂λn =− κneλ − κνnνC (A.3)

∂λνC =− κgeλ + κνnn (A.4)

Here, κνn denotes the torsion of the curve C.

A.2 Conservation laws

In the following, we give conservation laws of mass density, momentum and angular momentum
along the crack. This crack is in contact with the surface it is embedded in and with an under-
lying substrate.

Let us start by considering the conservation of mass. As mass is conserved, a change in the
mass M of a line segment has to be balances by flux of mass to the crack. This gives rise to the
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following integral equation:

∂tM = ∂t

∫ b

a
dlρC =

∫ b

a
(JS + Jn)− jλC

∣∣a
b

(A.5)

where ρC is the mass density per unit length of the crack material. We consider here mass
exchange between the crack and the ssubstrate (Jn) well as the surface (JS). The mass flux line
density JS is given by

JS = jL,ν − jR,ν , (A.6)

where jL,ν and jR,ν denote the projections of the mass flux density j of the surface material onto
νC evaluated at the left and right crack boundary, respectively (see Eq. 2.5). Furthermore, we
consider a transport of mass within the crack quantified by the mass flux density jC which we
write as

jC = ρ (vC − ṽC) (A.7)

where we distinguish the center of mass velocity vC = vλCeλ+vC,νν+vC,nn of the crack material
from the crack velocity ṽC defined as

ṽC := ∂tY (A.8)

We note that ṽC and hence jC is parametrization-dependent. With these definitions, mass
conservation of a an infinitesimal line element yields the continuity equation

∂tρ−
(
ṽλC − vλC

)
∂λρ = −ρ

[
∂λv

λ
C + eλ · (Cλ × ṽC)

]
(A.9)

where Cλ denotes the curvature of the curve C as defined in Eq. A.1.
At the crack tip (λ = 0), mass conservation reads

∂tMT = JT,S + JT,n − jλC
∣∣
λ=0

, (A.10)

where MT is the mass of the crack tip and we consider mass exchange between crack tip and the
surface (JT,S), the crack tip and the substrate (JT,n) and between the tip and the crack.

Analogously, momentum conservation along the crack yields the force balance equation

∂λtC = −fC,sub + tL,ν − tR,ν , (A.11)

where we neglect inertia terms. fC,sub denotes the force the substrate exerts on the crack and
tL/R,ν denotes the stress tensor of the surface projected onto ν and evaluate at the left and the
right side of the crack. This equation can also be expressed in terms of the components using
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Eq. A.2- A.4 as

∂λt
λ
C − κnt

n
C − κνt

ν
C = −fλext (A.12)

∂λt
n
C + κnt

λ
C + κνnt

ν
C = −fnext (A.13)

∂λt
ν
C + κνt

λ
C − κνnt

n
C = −fνext, (A.14)

where
fext = fC,sub − tL,ν + tR,ν (A.15)

Angular momentum conservation yields the torque balance equation along the crack:

∂λmC = −τ sub − eλ × tC +mL,ν −mR,ν − dν × (tR,ν + tL,ν), (A.16)

where τ sub is the torque density the substrate exerts on the crack and mL/R,ν denotes the
projection of the moment tensor of the surface onto ν at the left and the right side of the crack.
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Appendix B

Analytical solutions of crack boundary
conditions

This appendix supplements chapter 2, in particular section 2.3. We give here analytical solutions
for flow fields around a crack in a flat fluid film.

For a flat geometry and in the absence of gradients of active stresses, the tangential force balance
equation in the form of Eq. 1.69 simplifies to

4∂z̄∂z∂z̄(F + αReF )− 1

l2h
∂z̄F = 0, (B.1)

with the flow field written as Z · v = (1)v = ∂z̄F (see sections 1.3.1,1.3.2). In the following we
will give solutions to this equation in a flat crack geometry, where the crack tip is centered at
the origin of the cartesian coordinate system (z = 0) and the crack corresponds to the negative
real axis in terms of z.

B.1 Integral form for finite hydrodynamic length

For a finite hydrodynamic length lh, solutions to Eq. B.1 are given by solutions to

∆(F + αReF )− 1

l2h
F = 0, (B.2)

where ∆ denotes the Laplace operator 4∂z∂z̄. In the following we use polar coordinates (r, θ).
Using a Fourier decomposition of the angular dependence of F , the radial dependence of F is
given by modified Bessel functions with the hydrodynamic length defining the length scale. Due
to bulk viscosity, the real part A of F = A + iB has characteristic length scale lAh = lh

√
1 + α

that differs from the hydrodynamic length lh of the rotational flow component B.

Let us consider an annulus centered around z = 0, i.e. the domain {z ∈ C
∣∣a < |z| < R}. In this
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domain, solutions can be written as a multipole expansion:

A =Re

{ ∞∑
m=0

[
A−
mK|m|

(
r

lAh

)
+A+

mI|m|

(
r

lAh

)]
eimθ

}
, (B.3)

B =Re

{ ∞∑
m=0

[
B−
mK|m|

(
r

lh

)
+B+

mI|m|

(
r

lh

)]
eimθ

}
, (B.4)

where A+/−
m and B+/−

m are complex coefficients and the modified Bessel functions are defined as

Im(r) = lim
α→m

∞∑
n=0

1

n!Γ(α+ n+ 1)

(r
2

)2n+α
, (B.5)

Km(r) = lim
α→m

π

2

I−α(r)− Iα(r)

sinαπ
, (B.6)

with Γ denoting the gamma function. I|m|(r) is monotonically increasing with r whereas K|m|(r)

is monotonically decreasing. For a ≪ R, A−
m, B

−
M correspond to Fourier components of the

boundary velocities or forces at the inner ring, i.e. |z| = a, whereas A+
m, B

+
m represent the

boundary conditions at the outer ring, |z| = R.

We consider a crack along a line that connects the domain |z| ≤ a, corresponding to the crack
tip, with the outer circle |z| = R. The crack introduces boundary conditions along this line.
Using force boundary conditions (fL/R = ±tiL/Rνi) on the left and right sides of the crack, we
identify a force fL + fR and a force dipole d(fL − fR) at each point on the crack. The crack may
thus be understood as a line of forces and force dipoles. The flow field (1)v resulting from a single
force Fδ(2)(x − x′, y − y′) at position z′ = x′ + iy′ in an infinite plane is given by the Green’s
function

Gmono(z − z′, z̄ − z̄′,F) = G0(z − z′, z̄ − z̄′) (1)F +G2(z − z′, z̄ − z̄′) (−1)F, (B.7)

where (1)F is the spin quantity correspond to the vector F (see section 1.3.1) and

G0(z − z′, z̄ − z̄′) =
1

4πη

[
1

α+ 1
K0(|z|/lAh ) +K0(|z|/lh)

]
(B.8)

G2(z − z′, z̄ − z̄′) =
1

4πη

[
1

α+ 1
K2(|z|/lAh )−K2(|z|/lh)

]
z2

|z|2
, (B.9)

see also section 4.2.2. A force dipole, given by a pair of forces ±F separated by dν centered at
z′, yields a flow field

Gdip(z − z′, z̄ − z̄′,F,ν) = d((1)ν∂z + (−1)ν∂z̄)Gmono(z − z′, z̄ − z̄′,F), (B.10)

where (1)ν is the spin quantity corresponding to the vector ν. These derivatives can be calculated
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analytically using |z| =
√
zz̄ and

d

dx
Iα(x) =

1

2
(Iα+1(x) + Iα−1(x)),

d

dx
Kα(x) = −1

2
(Kα+1(x) +Kα−1(x)). (B.11)

With this, we write the flow field around the crack in an integral form:

(1)v(z) = (1)v0(z) +

∫ L

0
dλ [Gmono(z − z(λ), fmono) +Gdipo(z − z(λ), fdipo,ν)] , (B.12)

where fmono and fdipo are line densities of forces and force dipole, respectively. (1)v0 is a com-
ponent of the flow field that is continous at the crack and can thus be written in terms of Eq.
B.3,B.4. Since we defined the Green’s functions for boundaries at infinity, fmono and fdipo do in
general not correspond directly to the force and force dipoles given by fL and fR. Eq. B.12 is
particularly useful to calculate the flow field resulting from velocity boundary conditions at the
crack numerically. To this end, the integral is discretized as a sum of force mono- and dipoles,
as we describe in section C of the appendix.

B.2 Expansions in terms of holomorphic functions

B.2.1 Kolosov-Muskhelishvili formulas

In the regime of infinite hydrodynamic length, Eq. B.1 becomes

∂z̄∂z∂z̄(F + αReF ) = 0. (B.13)

This equation is solved by

F =
1

2

[
(2 + α)z̄f̂ − αz

¯̂
f +

¯̂
ĝ
]

(B.14)

where f = ∂z f̂ and g = ∂z∂z ˆ̂g are holomorphic function obeying ∂z̄f = 0 = ∂z̄g, which we
discussed in section 1.3.3. g corresponds to the harmonic component of the flow field with
vanishing curl and divergence. Any functions f, g that are holomorphic on the domain of the fluid
film solve Eq. B.13. Thus solving the flow field around a crack amounts to finding holomorphic
functions that yield a flow and stress fields that obey the given boundary conditions [160, 157].
For given f, g, flow and stress fields are given by

(1)v =2∂z̄F = (2 + α)f̂ − αzf̄ + ¯̂g (B.15)

(2)t =8∂z̄∂z̄F = 4η
[
−αzf ′ + ḡ

]
(B.16)

(0)t =8α∂z∂z̄ Re[F ] = 8αηRe[f ] (B.17)

Eq. B.16,B.17 correspond to the Kolosov-Muskhelishvili formulas from the field of fracture me-
chanics [157, 163].
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B.2.2 Non-integer power laws

On an annulus, they f, g can be written as Laurent expansions (Eq. 1.82), which corresponds
to the limit of Eq. B.3,B.4 for lh → ∞. Thus, f, g are of the form zm with m ∈ Z. In order to
capture the discontinuity at the crack one may augment this expansion with non-integer power
laws (m /∈ Z), as is often done in the literature of fracture mechanics [158, 159]. Let us consider
such a power law, i.e. f, g ∼ zm−1 yielding f̂ , ĝ ∼ zm for m ̸= 0. Specifically, we consider
ĝ = (a+ ib)zm, f̂ = (c+ id)zm with a, b, c, d ∈ R. Then, the flow field reads

(1)v = (a− ib)z̄m + (2 + α)(c+ id)zm −mα(c− id)zz̄m−1. (B.18)

Using polar coordinates r, θ with z = reiθ, this yields

vr = Re
[
e−iθ (1)v

]
=rm

{
a cos((m+ 1)θ)− b sin[(m+ 1)θ]

+ [2− α(m− 1)] [c cos((m− 1)θ)− d sin((m− 1)θ)]
}

(B.19)

vθ = Im
[
e−iθ (1)v

]
=rm

{
− a sin((m+ 1)θ)− b cos[(m+ 1)θ] (B.20)

− [2 + α(m+ 1)] [c cos((m− 1)θ) + d sin((m− 1)θ)]
}
. (B.21)

Thus the complex power law translates into a power law radial dependence of the flow field.
Furthermore, we observe that a, c and b, d correspond to the components that are symmetric
and antisymmetric under a mirror transformation, i.e. θ → −θ. Importantly, the flow field is
discontinuous at θ = ±π, for m /∈ Z, which allows to consider crack boundary conditions. Let us
consider a rigid crack with (1)v(θ = ±π) = 0. Using the above expression as an ansatz, we have

0 = vr(θ = ±π) = rm
{
− [a+ (2− α(m− 1))c] cosmπ ± [b+ (2− α(m− 1))d] sinmπ

}
(B.22)

0 = vθ(θ = ±π) = rm
{
± [a− (2 + α(m+ 1))c] sinmπ + [b− (2 + α(m+ 1))d] cosmπ

}
,

(B.23)

yielding the non-trivial solutions

a = −(2− α(m− 1))c ∧ b = (2 + α(m+ 1))d ∧ m ∈ Z (B.24)

b = −(2− α(m− 1))d ∧ a = (2 + α(m+ 1))c ∧ m ∈ Z+
1

2
, (B.25)

where Z + 1
2 denotes the set of half-integers. Thus, we can express the solution as a series of

integer and half-integer power-laws with the coefficients defined by the above equations and the
boundary conditions at the crack tip and the outer circle. For v → 0 at the crack tip and small
size of the crack tip (a/R≪ 1), solutions are given by m > 0. Thus, the minimal m is 1/2, which
dominates the flow and stress fields close to the crack tip, implying that the stress field diverges
as 1/

√
r at the crack tip, as we do indeed observe for the numerical example in 2.1G (see B.2C
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for a plot of the radial dependence of the stress field). This square root divergence is well known
in the field of fracture mechanics [158, 162, 163]. There it is understood as a consequence of
vanishing boundary forces at the crack. Solving force boundary conditions, requires the stress,
which for our ansatz reads

(2)t =4ηmrm−1
[
(a− ib)e−i(m−1)θ − α(c− id)(m− 1)e−i(m−3)θ

]
(B.26)

(0)t =8αηmrm−1 [c cos(m− 1)θ − d sin(m− 1)θ] (B.27)

which yields

tθr(θ = ±π) =1

2
Im[(2)t(θ = ±π)]

=2ηmrm−1 {±(a− α(m− 1)c) sinmπ + (b− α(m− 1)d) cosmπ} (B.28)

tθθ(θ = ±π) =1

2
Re[(0)t− (2)t]

∣∣
θ=±π

=2ηmrm−1 {[a− (2 + (m− 1)α)c] cosmπ ∓ [b− (2 + (m− 1)α)d] sinmπ} .
(B.29)

Force-free boundary condition then yield again half-integer m since cosπ/2 = 0.

Linear coupling of different stress components yields other sets of non-integer power-laws [159].
For the viscous stress, a coupling between velocity and flow field arises from the viscosity ηing.
Let us consider a left-right symmetric passive crack (implying b = 0 = d) with vanishing 1D
viscosity ηC → 0, yielding tθr(θ ± π) = 0, which is solved by

m ∈ Z ∨ a = α(m− 1)c (B.30)

Furthermore, we consider a a thickness that approaches zero at the crack tip, implying dC ∼ r

close to the crack tip with an opening angle θC = arctan[d′C(r)]. In such a scenario we can make
use of the same ansatz to solve the mixed boundary condition given by Eq. 2.21, which with the
ansatz reads

4ηm(tan θC)r
m [a− (2 + (m− 1)α)c] cosmπ = −2ηingr

m [a− (2 + α(m+ 1))c] sinmπ (B.31)

Using Eq. B.30, we obtain the following equation for m

−2ηm(tan θC) cosmπ = ηing(1 + α) sinmπ, (B.32)

which yields a set of solutions M ⊂ R, that is defined by the ratio of the rescaled ingression
viscosity η̃ing = ηing/ tan θC over the rescaled viscosity η̃ = η/(1 + α) of the fluid film. For
m ∈M , the above equations is full-filled and hence our power-law ansatz yields a solution of the
crack boundary conditions with. Thus, the material properties of crack and fluid film define a
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Figure B.1: Numerical solutions to Eq. B.32 for 0 < m < 1 for different ingression viscosities η̃ing. For
details, see main text.

set of power-laws. For η̃ing/η̃ → 0, corresponding to force free boundary conditions, M = Z+ 1
2

and the minimal m with m > 0 is m = 1/2, i.e. stresses diverge as 1/
√
r close to the crack

for non-diverging velocities at the crack tip. For η̃ing/η̃ → ∞, corresponding to the velocity
boundary condition vθ(θ = ±π) = 0, M = Z and the minimal m with non-diverging velocity is
m = 1 apart from a rigid body translation with m = 0. Thus, stresses do not diverge as the flow
field corresponds to the flow field in the absence of a crack. Notably, this regime arises not only
for large ingression viscosities ηing/η → ∞, but also in the limit of incompressibility of the fluid
film, i.e. α→ ∞ with ηing > 0 (and ηC → 0), and for a vanishing opening angle, i.e. tan θC → 0

. In between those limits, Eq. B.32 yields a set of non-integer m with non-integer differences
between them. In Fig. B.1, we plot solutions to Eq. B.32 with 0 < m < 1. We observe that
for η̃ing < 0, i.e. an active crack that pulls at the fluid, when it flows towards it, there is a criti-
cal η̃ing ∼ 0.637η at which the solution m crosses the zero and the next solution is greater than 1.

Similarly, one can obtain a set of power laws for ηC ̸= 0, when ηC scales linearly with r which
may again be understood as the consequence of dC ∼ r. The power-law becomes observable
as a divergence of the stress around the crack tip (see Fig. B.2C) for numerical solutions for
different crack boundary conditions). However, this requires a separation of length scales, such
that there is a regime between the length scale a of the crack tip and the length scale R at which
the flow field is driven at the outer boundary or the active crack. For the epiblast however, we
have R/a ∼ 10, such that there is no r with a ≪ r ≪ R. Hence, it is not surprising that we do
not find a divergence of stresses, corresponding to the shear rate and divergence, at the crack
tip, i.e. the Hensen’s node. This implies also, that we cannot infer material properties of the
primitive streak in terms of characteristic power-laws of the flow field.

B.2.3 Expansion in terms of the complex logarithm

It appears that our system, a living crack with a finite sized crack tip, asks for an alternative
approach to understand the experimental flow field analytically. When using non-integer power
laws, one identifies the crack as the branch cut of the complex logarithm, as any power law zm
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Figure B.2: A: modulus of shear rate for the numerical solution in Fig. 2.1F. Black line and circle indicate
crack and crack tip, respectively. B: modulus of shear rate of symmetric flow field around the primitive
streak (black line with circle corresponding to node). See also C.3. C: radial dependence of the angular
average of the modulus of the shear rate for numerical solutions of different crack boundary conditions and
the experimental data in B (green line). Red line corresponds to A. Blue line corresponds to Fig. 2.1G.
Violet line corresponds to an active symmetric crack with crack boundary conditions vθ = 1, tθr = 0 as in
Fig. 2.6B, whereas yellow line corresponds to η̃ing/η̃ ∼ 3

can be written as

zm = exp(m log z) = z0

∞∑
n=0

(log z/z0)
n

n!
(B.33)

with z0 ∈ C. Thus, any crack solution may be expanded in terms of log z around some ref-
erence point z0. This statements becomes precise when considering a domain D ⊂ C defined
by | log z/z0| < ε, which does not include the branch cut of log z. log z maps D to a circle on
which f, g are holomorphic and are thus given by Taylor expansions (see section 1.3.3). Using
the original coordinates, f, g are then given by

f =

∞∑
n=0

f̃n(log z)
n g =

∞∑
n=0

g̃n(log z)
n, (B.34)

where f̃n, g̃n are complex numbers with real and imaginary part corresponding to left-right sym-
metric and antisymmetric components of the flow field. For simplicity, we omitted z0 correspond-
ing to z0 = 1. Symbolic integration with z then yields

f̂ = f0 +

∞∑
n=0

fnz(log z)
n ĝ = g0 +

∞∑
n=0

gnz(log z)
n, (B.35)

where we redefined the coefficients. We note, that fn depends on all the f̃m with m ≥ n. This
flow field is given by

(1)v = (1)V 0 +

∞∑
n=0

[
ḡnz̄(log z̄)

n + (2 + α)fnz(log z)
n − αf̄nz

(
(log z̄)n + n(log z̄)n−1

)]
(B.36)
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with (1)V 0 is an integration constant corresponding to the rigid body translation. We note, that
the branch cut of log z that corresponds to the crack is not defined at this point. Thus, this
expansion works also for a curved crack by identifying this curved line with the branch cut of
the complex logarithm.

B.3 Minimal model of the primitive streak

In the following, we consider a minimal model of the primitive streak as a left-right symmetric
crack that drives fluid flow towards it. We consider the crack to be mechanically homogeneous
in r, i.e.

trC = tC = const., (B.37)

corresponding to a parameter regime with ηC → 0 and tactC = const. Force balance (Eq. 2.20)
then implies

tθrR − tθrL = 0. (B.38)

Furthermore, we consider the parameter regime (ηingR)/(ηd) → ∞ with pactC /ηing = jact > 0 with
jact being a constant. We understand this as a scenario where overdamped mechanical activity
within the crack drives a constant flux jact into the crack. At the crack tip, force balance (Eq.
2.13) implies

FT = −tCr(θ = 0). (B.39)

Furthermore, we consider plasticity of the crack tip to limit stresses at the crack tip, such that
the stress at the crack tip may not diverge with an exponent m < −1. We note that this is in
general not equivalent to the scenario of a rigid crack tip as given by Eq. 2.23, which we consider
in the numerical solution for simplicity. As we consider the flow field close to the crack tip, i.e.
at r ≪ R, we do not need to consider boundary conditions at r = R except the net velocity of
the outer boundary (understood as the angular average of the flow field at r = R), which we put
to zero.

These boundary conditions are solved by the field

(1)v =V0 −
1

2π(α+ 1)

(
jact −

2 + α

2η
tC

)
log

r

R
− jact

iθ

2π

+
α

2(α+ 1)

(
jact
2π

− tC
4ηπ

)
e2iθ +O(r), (B.40)

where V0 is a constant real velocity that depends on the boundary conditions at r = R. For
finite α, the second term scaling with log r/R will dominate close to the crack tip. It yields a
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(1)v(θ, r) = Vact logR/r with Vact being a real constant given by

Vact =
1

2π(α+ 1)

(
jact −

2 + α

2η
tC

)
. (B.41)

An active flux jact > 0 into the crack yields Vact > 0 for vanishing line tension tC , corresponding
to a movement of the crack tip away from the crack. Thus, the active flux jact into the crack
drives a growth of the crack for vanishing line tension tC . A line tension tC > 0 drives a
contraction of the crack, i.e. Vact < 0 for jact = 0. Notably the logarithmic term proportional
to jact vanishes for α → ∞, i.e. when the fluid film is incompressible. For such parameters, the
crack will always contract for tC > 0 and a ≪ R. Importantly, these results that follow from a
logarithmic divergence of the velocity field are independent from boundary conditions at r = R

and also crack boundary conditions away from the crack tip, since such boundary conditions
yield flow fields that scale as rm with m ≥ 0. We note also that the terms in Eq. B.40 all yields
stresses that scale as 1/r. Thus, they dominate the flow field at the crack tip for force boundary
conditions at r = R.
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Appendix C

Analysis of experimental data from
quail embryos

In chapters 5 and 5, we use experimental data from quail embryos to infer a mechanical model
of the quail embryo during the processes of gastrulation and left-right symmetry breaking. This
data was obtained by Julia Pfanzelter and Adrian Lahola-Chomiak from the lab of Stephan Grill
at the MPI-CBG Dresden. Embryos including the vitteline membrane from transgenic quails
expressing a GFP membrane marker were transferred from the egg to a agarose based nutritive
medium. There, they were imaged using a confocal microscope with a 20X objective using a
time resolution of 3 − 10min. The objective was located dorsally with respect to the embryo
to image the epiblast. From this, a maximum intensity projection was obtained, i.e. at each
xy-pixel, data from the z-layer with the maximal intensity was used. These 2D images were then
analyzed by me as described in the following.

C.1 Particle image velocimetry and embryo alignment in space
and time

We used PIVlab [154] to infer velocities of 64x64 pixel windows corresponding to grid of 40µmx40µm
overlapping squares with the centers of neighboring squares seperated by 20µm. Four passes were
used with window widths of 512, 256, 128 and 64 pixels.

In order to spatially align the data from different embryos, the position of the Hensen’s node
and the orientation of the primitive streak with respect to the node were manually annotated
(with the help of J. Pfanzelter and A. Lahola-Chomiak). With this, we interpolate the flow field
at grid points of a square grid with a width of 2000µm centered at the node identifying the axis
of the streak (i.e. the AP axis) as the y axis. We use a grid spacing of 25µm and use a Gaussian
kernel with a width σ = 25µm for interpolation. Using this grid, we average the flow field of each
embryo in 1h time windows around the original time points of the experiment. From this, we
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tPS [h]texp [h]

A B

Figure C.1: AP velocity of Hensen’s node with respect to neighboring epiblast, see main text for definition.
Different colors correspond to different embryos. Points are data from single time points, whereas solid lines
correspond to 1h moving averages, A: time with respect to start of experiment. B: time with respect to
onset of streak regression.

determine the anterior-posterior velocity vy of the node with respect to the surrounding epiblast,
by calculating the average flow field within a radius of 100µm around the node and subtracting the
average flow field in rectangles with coordinates |x| ∈ [200µm, 400µm] and y ∈ [−300µm, 300µm]

with respect to the node. In Fig. C.1A, this velocity is plotted for 15 embryos. The velocity
is positive for early time points, as the streak elongates and the node moves anteriorly. At late
times, the velocity is negative as the streak regresses and the node moves posteriorly. We use
the last time point where vy > 0 as the reference time point tref corresponding to the onset of
streak regression. We call the time with respect to this reference time point the primitive streak
time tPS = texp − tref . In Fig. C.1, vy is plotted as a function of tPS . We observe that the data
from all experiments collapse onto a common curve, which validates our method for spatial and
temporal alignment.

C.2 Flow field decomposition

Having aligned the embryos in space and time, we calculate an average flow field across the set of
15 embryos, by calculating the median or mean at each point in space and time. We decompose
this flow field into a left-right symmetric and into a left-right antisymmetric component according
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to

vsym(x, y) =
1

2

(
vx(x)− vx(−x), vy(x) + vy(−x))T

)
(C.1)

vasym(x, y) =
1

2

(
vx(x) + vx(−x), vy(x)− vy(−x))T

)
. (C.2)

In Fig. C.2 such a decomposition is shown for different time points using the median at each
point in space and time. While for the left-right symmetric component, using the mean yields
very similar results, for the left-right antisymmetric component, using the median gives more ro-
bust results as the mean is more susceptible to outliers. We observe that the LR-antisymmetric
component is often dominated by large-scale translations that are only observed in a subset of
embryos. Thus, they reflect embryo to embryo variability and not embryonic left-right symmetry
breaking. To circumvent this, we fit a rigid body translation and rotation to the left-right anti-
symmetric flow field in a distance between 350µm and 600µm with respect to the node. Then
we subtract this translation and rotation to obtain a velocity field in the thus defined reference
frame. In the right column of Fig. C.2, the result is shown, where for −2h ≤ tPS ≤ 2h we
observe a consistent counter-clockwise rotation and left-ward movement of the node. This is the
chiral flow, we analyze in section 5.1.

C.3 Bootstrapping

In order to compare the measured flow field with theoretical calculations in chapter 2, we con-
sider also derivatives of the flow field, specifically the divergence and the shear rate along the
y or x axis. Calculating derivative in terms of finite differences of the median flow field yields
noisy results. Instead, we calculate divergence and shear rate for each embryo separately using
finite differences using a grid that is shifted by half the grid spacing in y and x with respect
to the velocity grid. Then, we calculate the median of the resulting divergence and shear rate
across embryos at each point in space and time. Finally, we calculate the left-right symmetric
component. The results are plotted in Fig. C.3 ("measured" columns) in comparison to results
from the calculated flow field in Fig. 2.2

C.4 Derivatives of experimental data

In order to obtain a measure of the experimental uncertainty, we made use of bootstrapping.
Using random sampling with replacement, we generated 400 sets of n = 15 embryos from the
original data set. For each set of embryos, we calculated the median flow field as described above.
From these 400 median velocities, the 5th and 95th percentiles at each point in space and time
were determined. This defines the range of uncertainty, which we indicate as shaded areas in
Fig.2.5,5.1. For measures that depend on various data points, we calculated the measure for each
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of the 400 sets separately and subsequently calculated the 5th and 95th percentiles.

C.5 Calculating flow field from measured boundary velocities

In order to calculate the flow field from measured boundary velocities (see Fig. C.4,C.5), we
make use of Eq. B.12, B.3,B.4. Discretizing the line integral in Eq. B.12, the flow field is given
by

(1)v(z) =

N+∑
m=0

[
a+mV

A,+,r
m (z) + ib+mV

A,+,i
m (z) + c+mV

B,+,r
m (z) + id+mV

B,+,i
m (z)

]
+

N−∑
m=0

[
a−mV

A,−,r
m (z) + ib−mV

A,−,i
m (z) + c−mV

B,−,r
m (z) + id−mV

B,−,i
m (z)

]
+

NC∑
j=1

[
AjGmono(z − zj ,x) +BjGmono(z − zj ,y)

+ CjGdipo(z − zj ,x) +DjGdipo(z − zj ,y)
]
, (C.3)

where

V A/B,−,r
m (z) =Km+1(r/l

A/B
h )ei(m+1)θ +Km−1(r/l

A/B
h )e−i(m−1)θ (C.4)

V A/B,−,i
m (z) =Km+1(r/l

A/B
h )ei(m+1)θ −Km−1(r/l

A/B
h )e−i(m−1)θ (C.5)

V A/B,+,r
m (z) =Im+1(r/l

A/B
h )ei(m+1)θ + Im−1(r/l

A/B
h )e−i(m−1)θ (C.6)

V A/B,+,i
m (z) =Im+1(r/l

A/B
h )ei(m+1)θ − Im−1(r/l

A/B
h )e−i(m−1)θ (C.7)

and x,y denote the unit basis vectors of the cartesian coordinate system. Here they correspond to
the direction of the forces withGmono/dipo defined by Eq. B.7,B.10. a+/−m , b

+/−
m , c

+/−
m , d

+/−
m , Aj , Bj , Dj , Cj

are real coefficient which we determine from the measured boundary velocities using linear re-
gression. As measured boundary velocities around the streak we use data points for which the
minimal distance rmin to the negative y axis obeys 100µm ≤ rmin < 125µm and for which
r < 600µm. this yields 2NC data points with y < 0 and 2(N− + 1) data points with y ≥ 0. As
outer boundary velocities, we linearly interpolate the measured flow field at 2(N+ + 1) equally
distant points with on the outline of a circle with radius 600µm, where we use N+ = 128.

C.6 Inferring an effective model of the primitive streak using the
complex logarithm

As discussed in section B.2, the flow field around a crack can be expanded in terms of the complex
logarithm away from the crack, the crack tip and the outer boundary. We use this expansion,
given by Eq. B.36, to obtain an effective model of the primitive streak in terms of the forces it
is exerting on the epiblast. To this end, we truncate this series after n = 1 and use z0 = R/2.
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COMPLEX LOGARITHM

Truncating this series in such a way yields a flow field that is well behaved at the crack and the
crack tip. For simplicity, we omit the n = 0 terms, which would dominate at the outer boundary
away from the crack. Thus, the flow field is of the form

(1)v = V0 +Az̄(log z̄) +Bz [(2 + α)(log z)− α (log z̄ + n)] , (C.8)

where z = (y− ix)/z0, since the crack corresponds to the y axis in the experimental data. As we
consider the left-right symmetric component of the flow field V0, A,B are real numbers. For each
time point we fit these numbers to the average flow field using α = 3. We exclude data points
with a distance r > 600µm with respect to the Hensen’s node or a distance r ≤ 100µm with
respect to any point on the streak i.e. the negative y axis. This yields an analytical representation
of the flow field. Eq. B.16,B.17 yield analytical expressions for the stress of the epiblast. We
note that the pressure is only defined up to a constant, corresponding to the growth rate G.
We choose G such that the viscous pressure (0)t vanishes, when averaging over the epiblast, i.e.
the annulus between r = 100µm and r = 600µm. With this, we evaluate this stress at θ = ±π
for r > 100 to obtain the forces a one-dimensional crack, corresponding to the streak, exerts on
the fluid film, corresponding to the epiblast. To obtain velocity Vy of the node and the force
Fy the node is exerting on the epiblast, we use Eq. 2.24, 2.14 with a = 100µm by numerically
calculating the boundary integrals. In order to calculate the flux J into the crack, we evaluate

J =

∫ R

a
dr(vθL(r)− vθR(r))− a2

∫ π

−π
dθ vr(r = a, θ) (C.9)

numerically.
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Figure C.2: Median flow field across 15 embryos. For definitions of left-right symmetric and antisymmetric
component as well as the local reference frame in the rightmost column, see the main text of this appendix
chapter.
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Figure C.3: Comparison of numerical derivatives of experimental data to results of theoretical calculation
in Fig. C.4.
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Figure C.4: Leftmost column: Mean left-right symmetric flow field across 15 embryos at the boundaries
of the primitive streak and a circle with radius 600µm. Arrows are a representative selection of data points.
Left middle column: Flow field calculated from velocity boundary conditions as described in the main text
of this appendix chapter. Right middle column: Residual of the measured flow field after subtracting the
calculated flow field. Rightmost column: Residual flow field divided by the experimental standard deviation,
i.e. the square root of the variance across embryos.

168



C.6. INFERRING AN EFFECTIVE MODEL OF THE PRIMITIVE STREAK USING THE
COMPLEX LOGARITHM

t P
S=

–4
h

t P
S=

–2
h

t P
S=

0h
t P

S=
+
2h

t P
S=

+
4h

residual relative to
exp. standard dev.

measured
boundary velocities

calculated with
boundary velocities

residual
flow field

0 0.1|v| [µm/min.]
0 1

Figure C.5: Same as in Fig. 2.2, but using the left-right antisymmetric component of the measured median
flow field in the local reference frame as in the rightmost column of Fig. C.2.
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Appendix D

The Newman Penrose formalism
applied to an active surface

This appendix supplements the introduction of the Newman Penrose formalism in section 1.3.1.
Furthermore, we give tangential force and torque balance equations of an active surface, which
allows us to derive the governing equation of a chiral active fluid film (Eq. 5.2.1).

D.1 Fields with mixed spin-weight

In section 4.2, we discuss Green’s function on the curved surface using the Newman Penrose
formalism. To understand such propagators, we introduce fields with mixed spin-weight which
we denote as (s1, ..., sN )G(z1, ..., zn) with si being the spin weights with respect to the coordinate
system at position zi. As before they are complex-valued fields. The spin-weights are defined
by their behaviour under a global gauge transformation ψ(z) that rotates the complex basis Z.
Under such a rotation, the mixed-spin-weight field transforms analogous to Eq. 1.57 as

(s1, ..., sN )G
′(z1, ..., zn) = (s1, ..., sN )G(z1, ..., zn) exp

 N∑
j

−isjψ(zj)

 . (D.1)

D.2 Some properties of spin-weighted quantities on a surface

From the definition of the complex basis Z, we have

Z̄iZj = gij + iϵij , ZiZi = 0. (D.2)
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With this, tensor contractions can be given in terms of the corresponding spin-weighted quantities
as

XiY
i =Re[1X −1Y ] =

1

2
(1X −1Y + −1X 1Y ), Xiϵ

ijYj = Im[(−1)X (1)Y ] (D.3)

XijY
ij =

1

2
Re[2X −2Y + 0X 0Ȳ ], Xijϵ

i
kY

kj =
1

2
Im[(−2)X (2)Y + (0)X(0)Ȳ ]. (D.4)

Using the spin-raising and lowering operators (Eq. 1.60, 1.61), we can also write divergences of
vectors and tensors as

∇iX
i = Re[ð̄ (1)X], Zj∇iX

ij =
1

2
(ð̄ (2)X + ð (0)X). (D.5)

Importantly, the spin-raising and lowering operators obey a divergence theorem [201]∫
S
dSð (−1)f =

∫
C
dl(1)ν (−1)f. (D.6)

D.3 Differential geometry

The basis Z can be written as
Z = ðX. (D.7)

With this, the Gauss-Weingarten equations yield

ðZ = − (2)Cn− ΓZ, ð̄Z = − (0)CZ+ Γ̄Z, ðn =
1

2
((0)CZ+ (2)CZ̄) (D.8)

Furthermore, we find that the curvature tensor obeys

ð (0)C = ð̄ (2)C. (D.9)

D.4 Force and torque balance equations

Using the above identities, we can write the force and torque balance equations (Eq. 1.24 and
1.27) in terms of spin-weighted quantities as

1

2
(ð̄ (2)t+ ð (0)t) +

1

2
((2)C (−1)tn + (0)C (1)tn) =− (1)f (D.10)

1

2
(ð̄ (1)tn + ð (−1)tn)−

1

2
Re[(−2)C (2)t+ (0)C (0)t] =− fn (D.11)

1

2
(ð̄ (2)m+ ð (0)m) +

1

2
((0)C (1)mn + (2)C (−1)mn) =i (1)tn − (1)Γ (D.12)

Re[ð̄ (1)mn]−
1

2
Re[(2)C (−2)m+ (0)C (0)m] =− Im (0)t− Γn (D.13)
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Using torque balance and the definitions of m̃ij and t̃ij (Eq. 1.33, 1.34), we obtain

(2)t = (2)t̃+
i

2
((0)m (2)C + (2)m (0)C) (D.14)

(0)t =Re[(0)t̃]− iΓn − iRe[ð̄ (1)mn] +
i

2
((−2)C (2)m+ (0)C (0)m) (D.15)

(2)m =i (2)m̃, (0)m = i (0)m̃ (D.16)

Plugging this into the above force balance equations yields

− (1)f =
1

2

[
ð̄
(
(2)t̃− 2 Im[(0)m̃] (2)C − ið (1)mn

)
+ ð

(
(0)t̃− Im[ð̄ (1)mn]

)]
− 1

2
Re[(0)m̃]ð (0)C +

1

4

(
(2)m̃ð (−2)C + (−2)m̃ð (2)C

)
− ið

(
Γn +

1

2
Im[(2)m̃ (−2)C

)
− i

2

(
(2)C (−1)Γ + (0)C (1)Γ

)
fn =

1

2
Re[(−2)C (2)t̃+ (0)C (0)t̃] + Im[ð̄ (1)Γ]−

(0)C

2
Im[ð̄ (1)m] +

1

2
Im[(−2)Cð (1)m]

− 1

2
∆LB Re (0)m̃− 1

4
((0)C (0)C + (−2)C (2)C)Re[(0)m̃]

− 1

2
Re[ð̄ð̄ (2)m̃]− (0)C

4
Re[(2)m̃ (−2)C] (D.17)

The tangential force balance equation ((1)f) yields the govering equation of the flow field of
a chiral active fluid film (Eq. 5.15) using the constitutive equations in section 5.2.1. For an
isotropic surface ((2)C = 0 = ð (0)C), the normal force reads

fn =
1

2
Re[(0)C (0)t̃] + Im[ð̄ (1)Γ]−

(0)C

2
Im[ð̄ (1)m]

− 1

2
∆LB Re (0)m̃− 1

4 (0)C (0)C Re[(0)m̃]− 1

2
Re[ð̄ð̄ (2)m̃] (D.18)

D.5 Effective free energy description of active moments

We define an effective free energy density in terms of the active moments

feff =
1

2
Re[(0)m̃act (0)C + (2)m̃act (−2)C] = m̃i

jC
j
i (D.19)

We determine the equilibrium stress and moment, by considering a deformation of the surface
and using δF = δW (see section 1.2.3). We understand the active moment as a density of
molecular torque dipoles, which is diluted upon an expansion of the surface such that

δ(
√
gfeff) =

∂feff

∂(C j
i )

δC j
i (D.20)
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Thereby, we recover the active moment as the effective equilibrium moment:

m̃ij
eq,eff = m̃ij

act, t̃ijeq,eff = 0. (D.21)

Thus, we recover the same governing equation of the fluid film by using the equilibrium moment
associated with feff instead of an active moment. This equivalence reflects that m̃ j

i is conjugate
to C j

i in terms of the virtual work δW .
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Appendix E

Definitions and applications of
spin-weighted spherical harmonics

In the following, we give definitions and properties of spin-weighted spherical hamonics [138,
202, 203], as derived in the Newman Penrose formalism (see section 1.3.1). They form a basis
of spin-weighted fields on the sphere. With this, we obtain in the following analytical results for
flow field and linear stability of an active fluid film with a slightly anisotropic spherical geometry.
Furthermore, we use such a decomposition in terms of spherical harmonics in the pseudo-spectral
method we use to simulate the non-linear dynamics of an active fluid film with spherical topology
(appendix F).

E.1 Definitions

(Scalar) spherical harmonic functions Ylm with integers l > 0 and |m| ≤ l l ∈ N0 are the
eigenfunctions of the Laplace Beltrami operator ∆LB on the unit sphere, obeying

∆LBYlm = −l(l + 1)Ylm. (E.1)

We use a complex convention for Ylm, as given [175]. Using the usual spherical coordinates θ, φ,
they read for m ≥ 0

Ylm := eimφ

√
2l + 1

4π

(l −m)!

(l +m!
Pml (cos θ), (E.2)

where the associated Legendre polynomials are given by

Pml (cos θ) :=
(−1)m

2ll!
(sin θ)m

dl+m

(d cos θ)l+m
(cos2 θ − 1)l. (E.3)

For m < 0, Ylm is given by
Ylm = (−1)mȲl,−m, (E.4)
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where .̄.. denotes the complex conjugate.

In the following, we adopt the Newman Penrose formalism (section 1.3.1) on a spherical surface
with the common convention

Z = θ + iφ. (E.5)

Using the spin-raising and lowering operators (Eq. 1.60,1.61), we define the spin-weighted spher-
ical harmonics (s)Y lm using the sign convention from [201] as

(|s|)Ylm := (−1)s

√
(l − |s|)!
(l + |s|)!

ðsYlm, (−|s|)Ylm :=

√
(l − |s|)!
(l + |s|)!

ð̄sYlm, (E.6)

where our sign convention of the ð, ð̄ differs from [201].

E.2 Properties

From the definitions, we have

(s)Y lm = (−1)m+s
(s)Ȳ lm. (E.7)

Furthermore also the spin-weighted spherical harmonics obey an eigenvalue equation:

ð̄ð (s)Y lm =[s(s+ 1)− l(l + 1)] (s)Y lm (E.8)

ðð̄ (s)Y lm =[s(s− 1)− l(l + 1)] (s)Y lm. (E.9)

As such they are the eignfunctions of a self-adjoint operator and form an orthogonal basis of
complex functions on the (unit) sphere S2 [138], i.e.∫

S2

dS (s)Y lm (s)Ȳ l′m′ = δll′δmm′ (E.10)∑
lm

(s)Y lm(θ
′, φ′) (s)Ȳ lm(θ, φ) = δ(φ− φ′)δ(cos θ − cos θ′), (E.11)

where δ(x) denotes the Dirac delta. With this, we can expand any spin-weighted field on the
sphere as

(s)f(θ, φ) =
∑
lm

flm (s)Y lm(θ, φ), flm =

∫
S2

dS (s)Ȳ lm (s)f. (E.12)

We note that such an expansion is valid for any complex function on the sphere. As such, we can
also use it to expand spin-weighted fields on other surface geometries with spherical topology.
In this case the projections onto spherical harmonics are calculated as an integral on the unit
sphere S2 as in the above equations.

Spin-weighted spherical harmonics are related to Wigner D matrices [138, 201, 175], which cor-
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respond to spatial rotations of the scalar spherical harmonics:

sY lm(θ, φ) = (−1)m
√

2l + 1

4π
Dl

−m,s(φ, θ, 0) = (−1)m
√

2l + 1

4π
⟨l,−m|R(φ, θ, 0) |l, s⟩ (E.13)

This allows to calculate products of spin-weighted spherical harmonics using Clebsch-Gordan
coefficients∫

dΩ s1Y l1m1 s2Y l2m2 s3Y l3m3 =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3

m1 m2 m3

)(
l1 l2 l3

−s1 −s2 −s3

)
(E.14)

Here, we use the Wigner 3j symbol which is a particularly symmetric convention for writing
Clebsch-Gordan coefficients.

E.3 Flow field on a sphere

The force balance equation for an isotropic active fluid (Eq. 1.69) using a Hodge decomposition

(1)v = ðF on the sphere reads

ð∆LB(F + αReF )−
(
1

l2h
− 2

R2
0

)
ðF = −1

η
ð (0)χ (E.15)

Using the eigenvalue equation of the scalar spherical harmonics, this is solved by F = A = ReF

with

Alm =
R2

0

(R0/lh)2 + (α+ 1)l(l + 1)− 2

χlm
η
. (E.16)

E.4 Linear order calculations on a deformed sphere

E.4.1 Differential geometry

We consider a deformed spherical geometry

X′ = X+ δX = (R0 + δR(θ, φ))r, (E.17)

where for simplicity we choose length units such that R0 = 1 in the following. We expand the
deformation δR in (scalar) spherical harmonics

δR(θ, φ) =
∑
lm

δRlmYlm(θ, φ) (E.18)

Upon the deformation the normal vector changes as

δn = −(∂iδR)e
i = −Re[Z̄ðδR]. (E.19)
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where ð denotes the spin-raising operator on the undeformed sphere δZ is defined up to rotation.
We use a convention for δZ such that

δZ = −(Z · δn)n = (ðδR)n = (ðδR)r, δZ̄ = (ð̄δR)r. (E.20)

Using Z′ = ð′X′, we have
ð′ (0)f = (1− δR)ð (0)f (E.21)

for a spin 0 field (0)f where ð′ denotes the spin-raising operator on the deformed sphere. With
this, we obtain

δΓ = −δRΓ− ðδR (E.22)

and thus

ð′ (s)f = (1− δR)ð (s)f − s(ðδR) (s)f. (E.23)

ð̄′ (s)f = (1− δR)ð̄ (s)f + s(ð̄δR) (s)f. (E.24)

With this we obtain
δ∆LB = −2δR∆LB. (E.25)

Furthermore we have

δ (0)C = −2δR− ð̄ðδR, δ (2)C = −ððδR, δκ = δ (0)C. (E.26)

E.4.2 Flow field of active isotropic fluid

We write the flow field as a Hodge decomposition (1)v = ðF and calculate the change in the
complex function F upon deformation of the sphere such that the flow field on the deformed
sphere is given by

(1)v
′ = (1)v + δ (1)v, δ (1)v = ðδF − δR (1)v, (E.27)

where (1)v fulfills the force balance equation on the undeformed sphere. With this and using the
expression for the spin raising and lowering operators on the deformed sphere, the force balance
equation on the deformed sphere in terms of δR reads

ηð∆LB(F0 + αReF )− (γ − 2η)ðF = 2ηð [δR(F + αReF )] + 2η(2δR+ ð̄ðδR)ðF, (E.28)

where the right hand side corresponds to viscous force resulting from the deformation. Using the
eigenvalue relations for the spin-weighted spherical harmonics and Eq. E.14 and the recursion
relation

√
l1(l1 + 1)

(
l1 l2 l

−1 0 1

)
+
√
l2(l2 + 1)

(
l1 l2 l

0 −1 1

)
= −

√
l(l + 1)

(
l1 l2 l

0 0 0

)
(E.29)
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for Wigner 3j symbols, we obtain

δAlm =
1

γ + η [(α+ 1)l(l + 1)− 2]

Slm + (−1)mS̄lm

2
√
l(l + 1)

(E.30)

δBlm =
−i

γ + η [l(l + 1)− 2]

Slm − (−1)mS̄lm

2
√
l(l + 1)

, (E.31)

Slm
2

=
∑

l1,l2,m1,m2

(−1)m+1χl1m1δRl2m2

1/l2h + (α+ 1)l1(l1 + 1)− 2

√
(2l1 + 1)(2l2 + 1)(2l + 1)

4π

(
l1 l2 l

m1 m2 m

)
{
[l2(l2 + 1)− 2]

√
l1(l1 + 1)

(
l1 l2 l

−1 0 1

)

− (α+ 1)l1(l1 + 1)
√
l(l + 1)

(
l1 l2 l

0 0 0

)}
(E.32)

Using the selection rules for the Wigner 3j symbols, we have

Slm = 0 for (m1 +m2 ̸= m) ∨ (l > l1 + l1) ∨ (l < |l1 − l2|). (E.33)

Furthermore, all the Wigner 3-j matrices are real and we can use(
l1 l2 l3

m1 m2 m3

)
= (−1)l1+l2+l3

(
l1 l2 l3

−m1 −m2 −m3

)
(E.34)

and Eq. E.4 together with the real-valuedness of A,B, χ to obtain

S̄l,−m = (−1)m1+m2+l1+l2+lSlm. (E.35)

With this we find

Alm =
1

γ + η [(α+ 1)l(l + 1)− 2]


Slm√
l(l+1)

, l1 + l2 + l even

0, l1 + l2 + l odd
(E.36)

δBlm =
−i

γ + η [l(l + 1)− 2]

0, l1 + l2 + l even
Slm√
l(l+1)

, l1 + l2 + l odd
(E.37)

We observe that for l = 1 δBlm is only limited by friction (γ). Hence, this mode can dominate the
flow field for small deformations, if the hydrodynamic length is large, i.e. δR/R0 > R2

0/l
2
h ≪ 1.

On a sphere B1m corresponds to a rigid body rotation δΩ. Identifying the rotation axis as the
z axis such that Ω = zΩ, one has

Ω = −
√

3

4π
B1,0 (E.38)
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With this we obtain the rotation speed of the deformed sphere as

δΩ = −
√

3

4π
δB1,0 = i

3

4πγ

∑
l,m

(−1)mχl,mδRl,−m
m[l(l + 1)− 2)]

(α+ 1)l(l + 1)− 2
. (E.39)

Writing the spherical harmonics coefficients in terms of an azimuthal angle and a magnitude as

δRlm = |δRlm|e−imϕR,lm , δχlm = |δχlm|e−imϕχ,lm , (E.40)

we obtain

δΩ =
1

γ

∑
l≥2,m>0

3

2π

m [l(l + 1)− 2]

(1 + α)l(l + 1)− 2
|χl,m||δRl,m| sin[m(ϕχ,lm − ϕR,lm)]. (E.41)

E.4.3 Chemical dynamics

In the following we consider dynamics of a single concentration field c on a deformed sphere as
discussed in the main text in sections 3.2, 3.3.1.

E.4.3.1 Diffusion

Using Eq. E.25E.14, we obtain the matrix elements of the change in the Laplace Beltrami
operator δ∆LB as∫

dΩY ∗
l1m1

δ∆LBYl2m2 = 2l2(l2 + 1)

∫
dΩY ∗l1m1 δ

δR

R
∆Yl2m2

= 2l2(l2 + 1)
∑
lm

δRlm
R

(−1)m1

√
(2l1 + 1)(2l + 1)(2l2 + 1)

4π(
l1 l l2

−m1 m m2

)(
l1 l l2

0 0 0

)
(E.42)

Only summands with m1 = m+m+2 are non-zero. Here, we restrict ourselves to axisymmetric
deformations. Choosing z as the axis of symmetry implies δRlm = 0 for m ̸= 0 and hence,∫

dΩY ∗
l1m1

δ∆LBYl2m2 = δm1,m2 ... (E.43)

In other words, δ∆LB is diagonal when restricted to an eigenspace of ∆LB on the undeformed
sphere. This allows us to calculate eigenstates and eigenvalues of ∆′

LB in first order of δR/R as

λ′lm =− l(l + 1) + ⟨l,m| δ∆LB |l,m⟩ (E.44)

Y ′
lm =Ylm +

∑
l′ ̸=l

⟨l′,m| δ∆LB |l,m⟩
l′(l′ + 1) + l(l + 1)

Yl′m, (E.45)
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where

⟨l′,m| δ∆ |l,m⟩ :=
∫

dΩY ∗
l′mδ∆LBYlm

= 2l(l + 1)
∑
l2

δRl2
R

(−1)m
√

(2l1 + 1)(2l + 1)(2l′ + 1)

4π(
l′ l2 l

−m m2 m

)(
l′ l2 l

0 0 0

)
(E.46)

The dynamics of the concentration field are then given by

c =
∑
lm

clmY
′
lme

Dλ′lmt (E.47)

For small l2, the expressions simplify. For example for

δR = δR2Y20, (E.48)

the eigenvalues becomes

λ′lm = −l(l + 1)

[
1− δR2

R

√
5

π

l(l + 1)− 3m2

4l(l + 1)− 3

]
(E.49)

We observe that for stretching along z (i.e. δR2 > 0), modes with larger |m| decay faster.

E.4.3.2 Linear stability of an active isotropic fluid

Using a Hodge decomposition of the flow field, with A denoting the irrotational component, Eq.
1.53 for a small deviation δc from the homogeneous state reads

∂tδc = ∆LB(Dδc− c0δA), (E.50)

where
δAlm =Mlmδclm +

∑
l′m′

δM lm
l′m′δcl′m′ (E.51)

This is solved by
c =

∑
lm

clmY
′
lme

λ′lmt (E.52)

The eigenvalues change upon deformation of the sphere as

δλlm = − λlm
l(l + 1)

⟨lm| δ∆ |lm⟩+ l(l + 1)c0δM
lm
lm , (E.53)
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where using Eq. E.32, we obtain

δM lm
lm =

∑
l2,m2

(−1)m+1
[
1 + (−1)2l+l2

]
χ′(c0)ηδRl2m2

[1/l2h + (α+ 1)l1(l1 + 1)− 2]2

√
(2l + 1)2(2l2 + 1)

4π

(
l l2 l

m m2 −m

)
{
[l2(l2 + 1)− 2]

(
l l2 l

−1 0 1

)
− (α+ 1)l(l + 1)

(
l l2 l

0 0 0

)}
(E.54)

For
δR = δR2Y20, (E.55)

the eigenvalues become

δλlm =
l(l + 1)− 3m2

4l(l + 1)− 3
δR2

√
5

π

[
Dl(l + 1) +

c0χ
′(c0) [6η(l − 1)(l + 2)− γl(l + 1)]

[γ + η ((ν + 1)l(l + 1)− 2)]2

]
(E.56)
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Appendix F

A pseudo-spectral method for the
simulation of active fluid films

In the following, we describe a numerical method for calculating the flow field and simulate
the dynamics of a fluid film with spherical or toroidal topology and otherwise arbitrary surface
geometry. In this method, we adopt the Newman-Penrose formalism (see section 1.3.1). This
means that all vector and tensor fields are represented by complex valued fields, so called spin-
weighted fields. Furthermore, we use a spectral decomposition of the fields to calculate derivatives
on a reference surface. To calculate products of fields, a grid in real space is used. We use this
method in chapters 3 and 4 to simulate the dynamics of active isotropic fluid films. In chapter
5, we use it also to calculate the flow field of a chiral active fluid film.

F.1 General algorithm

For any surface we define a complex basis vector Z. This allows us to understand all vector and
tensor fields as complex-valued spin-weighted fields. The algorithm relies entirely on this spin-
weighted representation. Only for calculating Z and the spin connection Γ for a given surface
X, we make use three-dimensional vector representation.

The algorithm for simulating an active fluid film can be summed up as follows:

Calculate static quantities of surface geometry. (F.1)

Calculate matrix representation Mij of viscous force. (F.2)

Invert Mij . (F.3)

Integrate ∂tc using Runge-Kutta algorithm. (F.4)

For a definition of Mij see the next section. For integration ∂tc we use the spectral representation
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of c. Calculating ∂tc for a given c amounts to the following steps:

Calculate the active force fact from c. (F.5)

Calculate flow field (1)v from fact using M−1
ij . (F.6)

Calculate ∂tc from c and (1)v as given in Eq. 1.53. (F.7)

For surfaces with spherical topology, the code was implemented in C and the inverse of Mij as
well as the matrix vector product in Eq. F.13 were calculated on a GPU using the Nvidia Cuda
library [204]. For surfaces with toroidal topology, the code was implemented in MATLAB.

F.2 Solving the flow field using spectral decomposition

We represent all spin-weighted fields in terms of a spectral decomposition and in terms of its
values on a real space grid. Consider for example, a spin-weighted field (s)f . We denote its value
on grid point i ∈ [0, Ngrid − 1] with complex coordinate zi as (s)f i. Furthermore, we denote the
projection on the jth eigenfunction (s)Y j with j ∈ [0, NS − 1] as ((s)f)

S
j . Spectral and real space

representation of (s)f are related by synthesis

(s)f i =

NS−1∑
j=0

((s)f)
S
j (s)Y j(zi). (F.8)

Calculating the spectral space representation ((s)f)
S
j from the real space grid values (s)f i amounts

to a linear transformation, e.g. a Fourier transformation. In the next section, we give an explicit
formula for spherical harmonics transformation. There we give also formulas for numerical ap-
proximations of the spin-raising and lowering operators ð, ð̄.

With these, we can calculate the viscous and friction force for a given velocity:

(1)fvisc = ηð̄ð (1)v + αηðRe[ð̄ (1)v]− γ (1)v. (F.9)

We calculate numerically the viscous force for all eigenfunctions (1)Y j :

(1)fvisc[(1)Y j ] = ηð̄ð (1)Y j + αηðRe[ð̄ (1)v]− γ (1)Y j . (F.10)

The spectral decomposition of the viscous force defines the following matrix

Mij := ((1)fvisc[(1)Y j ])
S
i . (F.11)

Solving the force balance equation for a given active force (1)fact (see right hand side of Eq. 1.69
and Eq. 5.15), amounts to solving

(1)fvisc = − (1)fact (F.12)
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To this end, we invert Mij numerically. Then the spectral representation of the flow field is given
by

((1)v)
S
i = −

NS−1∑
j=0

(M−1)ij((1)fact)
S
j . (F.13)

F.3 Surfaces with spherical topology

We parameterize a surface with spherical topology as X(θ, ϕ), where θ and ϕ are spherical coor-
dinates. We use a rectangular grid of size NringxNϕ, such that rings with constant θ correspond
to rows of the grid. We use a grid such that at the first ring we have θ0,i = π/(2Nring) and at
the last ring θNring−1,i = π − π/(2Nring). So, there are no grid points at the poles. For all the
simulations, we used Nring = 60, Nϕ = 120 yielding Ngrid = 7200.

We decompose fields into spin-weighted spherical harmonics (see appendix E). Calculating the
spherical harmonics representation of a field (s)f amounts to a projection in the sense of an
integral (Eq. E.12). We use libsharp2, a C library, to calculate these projections numerically
[205]. There the integral is approximated by the sum

((s)f)
S
lm =

Nring−1∑
i=0

Nϕ−1∑
j=0

wi (s)f i,j (s)Ȳ lm(θi, ϕj), (F.14)

where wi are quadrature weights of the rings. We use here Fejér’s first quadrature rule for these
weights[205]. In contrast to a Fourier transform, the spherical harmonics transform requires a
greater number of points in real space than in spectral space to yield accurate results. For all
the simulations, we used a maximal l value lmax yielding Ns = l2max = 2601.
Note that libsharp uses a different sign convention for the spin-weighted spherical harmonics.
Furthermore, it represents spherical harmonics components for s ̸= 0 in terms of a rotational and
an irrotational component, from which calculate the resulting spherical harmonics components
(see [205] for details).
From the spherical harmonics transform, derivatives on the (unit) sphere can be calculated using
Eq. E.6. We denote these operators on reference surface that is the unit sphere as ðr. Applied
to a scalar field c, they yield the partial derivatives as

ðrc = ∂θc+
i

sin θ
∂ϕc. (F.15)

With this we calculate the covariant vectors ei = ∂iX of the deformed sphere. We use a conven-
tion such that the real component of Z points in the direction of the covariant basis vector eθ,
i.e.

Z =
eθ
|eθ|

+
i

|eθ|
n× eθ with n =

eθ × eϕ
|eθ × eϕ|

, (F.16)

where we calculate products and non-linear terms on the real-space grid.

185



APPENDIX F. A PSEUDO-SPECTRAL METHOD FOR THE SIMULATION OF ACTIVE
FLUID FILMS

The derivative (i.e. ð, ð̄) of a scalar field can be written as a linear combination of ∂θ and ∂ϕ and
thus ðr and ð̄r. To this end, we calculate numerically the following factors

D0 = Z · ð̄rX, D2 = Z · ðrX. (F.17)

Using Eq. 1.63, we find that the derivative operators on the deformed sphere can be written as

ð (0)f =
2

|D0|2 − |D2|2
[
D0ðr (0)f −D2ð̄r (0)f

]
(F.18)

ð̄ (0)f =
2

|D0|2 − |D2|2
[
D̄0ð̄r (0)f − D̄2ðr (0)f

]
(F.19)

With this, we can calculate the spin connection Γ as defined in Eq. 1.62. However, Z is ill-
behaved at the poles of the grid. Therefore, we calculate it instead as

Γ = Z ·
[
ð (Z− Zr) +D0

(
ΓrZ̄r − 4nr

)
−D2Γ̄rZ̄r

]
, (F.20)

which we derived using Eq. D.8. r-subscripts denote quantities on the unit sphere. In particular
Zr = θ + iϕ and Γr = −1/ tan(θ), With this we calculate

∆Γ = Γ− 2

|D0|2 − |D2|2
[
D0ðrΓ−D2ð̄rΓ̄

]
. (F.21)

With this we can calculate the derivatives of general spin fields as

ð (0)f =
2

|D0|2 − |D2|2
[
D0ðr (s)f −D2ð̄r (s)f

]
+ s∆Γ (s)f (F.22)

ð̄ (0)f =
2

|D0|2 − |D2|2
[
D̄0ð̄r (s)f − D̄2ðr (s)f

]
− s∆Γ (s)f, (F.23)

where we again calculate ðr, ð̄r using the spectral representation of a field (s)f , whereas products
are calculated on the real-space grid.

F.4 Surfaces with toroidal topology

We parametrize surfaces with toroidal topology as X(x, y). We use a We use an isothermal
parametrization. In particular, we consider a torus parametrized as

X(x, y) =
R2 sinh(ρ)

cos[sinh(ρ)x]− cosh(ρ)
(sinh(ρ) cos(y), sinh(ρ) sin(y), sin[sinh(ρ)x])T , (F.24)

where cosh(ρ) = R1/R2 and R1,R2 are the radii of the torus. Note that x corresponds to the
poloidal angle up to a rescaling by sinh(ρ). For sinh(ρ) = 1, corresponding to R2 ∼ 0.7R1,
we can cover the entire torus with a square grid of equal size in x and y. We consider such a
geometry in the simulation in section 4.1.1 using a 42x42 grid.
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As we consider an isothermal parametrization, we have a metric gij = l2δij . The length scale l
is given by

l =
R2 sinh(ρ)

2

cos[sinh(ρ)x]− cosh(ρ)
. (F.25)

Furthermore, we have

κ =
cosh(ρ) cos[sinh(ρ)x]− 1]

(R2 sinh(ρ))2
. (F.26)

We use
Z =

1

l
(∂xX+ i∂yX) . (F.27)

With this we can calculate ð, ð̄ using Eq. 1.73. To calculate the partial derivatives, we decompose
all fields in terms of a Fourier series using the discrete two-dimensional Fourier transform, as
implemented in MATLAB [206]. Then we have

(∂z̄ (s)f)
S
j =

kj
2
((s)f)

S
j , (∂z (s)f)

S
j =

k̄j
2
((s)f)

S
j , (F.28)

where kj = kx,j + iky,j is the complex wave vector of a Fourier mode that we can write as

Yj(z, z̄) = ei(kj z̄+k̄jz)/2. (F.29)

Analogous to the spherical case we calculate ð, ð̄ by calculating the Wirtinger in spectral space
and the products in Eq. 1.73 in real space.
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Appendix G

A staggered-grid method for
spin-weighted fields

In the following, we briefly describe a staggered-grid method to calculate the flow field of a curved
fluid film. We find that this better suited than spectral methods for calculating the flow fields
around cracks and stress multipoles, in particular when using an isothermal parametrization.
We use the Newman-Penrose formalism (see section 1.3.1), i.e. all vector and tensor fields are
represented as complex valued fields, so called spin-weighted fields.

G.1 Staggered-grid

When using a staggered grid, different fields are evaluated on distinct grids that are shifted with
respect to each other. Here we evaluate different spin-weighted fields on grids according to their
spin-weight. We use a basis grid in terms of the coordinates x, y such that rows of the grid
correspond to lines with y = const.. Denoting rows and columns on the fine basis grid as i and
j, we use the following convention for the staggered grids:

Re[(s)f ], s even : i even, j even (G.1)

Im[(s)f ], s even : i odd, j odd (G.2)

Re[(s)f ], s odd : i even, j odd (G.3)

Im[(s)f ], s odd : i odd, j even (G.4)

When calculating products of spin-weighted fields, we use linear interpolation. When the factors
are on the same grid, we evaluate the product on this grid and use linear interpolation to evaluate
the field on the grid of the product. Otherwise, we evaluate the factors on the grid of the product.
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G.2 Numerical derivatives

We consider a surface parametrized as X(x, y) that is defined on the fine basis grid. In particular
we consider in chapter 4.a torus as parametrized in F.24. In Fig. J.2, we use ρ = asinh(1) and
a grid of size 162x162. In Fig. 4.2, we use ρ = asinh(2) and a grid of size 192x384. On the fine
grid, we use finite differences to calculate derivatives of X and thus the covariant vectors ei. We
define Z as

Z =
ex
|ex|

+
i

|ex|
n× ex with n =

ex × ey
|ex × ey|

, (G.5)

From this we calculate Γ using Eq. 1.62, again using finite differences on the fine grid. Further-
more, we calculate the metric gij and with this the covariant components Zi.

To calculate numerical derivatives of the physical fields, we make use of the staggered grid.
We calculate partial derivatives by evaluating finite differences on the intermediate grid points.
Then we use Eq. 1.60, 1.61 to calculate ð, ð̄. As described above, we use linear interpolation to
calculate products.

G.3 Flow field around force multipole

To calculate flow fields on a closed surface for a density of active forces (1)fact, we calculate
a matrix representation of the viscous and friction forces as in appendix Eq. F.11. In con-
trast to appendix F, however, we do not use a decomposition in terms of a spectrum of the
Laplace-Beltrami operator. Instead, we decompose the flow field in terms of the real space grid,
corresponding to

Yj(zi) = δij . (G.6)

To approximate the flow field around a force force monopole at zi, we consider

(1)fact(zj) =
(1)Fδij

∆x∆y
√
g(zi)

, (G.7)

where ∆x,∆y are x and y resolutions of the grid. (1)F ∈ {1, i} is the force of the force monopole,
which we consider to be purely real or imaginary, as the grid points of real and imaginary parts
of (1)fact are distinct. Similarly, we define the active tension field χmono tension monopole, from
which we calculate numerically (1)fact = ðχmono.

G.4 Numerical Hodge decomposition

We want to decompose the numerical flow field as a Hodge decomposition

(1)v = ð(A+ iB) + (1)vh, (G.8)
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where A,B ∈ R. Applying the ð̄ operator yields

ð̄ (1)v = ∆LB(A+ iB) + ð̄ (1)vh, (G.9)

where ð̄ (1)vh is constant. We use the staggered grid to calculate ð̄ (1)v numerically. Using linear
interpolation, we determine ð̄ (1)v on the fine basis grid. To invert this equation we make use of
Eq. 1.72. Furthermore, we use the Discrete Fourier transform (DFT) on the fine grid to invert
the Laplace operator

A+ iB = DFT−1

[
1

|k|2
DFT[l2ð̄ (1)v]

]
, (G.10)

where k is the complex wave vector (see section F.4) and l is the length scale associated with the
isothermal parametrisation (Eq. F.25). On a torus the harmonic flow field can be written as

(1)vh = (1)V hl, (G.11)

where (1)V h = const.. This allows us to calculate the harmonic flow field numerically as

(1)vh =
1

l
Pk=0[l (1)v], (G.12)

where Pk=0 denotes the projection onto the constant component, which we calculate using DFT.

G.5 Solving crack boundary conditions

To solve boundary conditions, we use a logarithmic grid, i.e. we consider

X(x, y) = (− exp(x) sin(x), exp(x) cos(x), 0)T , (G.13)

where x ∈ [log a, logR] and y ∈ [−π, π]. We use a square grid in terms of x and y of size 512x512.
As before, we calculate the matrix Mij that yields the viscous force at position i due to a velocity
at j. We use this to solve velocity boundary conditions. To this end, we denote the set of indices
that are enclosed by the boundary at I, whereas the set of boundary indices is denoted as B.
We consider a homogeneous fluid inside the boundary such that the viscous force has to vanish.
With this, we find we can calculate the enclosed flow field (1)v resulting from a boundary velocity

(1)vB as

(1)vi =
∑
j

−(M−1
I,IMI,B)i,j (1)vB,j . (G.14)

From this, we calculate a matrix MF,V that gives the boundary force resulting from a boundary
velocity. With this force and mixed boundary conditions can be written as a linear equation for
the boundary velocities. Solving this equation allows to calculate the flow field from the velocity
boundary equation as given above.

191



APPENDIX G. A STAGGERED-GRID METHOD FOR SPIN-WEIGHTED FIELDS

192



Appendix H

Deformation response of active flow

In the following, we calculate the functional derivative of the Green’s functions with respect a
variation δφ of the geometric potential, corresponding to a deformation of the surface (see section
4.2.2). Thereby, we will gain some general insight into how the surface geometry of an active
fluid film shapes the flow field that active stresses or forces generate.

H.1 For flows limited by shear viscosity

We start by considering the case of vanishing bulk viscosity. Thereby, the tangential force balance
equation of a fluid film driven by a force pattern (1)f simplifies to

(ηð̄ð − γ) (1)v = − (1)f. (H.1)

We observe that the complex field (1)v is linear in (1)f , i.e. the equation is invariant under
a rotation eiψ of force and velocity field. In this sense, (1)v is independent of (−1)f , implying
G2 = 0 = (1,0,1)K. Upon a deformation δφ the differential operators change as

δð (s)X = (s− 1)δφð (s)X − sð(δφ (s)X), δð̄ (s)X = −(1 + s)δφð̄ (s)X + sð̄(δφ (s)X), (H.2)

where (s)X is some spin field and we made use of Eq. 1.73. This gives rise to a change in the
viscous force δ (1)fvisc given by

1

η
δ (1)fvisc = δ(ð̄ð) (1)v = −3δφð̄ð (1)v − ð̄ð(δφ (1)v) + 2ð̄(δφð (1)v) (H.3)

Using Eq. 4.16, we can calculate the change in the flow field that results from this force and
express the velocity field in terms of the force field. We consider a closed surface and use partial
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integration to make use of Eq. 4.17. Thereby we obtain the kernel

(1,0,−1)K =
δ (1)v(zv)

δφ(z)δ (1)f(zf )
=− 4γG0(z, zf )Ḡ0(z, zv)− 2η(ðG0(z, zf ))(ð̄Ḡ0(z, zv))

+ 3Ḡ0(z, zv)δzf ,z +G0(z, zf )δzv ,z. (H.4)

The first two terms comprise a hydrodynamic coupling to the geometry, in the sense that they
are non-vanishing for zv ̸= z ̸= zf , i.e. the flow field at zv driven by a force at zf changes
upon a deformation δφ, even if δφ vanishes in a neighborhood around zv and zf . They can be
understood as an effective change in friction in shear viscosity given by

δγ = 4γδφ, δη = 2ηδφ (H.5)

that results from the deformation δφ. We observe that an expansion of surface area (δφ > 0)
gives rise to an effective increase in friction and shear viscosity. Thus, we may say that an
expansion adds resistance against flow, due to shear viscosity. In particular, we find that

δ (1)v(zv)

δφ(z)δ (1)f(zf )

∣∣∣∣
zv=zf

= −4γ|G0(z, zf )|2 − 2η|ðG0(z, zf )|2 ≤ 0. (H.6)

with equality restricted to a set of points, when the surface and thereby G0 is smooth. This
means that a localized expansion of surface area away from a point force that is exerted on the
fluid film yields a change in the flow field at this point with a direction opposite to the force.
The strength of this coupling to the geometry scales with |G0(z, zf )|2 and hence the distance
between the points z and zf relative to the hydrodynamic length. This inequality is of particular
interest to active fluids, where the flow field driven by a pattern of active stresses feeds back on
the pattern dynamics. When active stress regulators are localized to a small patch as observed
for the isotropic active fluid model in the previous chapter, the pattern dynamics are dominated
by the flow field within this patch. Importantly, the change in the flow field δ (1)v is smooth at
zf = zv, when δφ(zf ) = 0. Hence, the inequality in H.6 implies that for almost any points z and
zf in a smooth surface and z ̸= zf , there exists an open neighborhood Uε(zf ) such that

∀zv ∈ Uε(zf ) : Re[
δ (1)v(zv)

δφ(z)δ (1)f(zf )
] < 0 (H.7)

For a global deformation of the surface (i.e. φ(zv), φ(zf ) ̸= 0), also the local terms in Eq. H.4
have to be taken into account. However, we can always rescale the reference surface such that
δφ(zf ) = 0, whereby Eq. H.6 still holds. In this sense, we may say that a deformation that
corresponds to an expansion of the surface relative to a reference point, adds resistance against
flow at this reference point. Since the inequality in Eq. H.6 holds for any surface geometry, it
holds also for a finite deformation as defined in Eq. 4.22 as long as φ′(zf )−φ0(zf ) = 0. In other
words, Eq. H.6 provides insight that goes far beyond a linear order calculation.
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For a global deformation of the surface, it is informative to rewrite the differential in terms of
the Gaussian curvature. Using Liouville’s equation (Eq. 1.71, we find

δ (1)v(zv)

δφ(z)δ (1)f(zf )
= + 2ηG0(z, zf )Ḡ0(z, zv)

δκ

δφ
+ 2η(ð̄G0(z, zf ))(ðḠ0(z, zv))

+ Ḡ0(z, zv)δ
(2)(zf , z)−G0(z, zf )δ

(2)(zv, z), (H.8)

Importantly, the local terms vanish for zf = zv. Expaning δφ in eigenmodes Yk of the Laplace
Beltrami operator with eigenvalues −λk (see section 3.2) as δφ =

∑
k δφkYk , we have

δκ = 2δφκ+
∑
k

λkδφkYk. (H.9)

Thus, we have δφ/δκ > 0, when δφ is given by single mode and κ > 0. This applies to
deformations of the sphere we considered in chapter 3.

H.1.1 Deformation response for a density of active tension

We are particularly interested, how the geometry-dependence of the flow field shapes patterns
in an active isotropic fluid film (see chapter 3 and sections 4.1 and 4.4). In this case the force
density is given by

(1)f = ðχ = e−φðχ, (H.10)

where χ is the density of active tension. Let us consider a deformation, whereby the tension
density changes as δχ = −2δφ due to dilution. Thus, the force changes as

δ (1)f = −3δφðχ− 2φχðδφ. (H.11)

The first summand corresponds to a simple rescaling of the force. The second summand however
yields a force density proportional to the gradient of δφ. With this we calculate the change in
the velocity field due to the deformation using Eq. H.4, which yields

δ (1)v =−
∫

dS0

{
χ(z0)

∫
dS δφ(z)ðz0Khyd(zv, z, z0)

+ 2G(z, z0)ðz0δφ(z0)
}
+ δφ (1)v, (H.12)

where the hydrodynamic kernel is given by

Khyd(zv, z, z0) = −4γG0(z, z0)Ḡ0(z, zv)− 2η(ðG0(z, z0))(ð̄Ḡ0(z, zv)) (H.13)

as in Eq. H.4. This hydrodynamic interaction yields an attraction of contractile points to max-
ima in φ in the distance, resulting from the effective increase in friction and viscosity. The term
proportional to ðδφ, in contrast, is an effective force density pointing down the gradient of δφ.
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In a flat surface we have G0(z, z0) = G0(|z − z0|) and thus ðz0G0(z, z0) = −ðG0(z, z0) and
G0 = Ḡ0. With this we evaluate the change in velocity δ (1)v upon a deformation δφ at a
distance to a tension monopole at z0. We find

δ (1)v(z0) =
T

2

∫
dS1 δφ(z1)ðz0|Khyd(z0, z1, z0). (H.14)

H.2 For flows limited by bulk viscosity

In analogy to the previous section, we consider the case of vanishing shear viscosity, corresponding
to the limit α → ∞ with l2h/α = αη/γ = const.. Then, the tangential force balance equation
can be written as

ð (0)P + γ (1)v = (1)f, (H.15)

where

(0)P = −ηbRe[ð̄ (1)v] (H.16)

is the pressure due to bulk viscosity ηb. Eq. H.15 can be solved in terms of the Green’s function
as defined in Eq. 4.16-4.18. Note that both Green’s functions G0 and G2 are in this case
non-vanishing in contrast to the previous section. Additionally, we define a propagator of the
pressure, i.e.

GP (z, z
′) = (0,−1)GP (z, z

′) = −ηb
2

(
ð̄G0(z, z

′) + ðG2(z, z
′)
)
, (H.17)

with all derivatives acting with respect to z. Thereby, GP (z, zf ) (1)F + GP (z, zf ) (−1)F yields
the pressure at coordinate z that results from the flow driven by a force (1)F at zf . Notably, its
complex conjugate GP (z0, zv) corresponds to the velocity at zv that results from a force density

(1)f(z) = ðδz,z0/2, i.e. a contractility monopole at z0.

Analogously to the previous section, we calculate the change in the flow field from the change in
viscous forces that results from a deformation δφ. Due to G2, we have to calculate two kernels:

(1,0,1)K as well as (1,0,−1)K, as the flow field depends on the orientation of the force with respect
to the surface geometry. On a closed surface, we find that they can be written as

(1,0,−1)K =
δ (1)v(zv)

δφ(z)δ (1)f(zf )
=

4

ηb
GP (z, zf )GP (z, zv) + Ḡ0(z, zv)δzf ,z −G0(z, zf )δzv ,z, (H.18)

(1,0,1)K =
δ (−1)v(zv)

δφ(z)δ (1)f(zf )
=

4

ηb
GP (z, zf )GP (z, zv) +G2(z, zv)δzf ,z −G2(z, zf )δzv ,z, (H.19)

We observe that the hydrodynamic terms, i.e. the first summand in Eq. H.18 and H.19, respec-
tively, yield a change in the flow field that results from a change in pressure

δP = −2Pδφ, (H.20)
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or equivalently a change in bulk viscosity δηb = −2ηbδφ. We may thus say, that a surface expan-
sion (δφ > 0) locally relaxes the pressure from bulk viscosity. This implies that a deformation
δφ that is limited to points, where the pressure vanishes, does not change the flow field away
from the site of the deformation.

In analogy to Eq. H.6, we want to derive how the flow field changes at the point where it is
driven. To understand how the flow field driven by a force (1)f = (1)Fδz,zf changes upon a static
deformation (with δφ(zf ) = 0) we have to take into account both kernels, i.e.

δ (1)v(zf )

δφ(z)
= (1,0,−1)K(zf , z, zf ) (1)F + (1,0,1)K (−1)(zf , z, zf )F (H.21)

Writing pressure propagator and force locally in terms of phase and magnitude, i.e. GP =

(0,−1)GP = |GP |e−iθP , (1)F = FeiθF , we obtain from Eq. H.18, Eq. H.19

δ (1)v(zf )

δφ(z)
=

4|GP (z, zf )|2

ηb

(
1 + e2i(θP (z,zf )−θF )

)
(1)F. (H.22)

We observe that the square of the pressure propagator defines an axis and that the change in
the flow field depends on the orientation of the force with respect to this axis. For perpendicular
alignment, i.e. cos[2(θP − θF )] = −1, the change in the flow field δ (1)v vanishes, whereas for
parallel alignment, i.e. cos[2(θP − θF )] = 1, δ (1)v(zf ) is orientated parallel to the force (1)F . In
general, we have that the scalar product of the force and and the change in the velocity field for
a surface expansion (δφ ≥ 0) is strictly positive

Re

[
(−1)F

δ (1)v(zf )

δφ(z)

]
≥ 0 (H.23)

with equality restricted to curves with cos[2(θP − θF )] = −1. This inequality, where ηs = 0, ηb >

0, is directly opposite to Eq. H.6,H.7, where ηs > 0, ηb = 0. In other words, adding surface
area around a force yields additional dampening of the flow due to shear viscosity and reduces
dampening due to bulk viscosity. When both shear and bulk viscosity are non-vanishing these
two effects compete.

H.3 Interplay of bulk and shear viscosity in defining the defor-
mation response

As before, we calculate the variation of the flow field for a deformation δφ, but this time for
non-vanishing bulk and shear viscosity, i.e. for some α > 0. As in the previous section we
calculate the angular average of the change in the flow field at the position of the force zf for a
deformation away from the point force (zf ̸= z). We find that for a general closed surface it can

197



APPENDIX H. DEFORMATION RESPONSE OF ACTIVE FLOW

be written as

δG0(zf , zf )

δφ(z)
=− 4η

l2h(1 + α)

(
|G0(z, zf )|2 + |G2(z, zf )|2

)
− 2η

(
|ðG0(z, zf )|2 + |ðG2(z, zf )|2

)
− 2ηα

l2h(1 + α)
|G0(z, zf )−G2(z, zf )|2

− 4ηRe[Ḡ0(zf , z)ðGP (z, zf ) +G2(zf , z)ð̄GP (z, zf )] +
4

αη
|GP (z, zf )|2, (H.24)

Due to the two summands resulting from the pressure, δG0(zf , zf )/δφ is not strictly negative for
arbitrary surfaces. For an incompressible fluid, i.e. in the limit α→ ∞, lh = const., GP remains
finite and thus |GP (z, zf )|2/α vanishes. The term proportional to the gradient of pressure, how-
ever, does not.

Importantly, we can make further progress for surfaces of constant Gaussian curvature for an
incompressible fluid film. Then the force balance equation reads

ηð̄ð (1)v − ð̄P − γ (1)v = − (1)f. (H.25)

Calculating the divergence of both sides of the equation, yields a Poisson equation for the pressure

1

η
∆LBP =

1

2

(
ð̄ð̄ð (1)v + ð̄ (1)f + ððð̄ (−1)v + ð (−1)f

)
=
1

2

(
ð̄ (1)f + ð (−1)f

)
+ (1)vð̄κ+ (−1)vðκ, (H.26)

where we used Eq. 1.66 and the incompressibility condition ð̄ (1)v + ð (−1)v = 0. We observe
that the pressure around a force monopole is a harmonic function on a surface with constant
Gaussian curvature.

We write the flow field in terms of the pressure using the propagator for vanishing bulk viscosity
α = 0 which we denote as G0

0:

(1)v(z) =

∫
dS′G0

0(z, z
′)((1)f(z

′)− ðP (z′) (H.27)

To make progress, we consider the case that harmonic contributions to the flow field are negligible.
This is valid for a sphere, and in the regime of small hydrodynamic length on arbitrary surfaces.
With this we can write the propagator of the velocity field as a propagator of F :

G0
0(z, z

′) = ðG0
F (z, z

′) (H.28)

This allows us to use partial integration to evaluate Eq. H.27 using the Poisson equation for the
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pressure (for ðκ = 0). With this we obtain

(1)v(z) =
1

2

∫
dS′G0

0(z, z
′) (1)f(z

′). (H.29)

Thus, on a surface with constant Gaussian curvature and negligible harmonic flow fields we have

lim
α→∞

G0 =
1

2
lim
α→0

G0. (H.30)

This implies that the calculation of δG0 for vanishing bulk viscosity α = 0 applies also to the
incompressible regime, when the hydrodynamic length scale is small compared to the length scale
of the gradient of Gaussian curvature.

H.4 Force multipole in a multipole of the surface geometry

We consider a force multipole which we understand as a force density of the form

(1)f(z) = (−1)nf+mf ðnf ð̄mf

(s)Xδz,z′ , s = 1− nf +mf , (H.31)

where (s)X denotes a spin quantity at z′ that captures the orientation and magnitude of the
stress multipole with |s|-fold rotational symmetry. A tension monopole corresponds to nf = 1

mf = 0 with (0)X < 0. A force multipole with nf = 0, mf > 0 corresponds to a multipole of the
active nematic tension (2)tact.

The flow field of such a force multipole can be expressed in terms of gradients of the Green’s
functions as

(1)v = ð̄mf

z′ ðnf

z′ G0(z, z
′) + ðmf

z′ ð̄nf

z′ G2(z, z
′). (H.32)

For simplicity, we consider the regime of vanishing bulk viscosity in the following, such that
G2 = 0. In a flat fluid film with φ = 0. The Green’s function is given by

G0(z, z
′) =

1

2πη
K0(|z − z′|/lh), (H.33)

where Kn(r) denotes the modified Bessel function. The Bessel functions obey the recurrence
relations

Kn(x) = −1

2
(Kn+1(x) +Kn−1(x)), Kn(x) = − x

2n
(Kn−1(x)−Kn+1(x)). (H.34)

With this we find

ðnð̄mKn(|z|) =
(−1)m+n

2π

znz̄m

|z|n+m
K|m−n|(|z|) =

(−1)n+m

2π
ei(n−m)θK|m−n|(r). (H.35)
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and thus the flow field of a force multipole at z = 0 in a flat fluid film reads

(1)v =
1

l
nf+mf

h

(s)X

2πη
ei(nf−mf )θK|mf−nf |(r/lh). (H.36)

We consider a deformation away from the multipole, i.e. a field of isotropic expansions and
contractions δφ that obeys

∃ϵ > 0 : δφ(z) = Θ(|z| − ϵ)δφ(z). (H.37)

We evaluate the flow field and its derivatives at the position of the multipole z0 = 0 using H.4,
which yields

δ(ðmv ð̄nv

(1)v)(z0) =

∫
S

(s)XdS1δφ(z1) ðmv
z ð̄nv

z ð̄mf
z0 ðnf

z0 (1,0,−1)K(z, z1, z0)
∣∣
z=z0

, (H.38)

where

(1,0,−1)K(z, z1, z0) =− 4γG0(z1, z0)Ḡ0(z1, z)− 2η(ðG0(z1, z0))(ð̄Ḡ0(z1, z)). (H.39)

With this and Eq. we obtain for z0 = 0

δ(ðmv ð̄nv

(1)v)(z0)

δφ(z)1
=− 1

l
mv+nv+mf+nf

h

(s)X

(2π)2η
ei(mv−nv−mf+nf )h(r/lh), (H.40)

where

h(r/lh) =
2

l2h

(
2K|mv−nv |(x)K|mf−nf |(x) +K|1+mv−nv |(x)K|1+mf−nf |(x)

)
> 0. (H.41)

For a deformation of the form

δφ = − 4

n+ 1
|z|2

(
(n)Kz̄

n + (−n)Kz
n
)

(H.42)

we obtain

δ(ðmv ð̄nv

(1)v)(z0)

=
8

n+ 1

21+n(1 + n)!

(3 + n)!

l2+nh

l
mv+nv+mf+nf

h

(s)X

2πη[
|4−mv + nv + 2n| |1 +mv − nv|! |n+ nv −mv|! (n)Kδn,mv−nv−mv+nf

+ |4−mv + nv + n| |1 +mv − nv + n|! |mv − nv|! (−n)Kδn,−mv+nv+mv−nf

]
, (H.43)

where we evaluated the radial integral in Eq. H.38 with Eq. H.40 using Mathematica [207].
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Importantly, all factors are positive, such that we may write

δ(ðmv ð̄nv

(1)v)(z0) = Nδs+n,1+mv−nv (s)X (n)K, (H.44)

with N > 0. For a tension monopole, i.e. mf = 0, nf = 1, (0)X = −T < 0, we have

δ(ðmv ð̄nv

(1)v)(z0) =−
4T ln+1

h

πηlmv+nv
h

21+nn!

(3 + n)![
(5 + n)n! (n)Kδn,1+mv−nv + (5 + 2n) (n+ 1)! (−n)Kδ−n,1+mv−nv

]
. (H.45)

Since δφ = 0 for |z| < ϵ, δ (1)v is continuous at z = 0. Thus we can expand δ (1)v as a Taylor
expansion:

δ (1)v =

∞∑
m=0

∞∑
k=0

Vmkz
mz̄k, (H.46)

where
Vmk =

1

m!k!
∂mz ∂

k
z̄ δ (1)v

∣∣
z=0

=
1

m!k!
2−m−kð̄mðkδ (1)v

∣∣
z=0

. (H.47)

With this we can write the multipoles of δ (1)v as defined in Eq. I.10 as

(t)V (a) =

∞∑
m=0

a2m+tVt−1+m,m (H.48)

(−t)V (a) =
∞∑
m=0

a2m+tVm,t+1+m (H.49)

for t ≥ 0. Thus, we can write them as

(t)V = N
(1)
ts (s)X (t−s)K, (H.50)

where for t ≥ 0 we have with Eq. H.43

N
(1)
ts =

∞∑
m=0

a2m+t

(t− 1 +m)!m!22m+t−1

δ(ðmð̄t−1+m
)δ (1)v

δ (s)Xδ (t−s)K
> 0 (H.51)

and analogously for t < 0.
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Appendix I

On multipoles in a curved surface

In the following, we make use the Newman Penrose formalism in isothermal coordinates (section
1.3.1 and 1.3.2) to define multipoles of vector fields on a curved surface. To this end, we follow
an approach from the field of general relativeity that is based on conformal Killing vector fields
[208]. On a surface, conformal Killing vector fields are vector fields (1)x obeying

ð (1)x = 0. (I.1)

Using

ð (1)x =
1

l2
∂z̄l (1)x (I.2)

we obtain

(1)x = lf(z), ∂z̄f = 0, (I.3)

i.e. any conformal Killing vector field corresponds to a holomorphic function f . As there are
infinitely independent holomorphic functions, there are infinitely many conformal Killing vector
fields. Furthermore, any holomorphic function and hence any conformal Killing vector field is
uniquely defined by by its value and all its derivatives at some reference point z0. We define the
conformal Killing vector fields (1)xn (n ∈ N) with respect to z = 0 by

ð̄(m)
(1)xn|z=0 = δm,n (1−n)X. (I.4)

Thus, they are vector fields that are uniquely and covariantly defined by a quantity ((1−n))X

corresponding to an object with |n − 1|-fold rotational symmetry at z = 0. Without loss of
generality, we may set (s)X = 1 such that the convention of (s)X coincides with the convention
of Z. Furthermore, we define the anti-conformal Killing vector fields (1)x−n by

ð̄ (1)x−n = 0, ð(m)
(1)x−n|z=0 = δm,n (1+n)X (m,n ∈ N) (I.5)

The fields (1)x±n are vector fields that have some s fold rotational symmetry with respect to a
point of reference. In particular (1)x1 (with (0)X ∈ R) defines an isotropic vector field around
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z = 0.. In the following we use this to quantify the flow field around the location of the stress
multipole by defining

(s)V (a) =
1

L

∫
Γ(a)

dl
Re[(1)ν (−1)x1]

| (1)x1|
(1)x1−s (−1)v

| (1)x1−s|
, (I.6)

where Γ(a) is some contour around z = 0 with a characteristic length scale a. In particular, we
define the velocity of the stress multipole at z = 0 as

(1)V = lim
a→0 (1)V (a). (I.7)

We note, that such a limit may not always exist. In this case the contour Γ(a) becomes relevant,
which reflects the finite size of for example the active particle at z = 0.

The fields (1)xn become particularly simple by locally reparametrising the surface such that

φ
∣∣
z=0

= 0, ð(m)φ
∣∣
z=0

= 0 (m ∈ N). (I.8)

With this, we obtain

(1)xn =
l

n! (1−n)
Xzn, (1)x−n =

1

n!

1

l (1+n)Xz̄
n. (I.9)

Furthermore we use the convention (s)X = 1. Thereby the flow components (s)V (a) with a/l ≪
l2κ become

(s)V (a) =
1

2π

∫ 2π

0
dθei(1−s)θ (−1)v(|z| = a) (I.10)

Thus, the multipoles (s)V of the flow field correspond to the Fourier components of the angular
dependence of the flow field. In particular, the multipole velocity is simply the average velocity
along the circle. This motivates the numerical calculation of the monopole velocity as described
in Fig. J.1.
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Supplemental figures and tables

F G H I
lh/R 20 20 20 1/6
G 1 1 0 0
α 1000 1000 5 2
a/R 0.01 0.01 0.01 1/6
b.c. at r = R v = 0 tr = 0 tr(θ) = F, ⟨v⟩θ=0 v = 0
b.c. at θ = π tθ=0 v = 0 tθ = θ v = 0
b.c. at θ = −π tθ=0 v = 0 tθ = θ v = 0
v(r = a, θ) VT+ΩTθ VT+ΩTθ VT+ΩTθ VT+ΩTθ
crack tip b.c. FT = 0 = ΓT VT = 0 = ΩT FT = 0 = ΓT FT = 0, ΓT = 1

Table J.1: Material parameters and boundary conditions (b.c.) of the numerical solutions in 2.1F-I, using
an arbitrary unit of time.

A B
lh/R 20 20
G 0 0
α 3 3
a/R 0.01 0.01
b.c. at r = R tr(θ) = F, ⟨v⟩θ=0 tr(θ) = F, ⟨v⟩θ=0
b.c. at θ = π tθ = θ tθr=0, vθ = 1
b.c. at θ = −π tθ = θ tθr=0, vθ = −1
v(r = a, θ) VT+ΩTθ VT+ΩTθ
crack tip b.c. FT = 0 = ΓT FT = 0 = ΓT

Table J.2: Material parameters and boundary conditions (b.c.) of the numerical solutions in 2.6A,C, using
an arbitrary unit of time.
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Fig. γp1 γQ1 γp2 γQ2 χ1 χ2 ζp ζpQ1 ζpQ2 ζQ1 ζQ2 ζQ3 ζpQ3
C 1 -1 -1 -1 1 1 1 0 0 0 0 0 0
D 0.8 1 -1 -1 1 1 0 0 0 0 0 1 0
E 1 1 -1 -1 1 -1 0 0 0 0 0 0 0
F 1 1 -1 -1 1 -1 -0.076 0.008 -0.415 -0.238 0.301 -0.471 0.429

Table J.3: Physical parameters of the numerical solutions plotted in 3.1

Fig. η lh Pe α k D f(c) R0 δR20 R1 R2

A 1 3 55 1 10 1 2c2/(c20 + c2) 1 0.4
B 1 3 55 1 10 1 2c2/(c20 + c2) 1 0.7071

Table J.4: Physical parameters of the numerical solutions plotted in 4.1

A B C
1 1

staggered grid 192x96
staggered grid 64x32
pseudo-spectral method on 128x64 grid

1

Figure J.1: Numerical calculation of tension monopole velocity on a torus. We calculate the
velocity of a tension monopole from the numerical flow field (see appendix G). To this end, we average the
three-dimensional vector v on the outline of a circle in coordinate space with radius r/l centered at the
position of the tension monopole, motivated by appendix I. This average velocity is then projected into the
tangent plane defined by Z at the position of the tension monopole. Due to the symmetry of the geometry
(i.e. a torus with sinh(ρ) as defined in Eq. F.24), the velocity points always along the poloidal direction.
We plot here the projection on the normalized poloidal tangent vector, using different grids and numerical
methods. Physical parameters are α = 1, lh = 3R1. A: Staggered grid of size 192x96 using different radii r
for calculating the monopole velocity from the flow field. We observe that beyond the resolution of the grid,
the monopole velocity is fairly independent of r. In Fig. 4.2, we use r = R1/7 corresponding to the red curve.
B: Monopole velocity for r = 0, i.e. the flow field is evaluated at the grid point of the tension monopole.
We use staggered grids of size 192x96 (red curve) and 64x32, which yield similar results. When we use a
usual square grid and solve the flow field using a pseudo-spectral method (yellow curve, see appendix F),
however, the result differs, indicating that the monopole velocity we calculate using r = 0 depends on how
we discretize the problem. C: Same as in B, but using r = R1/7. We observe that the monopole velocity
we find is independent of the numerical method we use to calculate the flow field.
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A

B

C

A

B

Figure J.2: Flow field of force monopoles in an incompressible toroidal fluid film. A: Flow
field (red arrows) of a force monopole, i.e. a force density given by a dirac delta (Eq. 4.19), with the force
pointing in the toroidal direction. Color denotes logarithm of the modulus of the velocity from log |v| = −6
to log |v| = 0. Lengths of arrows are also logarithmically scaled. Left panel: Force monopole (blue arrow)
on the inner surface at poloidal coordinate p0 = 0.9π. Right panel: Force monopole on the outer surface at
p0 = π/15. B: As in A but for force pointing in the poloidal direction. C: Surface average of the flow fields
of force monopoles as in A,B as a function of the poloidal coordinate of the monopole position. We observe
that the average velocity is minimal for p0 = π, where γeff and ηeff are maximal (see Fig. 4.3A,B and main
text. Physical parameters are η = 1, α = 1000, lh = 2. Radii of the torus are R1 = 1.4, R2 = 1. All flow
fields were solved using a pseudospectral method (appendix F) on an 81x81 isothermal grid.)
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A B
C

0 5 10
-1

0

1

10-1 100 101
10-4

10-2

100

Figure J.3: Interplay of bulk and shear viscosity in the context of geometry sensing by a
contractile point. A,B Change in the flow field around a tension monopole (blue dot) upon an infinitesimal
expansion (white circle) of the surface, as in Fig. 4.6C, but for non-vansishing bulk viscosity. When shear
viscosity vanishes (B), we observe that the contractile point moves away from the expansion, opposed to
the case of vanishing bulk viscosity. For α = ηb/η = 1 (A), we observe that the attraction resulting from
shear viscosity dominates. C: Upper panel: Velocity of a tension monopole next to a surface expansion
(colored curves, as in A,B) or in a gradient of Gaussian curvature (black curve, as in Fig. 4.6D). We
observe that a contractile point always moves towards a surface expansion (vmono > 0), when shear viscosity
is non-vanishing, i.e. the distance ∆x between contractile point and surface expansion is on the order of the
hydrodynamic length lh. Also in a gradient of Gaussian curvature, we find that a contractile point always
moves down the gradient. Note that we normalized all curves with respect to their maximum modulus. In
the lower right panel, in contrast, we plot the actual non-normalized velocity of a tension monopole as a
function of the distance ∆x between the monopole and the surface expansion for various α.

Active torques Chiral active moments

B

C

D

E

F

G

H

A

Figure J.4: Chiral deformation-triggered net rotation Flow fields for a polarized ring of chiral
mechanical activity c (yellow coloring) in a fluid film with the geometry of a prolate sphere. Upper row
corresponds to view as in Fig. 5.4, whereas in the lower row, also the poles are shown to illustrate the
asymmetry of the pattern c and the resulting flow field. A-D: Active torque density as in Fig. 5.4B,C.
We find that the polarized pattern c drives a rotation around the axis of this polarity, independent of the
orientation of the ring with respect to the surface geometry. A-H: Isotropic chiral active moments as in Fig.
5.4I. We find that also active chiral moments drive a net rotation. However, we find that the direction of
the rotation reverses between E,F and G,H. This reflects that the rotation is triggered by the deformation
in contrast to A-D. Hence the rotation is reversed, when considering the inverse deformation of the surface
with respect to the pattern.
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t=7.2 t=8.1

t=8.85t=7.95

Figure J.5: Surface geometry shapes dynamical patterns in active fluid model Example of nu-
merical solutions of the active fluid model in section 3.3 for parameters where no steady state emerges,
corresponding to gray patterns in Fig. 3.5B. We simulate pattern formation starting from a random per-
turbation of the homogeneous state and compare the dynamics on a sphere (2nd and 4th column) to the
dynamics on a deformed sphere (1st and 3rd column). On a sphere, we observe a circular patch traveling
around the sphere, corresponding to a dynamic steady state. On the deformed sphere, in contrast, we
observe repeated transitions between a circular patch and a ring, yielding potentially chaotic dynamics. In
both cases the physical parameters are Pe = 55, lh = 0.67R0, α = 1, f(c) = 2c2/(c20 + c2), kτD = 10, and
time t is given in units of τD.
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