Avalanche outbreaks emerging in cooperative contagions
During human history the world has witnessed an immense loss of lives caused by infectious diseases. The number of casualties becomes even more concerning the cases of syndemic diseases (cooperative contagion), when two or more diseases co-infect individuals in a host population. For example the 1918 Spanish pandemic killed 20-40 million people mainly because of secondary bacterial infections. Contemporary syndemics that pose a major threat to public health include coinfection of HIV, Hepatitis B, C and TB. Here we modeled pathogens that spread and interact on networks, i.e. contact networks between individuals. These interactions can be cooperative and effectively change the way syndemic diseases spread and proliferate in populations. We showed that cooperation of the spreading infections can cause abrupt unexpected outbreaks at smaller epidemic thresholds, while underlying network can amplify or suppress this effect.
W. Cai, L. Chen, F. Ghanbarnejad, and P. Grassberger
Nature Physics (2015)
Johannes Knolle erhält den Dissertationspreis der Sektion kondensierte Materie der DPG
Ziel des Preises ist die Anerkennung herausragender wissenschaftlicher Arbeit und deren exzellenter Darstellung in einem Vortrag. Zur Verleihung an Johannes Knolle, der am MPIPKS in der Abteilung Kondensierte Materie promovierte, schreibt die Jury: Die numerisch exakte Evaluierung des dynamischen Strukturfaktors einer fraktionierten Quantenspinflüssigkeit stellt einen Durchbruch für unser Verständnis topologischer Magnete in zwei Dimensionen dar. Sie ist von Bedeutung für die Suche nach topologischen Materialien, für die Methodik der Vielteilchentheorie, sowie als Beispiel eines lokalen Quantenquenches.
Dr. Frank Pollmann erhält den Walter-Schottky-Preis 2014 für seine Arbeit zum Konzept symmetriegeschützter topologischer Zustände. Das Preiskomittee schreibt: In den letzten Jahren hat das Feld topologischer Quantenzustände weltweit eine rasante Entwicklung genommen. Durch wegweisende Arbeiten haben Frank Pollmann und Andreas Schnyder mit ihren Ko-Autoren maßgeblich dazu beigetragen, die Vielfalt topologischer Systeme und Phänomene zu erkennen und an Hand von Symmetrieüberlegungen zu systematisieren. Andreas Schnyder gelang die Klassifizierung topologischer Isolatoren, Supraleiter und Halbmetalle. Frank Pollmann hat das Konzept symmetriegeschützter topologischer Ordnung entwickelt.
New research group 'Ultrafast laser-matter interaction'
The new group is headed by Dr. Alexandra Landsman and studies the creation of ultrafast flashes of light and the interaction of this ultrafast light with matter using a variety of numerical and analytic methods, ranging from the solution of the Schrodinger equation to semi-classical approaches to techniques from nonlinear dynamical systems.
Scaling and Regeneration of Self-Organized Patterns
Biological patterns generated during development and regeneration often scale with organism size. Some organisms, e.g., flatworms, can regenerate a rescaled body plan from tissue fragments of varying sizes. Inspired by these examples, we introduce a generalization of Turing patterns that is self-organized and self-scaling. A feedback loop involving diffusing expander molecules regulates the reaction rates of a Turing system, thereby adjusting pattern length scales proportional to system size. Our model captures essential features of body plan regeneration in flatworms as observed in experiments.
S. Werner, T. Stückemann, M. B. Amigo, J. C. Rink, F. Jülicher, B. M. Friedrich
Phys. Rev. Lett. 114, 138101 (2015)
The mechanical behaviour of cells is largely controlled by a structure that is fundamentally out of thermodynamic equilibrium: a network of crosslinked filaments subjected to the action of energy-transducing molecular motors. The study of this kind of active system was absent from conventional physics and there was a need for both new theories and new experiments. The field that has emerged in recent years to fill this gap is underpinned by a theory that takes into account the transduction of chemical energy on the molecular scale. This formalism has advanced our understanding of living systems, but it has also had an impact on research in physics per se. Here, we describe this developing field, its relevance to biology, the novelty it conveys to other areas of physics and some of the challenges in store for the future of active gel physics.
J. Prost, F. Jülicher, J-F. Joanny
Nature Physics 11, 111-117 (2015)
Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The Lévy-walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, biophysics, and behavioral science demonstrate that this particular type of random walk provides significant insight into complex transport phenomena. This review gives a self-consistent introduction to Lévy walks, surveys their existing applications, including latest advances, and outlines further perspectives.
V. Zaburdaev, S. Denisov, and J. Klafter
Rev. Mod. Phys. 87, 483 (2015)
During embryonic development, temporal and spatial cues are coordinated to generate a segmented body axis. In sequentially segmenting animals, the rhythm of segmentation is reported to be controlled by the time scale of genetic oscillations that periodically trigger new segment formation. However, we present real-time measurements of genetic oscillations in zebrafish embryos showing that their time scale is not sufficient to explain the temporal period of segmentation. A second time scale, the rate of tissue shortening, contributes to the period of segmentation through a Doppler effect. This contribution is modulated by a gradual change in the oscillation profile across the tissue. We conclude that the rhythm of segmentation is an emergent property controlled by the time scale of genetic oscillations, the change of oscillation profile, and tissue shortening.
Daniele Soroldoni, David J. Jörg, Luis G. Morelli, David L. Richmond, Johannes Schindelin, Frank Jülicher, Andrew C. Oates
Science, 11 July 2014
Extracting information from S-curves of language change
It is well accepted that adoption of innovations are described by S-curves (slow start, accelerating period and slow end). In this paper, we analyse how much information on the dynamics of innovation spreading can be obtained from a quantitative description of S-curves. We focus on the adoption of linguistic innovations for which detailed databases of written texts from the last 200 years allow for an unprecedented statistical precision. Combining data analysis with simulations of simple models (e.g. the Bass dynamics on complex networks), we identify signatures of endogenous and exogenous factors in the S-curves of adoption. We propose a measure to quantify the strength of these factors and three different methods to estimate it from S-curves. We obtain cases in which the exogenous factors are dominant (in the adoption of German orthographic reforms and of one irregular verb) and cases in which endogenous factors are dominant (in the adoption of conventions for romanization of Russian names and in the regularization of most studied verbs). These results show that the shape of S-curve is not universal and contains information on the adoption mechanism.
F. Ghanbarnejad, M. Gerlach, J. M. Miotto, and E. G. Altmann
J. R. Soc. Interface 11, 20141044 (2014)
Raman Scattering Signatures of Kitaev Spin Liquids in A$_2$IrO$_3$ Iridates with A=Na or Li
We show how Raman spectroscopy can serve as a valuable tool for diagnosing quantum spin liquids (QSL). We find that the Raman response of the gapless QSL of the Kitaev-Heisenberg model exhibits signatures of spin fractionalization into Majorana fermions, which give rise to a broad signal reflecting their density of states, and Z$_2$ gauge fluxes, which also contribute a sharp feature. We discuss the current experimental situation and explore more generally the effect of breaking the integrability on response functions of Kitaev spin liquids.
J. Knolle, Gia-Wei Chern, D.L. Kovrizhin, R. Moessner, and N. B. Perkins
Phys. Rev. Lett. 113, 187201 (2014)